research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Fluorenonophane chloro­benzene solvate: mol­ecular and crystal structures

crossmark logo

aSSI `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv 61001, Ukraine, bV. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv 61112, Ukraine, cA. V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, Odesa, Ukraine, dEnamine Ltd., Chervonotkatska Street 78, Kyiv, 02094 , Ukraine, and eTaras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com

Edited by J. T. Mague, Tulane University, USA (Received 29 September 2021; accepted 9 November 2021; online 12 November 2021)

The title compound, 19H,79H-3,5,9,11-tetra­oxa-1,7(2,7)-difluorena-4,10(1,3)-dibenzena­cyclo­dodeca­phane-19,79-dione (fluorenonophane), exists as a solvate with chloro­benzene, C42H28O6·C6H5Cl. The fluorenonophane contains two fluorenone fragments linked by two m-substituted benzene fragments. Some decrease in its macrocyclic cavity leads to a stacking inter­action between the tricyclic fluorenone fragments. In the crystal, the fluorenonophane and chloro­benzene mol­ecules are linked by weak C—H⋯π(ring) inter­actions and C—H⋯Cl hydrogen bonds. The Cl atom of chloro­benzene does not form a halogen bond. A Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the inter­molecular contacts found in the crystal structure.

1. Chemical context

Discovered at the end of the last century, the ability of cyclo­phanes to form inclusion complexes makes them the central class of synthetic receptors in mol­ecular recognition processes (Diederich, 1991[Diederich, F. (1991). Cyclophanes. Cambridge: The Royal Society of Chemistry.]). Particular attention has been paid to the possibility of cationic cyclo­phanes with box geometries being involved in strong donor–acceptor inter­actions leading to the formation of `guest–host' complexes with different guests (Dale et al., 2016[Dale, E. J., Vermeulen, N. A., Juríček, M., Barnes, J. C., Young, R. M., Wasielewski, M. R. & Stoddart, J. F. (2016). Acc. Chem. Res. 49, 262-273.]; Barnes et al., 2013[Barnes, J. C., Juríček, M., Strutt, N. L., Frasconi, M., Sampath, S., Giesener, M. A., McGrier, P. L., Bruns, C. J., Stern, C. L., Sarjeant, A. A. & Stoddart, J. F. (2013). J. Am. Chem. Soc. 135, 183-192.]; Gong et al., 2010[Gong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. (2010). Nat. Chem. 2, 406-409.]). Previously we have obtained fluorenonophane 1 with two fluorenone fragments linked by rigid xylyl groups (Lukyanenko et al., 2003[Lukyanenko, N. G., Kirichenko, T. I., Lyapunov, A. Yu., Bogaschenko, T. Yu., Pastushok, V. N., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2003). Tetrahedron Lett. 44, 7373-7376.]; Simonov et al., 2006[Simonov, Yu. A., Bogashchenko, N. Yu., Pastushok, V. N., Botoshanskii, M. M., Fonar', M. S., Lyapunov, A. Yu. & Luk'yanenko, N. G. (2006). Russ. J. Org. Chem. 42, 1075-1082.]). X-ray diffraction analysis of this cyclo­phane revealed the box geometry with an open intra­molecular cavity and the formation of inclusion complexes with DMF and nitro­benzene (Simonov et al., 2006[Simonov, Yu. A., Bogashchenko, N. Yu., Pastushok, V. N., Botoshanskii, M. M., Fonar', M. S., Lyapunov, A. Yu. & Luk'yanenko, N. G. (2006). Russ. J. Org. Chem. 42, 1075-1082.]). The other fluorenonophane obtained by our group, 2, differs from the previous one in the position of the methyl­ene groups, which are located directly at the benzene fragment in 1 or fluorenone in 2. Fluorenonophane 2 forms inclusion complexes with chloro­form and bromo­form with a 1:2 stoichiometry. Moreover, C—Cl⋯π and C—Br⋯π halogen bonds (Shishkina et al., 2021[Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V., Semynozhenko, V. P., Bogashchenko, T. Yu., Lyapunov, A. Yu. & Kirichenko, T. I. (2021). Struct. Chem. https://doi.org/10.21203/rs.3.rs-747526/v1]) are present in the complexes. In contrast to cationic cyclo­phanes, there are no charged fragments in fluorenonophanes. Continuing our research in this area, we have obtained fluorenonophane 3 with a different position of attachment of the benzene rings compared to 2 (m- and p-isomers, respectively) and studied its complexation with chloro­benzene.

[Scheme 1]

2. Structural commentary

Fluorenonophane 3 was crystallized from chloro­benzene and exists in the crystal as a solvate in a 1:1 ratio rather than as an inclusion complex. Fluorenonophane 3 contains two fluorenone fragments linked by two m-substituted benzene fragments (Fig. 1[link]). The macrocycle 3 has a boat conformation similar to structure 1 [the torsion angles C41—O6—C1—C2, C37—O5—C36—C33, C20—O3—C22—C23, and C16—O2—C15—C13 are −90.6 (4), 78.4 (4), −80.0 (4) and 91.6 (4)°, respectively]. In structure 3, the fluorenone fragments are oriented in the same directions (cis-orientation) while the orientation of these fragments is trans in structures 1 and 2. meta-Substitution of the two benzene fragments results in a smaller macrocycle cavity as compared to fluorenonophanes 1 and 2 with para-substituted benzene fragments. As a result, the two fluorenones are slightly bowed inwards [the dihedral angle between C2–C7 and C8-C14 benzene rings is 12.51 (18)° in one fluorenone while the dihedral angle between the C31–C35 and C23–C28 benzene rings is 9.64 (18)° in the other fluorenone). This can be explained by a π-stacking inter­action between the C10=O1 carbonyl group and the C25/C26/C31/C30/C29 fluorenone ring [centroid Cg2, with O1⋯Cg2 = 3.469 (3) Å, C10⋯Cg2 = 3.492 (4) Å, C10=O1⋯Cg2 = 81.1 (2)°]. In contrast to structures 1 and 2, the macrocycle in structure 3 does not contain any mol­ecules inside its cavity. Therefore, the structure under study is a chloro­benzene solvate of fluorenonophane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the fluorenonophane and chloro­benzene mol­ecules are linked to each other by weak C46—H46⋯O6 and C18—H18⋯Cl1 hydrogen bonds while the fluorenophanes are linked by weak C35—H35⋯O1 hydrogen bonds (Table 1[link]), forming stepped ribbons. The ribbons are connected by C1—H1ACg2 and C22—H22ACg1 inter­actions (Table 1[link]) to give the final three-dimensional structure. The halogen atom does not form a halogen bond in the structure of 3, in contrast to the supra­molecular complexes studied earlier (Shishkina et al., 2021[Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V., Semynozhenko, V. P., Bogashchenko, T. Yu., Lyapunov, A. Yu. & Kirichenko, T. I. (2021). Struct. Chem. https://doi.org/10.21203/rs.3.rs-747526/v1]). The electrostatic potential for chloro­benzene was calculated using the B3LYP/6–311 G(d,p) method. An area with a positive charge (σ-hole) was not found in the electrostatic potential map around the halogen atom (Fig. 2[link]). The highest electrostatic potential at the chlorine atom is −0.08 eV. This fact can explain the absence of halogen bonds in the structure of 3.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg15 are the centroids of the C5/C6/C10/C9/C8, C25/C29/C30/C31/C26 and C43–C48 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cl1i 0.95 2.83 3.547 (4) 133
C35—H35⋯O1ii 0.95 2.58 3.491 (5) 161
C46—H46⋯O6iii 0.95 2.55 3.418 (5) 152
C1—H1ACg2iv 0.99 2.95 3.610 (4) 125
C22—H22ACg1v 0.99 2.73 3.711 (4) 170
C36—H36BCg15vi 0.99 2.84 3.713 (4) 148
Symmetry codes: (i) x+1, y+1, z; (ii) [x-1, y, z]; (iii) x+1, y+1, z+1; (iv) [x, y-1, z]; (v) x, y+1, z; (vi) [x-1, y, z-1].
[Figure 2]
Figure 2
Electrostatic potential map of the chloro­benzene mol­ecule in 3 calculated by the B3LYP/6–311 G(d,p) method.

4. Hirshfeld surface analysis

Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net]) was used to analyze inter­actions in the crystal. Mol­ecular Hirshfeld surfaces mapped over dnorm with a standard (high) surface resolution and a fixed colour scale of −0.134 (red) to 1.206 (blue) were generated separately (Fig. 3[link]) for the fluorenonophane and chloro­benzene mol­ecules. The areas in red correspond to contacts that are shorter than the sum of the van der Waals radii of the closest atoms. Thus, the red spots at some hydrogen atoms and at the carbonyl oxygen atom as well as in the area of the five-membered ring indicate the existence of short C—H⋯O and C—H⋯π(ring) contacts.

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm showing the conformation of the fluorenonophane and chloro­benzene mol­ecules.

To evaluate the contribution of the short contacts of different types to the total Hirshfeld surface, two-dimensional fingerprint plots for the fluorenonophane and chloro­benzene mol­ecules were generated (Fig. 4[link]). The contribution from the C⋯H/H⋯C contacts corresponding to the C—H⋯π(ring) inter­actions are represented by a pair of sharp spikes (27.7% and 25.9% for fluorenonophane and chloro­benzene, respectively). Analysis of the fingerprint plots also showed a significant contribution from O⋯H/H⋯O contacts (19.7%) associated with the C—H⋯O hydrogen bonds.

[Figure 4]
Figure 4
The two-dimensional fingerprint plots for fluorenonophane 3 (top) and chloro­benzene (bottom).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for cyclo­phanes containing fluorenone and benzene fragments yielded two hits: two structures with fluorenone fragments linked by rigid xylyl groups (CCDC 263272 and CCDC 263273; Simonov et al., 2006[Simonov, Yu. A., Bogashchenko, N. Yu., Pastushok, V. N., Botoshanskii, M. M., Fonar', M. S., Lyapunov, A. Yu. & Luk'yanenko, N. G. (2006). Russ. J. Org. Chem. 42, 1075-1082.]). Recently, two more structures with fluorenonophanes linked by para-substituted benzene fragments were published (CCDC 647971 and CCDC 2098245; Shishkina et al., 2021[Shishkina, S. V., Dyakonenko, V. V., Shishkin, O. V., Semynozhenko, V. P., Bogashchenko, T. Yu., Lyapunov, A. Yu. & Kirichenko, T. I. (2021). Struct. Chem. https://doi.org/10.21203/rs.3.rs-747526/v1]). The structures found are characterized by a larger macrocyclic cavity compared to that in fluorenonophane 3.

6. Synthesis and crystallization

A solution of 1.75 g (4.78 mmol) of 2,7-bis­(bromo­meth­yl)-9H-fluoren-9-one (Haenel et al., 1985[Haenel, M. W., Irngartinger, H. & Krieger, C. (1985). Chem. Ber. 118, 144-162.]) in 200 mL of anhydrous DMF was added to a mixture of 0.526 g (4.78 mmol) of resorcinol and 3.96 g (28.7 mmol) of K2CO3 in 270 mL of anhydrous DMF with stirring under nitro­gen for 10 h at 353–358 K. The reaction mixture was stirred at the same temperature for a further 35 h, cooled and filtered (Fig. 5[link]). The precipitate was washed with DMF and the filtrate was evaporated under reduced pressure. The residue was dissolved in CHCl3 and washed with an aqueous sodium carbonate solution (50 mL), then with water (3 × 50 mL) to a neutral pH. After drying over MgSO4, the CHCl3 was evaporated under reduced pressure. The product was purified by chromatography on silica gel (Acros 0.060 ÷ 1/5), eluent CHCl3–EtOH, 500:1. The yield of cyclo­phane 3 was 0.11 g (7.2%), m.p. >573 K, dec. 1H NMR (DMSO-d6), δ, p.p.m.: 5.25 s (CH2, 8H), 6.46–6.56 m (H2, H4, 6H), 7.04 t (H5, 2H, J = 8.1 Hz), 7.18 s (Ha, 4H), 7.57 m (Hb, HH, 8H). MS: FAB, m/z 628 [M + H+]. Analysis calculated for C42H28O6: C, 80.24; H, 4.49. Found: C, 80.44; H, 4.76%. Crystals were obtained by crystallization of fluorenonophane 3 from chloro­benzene.

[Figure 5]
Figure 5
The synthesis of fluorenonophane 3

7. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. Carbon-bound H atoms were added in calculated positions with C—H bond lengths of 0.95 Å for C—H, 0.92 Å for CH2 and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C42H28O6·C6H5Cl
Mr 741.19
Crystal system, space group Triclinic, P1
Temperature (K) 100
a, b, c (Å) 6.2278 (6), 9.6965 (8), 14.9822 (13)
α, β, γ (°) 105.288 (8), 97.126 (7), 96.919 (7)
V3) 854.83 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.6 × 0.4 × 0.2
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.846, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8226, 7191, 5307
Rint 0.028
(sin θ/λ)max−1) 0.808
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.171, 1.03
No. of reflections 7191
No. of parameters 496
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.79, −0.42
Absolute structure Flack x determined using 564 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.19 (9)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

19H,79H-3,5,9,11-Tetraoxa-1,7(2,7)-difluorena-4,10(1,3)-dibenzenacyclododecaphane-19,79-dione chlorobenzene monosolvate top
Crystal data top
C42H28O6·C6H5ClZ = 1
Mr = 741.19F(000) = 386
Triclinic, P1Dx = 1.440 Mg m3
a = 6.2278 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6965 (8) ÅCell parameters from 1987 reflections
c = 14.9822 (13) Åθ = 3.9–33.0°
α = 105.288 (8)°µ = 0.17 mm1
β = 97.126 (7)°T = 100 K
γ = 96.919 (7)°Block, colourless
V = 854.83 (13) Å30.6 × 0.4 × 0.2 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
7191 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1827 pixels mm-1θmax = 35.0°, θmin = 3.0°
ω scansh = 98
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 715
Tmin = 0.846, Tmax = 1.000l = 2420
8226 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.017P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.171(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.79 e Å3
7191 reflectionsΔρmin = 0.42 e Å3
496 parametersAbsolute structure: Flack x determined using 564 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al.,2013)
3 restraintsAbsolute structure parameter: 0.19 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3386 (4)0.2409 (3)0.30318 (19)0.0294 (6)
O20.3907 (5)0.5919 (3)0.66155 (19)0.0298 (6)
O30.3627 (5)0.9250 (3)0.47327 (18)0.0265 (5)
O40.3771 (4)0.5007 (3)0.14591 (18)0.0265 (5)
O50.0097 (4)0.0028 (3)0.12980 (18)0.0264 (5)
O60.0323 (4)0.3103 (3)0.07559 (18)0.0259 (5)
C10.1767 (6)0.2869 (4)0.0994 (3)0.0245 (7)
H1A0.2389200.3690090.1209500.029*
H1B0.2751170.2867640.0421980.029*
C20.1747 (6)0.1482 (4)0.1741 (2)0.0239 (7)
C30.3613 (6)0.1340 (4)0.2162 (3)0.0266 (7)
H30.4859390.2077660.1933900.032*
C40.3703 (6)0.0156 (4)0.2902 (3)0.0267 (7)
H40.4983160.0078120.3184590.032*
C50.1889 (6)0.0909 (4)0.3217 (2)0.0222 (6)
C60.0046 (6)0.0796 (4)0.2766 (2)0.0220 (6)
C70.0060 (6)0.0388 (4)0.2035 (2)0.0224 (6)
H70.1325760.0454260.1740690.027*
C80.1381 (6)0.2194 (4)0.4039 (2)0.0225 (6)
C90.0774 (6)0.2848 (4)0.4097 (2)0.0244 (7)
C100.1658 (6)0.2076 (4)0.3267 (2)0.0231 (7)
C110.2608 (6)0.2752 (4)0.4711 (3)0.0261 (7)
H110.4104740.2356450.4659870.031*
C120.1588 (7)0.3914 (4)0.5467 (3)0.0278 (7)
H120.2423230.4326940.5928370.033*
C130.0608 (6)0.4491 (4)0.5571 (2)0.0250 (7)
C140.1794 (6)0.3979 (4)0.4864 (3)0.0244 (7)
H140.3276030.4396700.4904360.029*
C150.1603 (7)0.5576 (4)0.6484 (3)0.0290 (8)
H15A0.0973620.6476550.6524180.035*
H15B0.1187700.5195990.7000670.035*
C160.4764 (6)0.7076 (4)0.6331 (2)0.0251 (7)
C170.6890 (7)0.7711 (4)0.6749 (3)0.0298 (8)
H170.7667060.7363900.7209200.036*
C180.7850 (7)0.8861 (5)0.6479 (3)0.0316 (8)
H180.9300830.9315030.6763960.038*
C190.6746 (6)0.9367 (4)0.5802 (3)0.0297 (8)
H190.7438201.0154190.5619950.036*
C200.4627 (6)0.8717 (4)0.5394 (2)0.0245 (7)
C210.3627 (6)0.7559 (4)0.5661 (2)0.0256 (7)
H210.2170550.7108350.5381180.031*
C220.1320 (6)0.8832 (4)0.4482 (3)0.0260 (7)
H22A0.0715100.9546120.4198400.031*
H22B0.0681100.8861790.5058170.031*
C230.0619 (6)0.7348 (4)0.3806 (2)0.0231 (7)
C240.1890 (6)0.6774 (4)0.3150 (2)0.0242 (7)
H240.3296790.7275980.3149780.029*
C250.1081 (6)0.5461 (4)0.2498 (2)0.0220 (6)
C260.0988 (6)0.4699 (4)0.2487 (2)0.0222 (6)
C270.2240 (6)0.5237 (4)0.3154 (3)0.0260 (7)
H270.3626400.4717960.3165390.031*
C280.1408 (6)0.6572 (4)0.3816 (2)0.0250 (7)
H280.2246390.6958430.4283920.030*
C290.2013 (6)0.4666 (4)0.1678 (2)0.0230 (6)
C300.0310 (6)0.3407 (4)0.1173 (2)0.0236 (7)
C310.1468 (6)0.3419 (4)0.1661 (2)0.0222 (6)
C320.0253 (6)0.2392 (4)0.0333 (2)0.0232 (6)
H320.1480810.2385340.0015020.028*
C330.1620 (6)0.1380 (4)0.0043 (3)0.0243 (7)
C340.3346 (6)0.1355 (4)0.0463 (3)0.0260 (7)
H340.4596750.0624320.0217450.031*
C350.3285 (6)0.2373 (4)0.1318 (3)0.0258 (7)
H350.4474450.2345090.1656820.031*
C360.1881 (6)0.0386 (4)0.1026 (2)0.0261 (7)
H36A0.2920150.0498580.1075360.031*
H36B0.2535930.0874100.1470470.031*
C370.0872 (6)0.1085 (4)0.0968 (2)0.0243 (7)
C380.2524 (6)0.1682 (4)0.1384 (3)0.0294 (8)
H380.3051880.1367650.1877340.035*
C390.3404 (6)0.2748 (4)0.1071 (3)0.0296 (8)
H390.4546200.3165850.1353800.036*
C400.2643 (6)0.3216 (4)0.0352 (3)0.0292 (8)
H400.3254320.3948010.0140780.035*
C410.0986 (6)0.2601 (4)0.0050 (2)0.0250 (7)
C420.0074 (6)0.1549 (4)0.0254 (3)0.0246 (7)
H420.1086620.1145930.0021770.030*
Cl10.2053 (2)0.17453 (13)0.65929 (9)0.0542 (4)
C430.4128 (7)0.2615 (4)0.7525 (3)0.0306 (8)
C440.3680 (7)0.2937 (5)0.8418 (3)0.0320 (8)
H440.2247850.2657690.8531680.038*
C450.5314 (8)0.3668 (5)0.9151 (3)0.0348 (9)
H450.5020820.3891160.9775680.042*
C460.7375 (8)0.4077 (5)0.8978 (3)0.0406 (10)
H460.8500330.4602050.9483420.049*
C470.7812 (9)0.3732 (6)0.8083 (4)0.0484 (12)
H470.9244170.4012110.7968990.058*
C480.6189 (9)0.2979 (5)0.7341 (3)0.0418 (11)
H480.6493170.2719290.6717350.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0216 (13)0.0295 (14)0.0336 (14)0.0023 (10)0.0080 (10)0.0040 (11)
O20.0340 (15)0.0216 (12)0.0304 (13)0.0017 (10)0.0013 (11)0.0058 (10)
O30.0278 (14)0.0216 (12)0.0279 (13)0.0000 (10)0.0036 (10)0.0051 (9)
O40.0219 (13)0.0244 (13)0.0315 (13)0.0004 (10)0.0054 (10)0.0058 (10)
O50.0267 (14)0.0236 (12)0.0270 (12)0.0006 (10)0.0049 (10)0.0057 (10)
O60.0241 (13)0.0235 (12)0.0300 (13)0.0042 (10)0.0055 (10)0.0069 (10)
C10.0231 (17)0.0225 (16)0.0256 (16)0.0001 (12)0.0047 (12)0.0043 (12)
C20.0216 (17)0.0219 (16)0.0274 (17)0.0009 (12)0.0033 (13)0.0072 (12)
C30.0193 (16)0.0246 (17)0.0348 (18)0.0007 (13)0.0064 (13)0.0077 (14)
C40.0204 (16)0.0256 (17)0.0326 (18)0.0005 (13)0.0067 (13)0.0064 (14)
C50.0227 (17)0.0215 (16)0.0219 (15)0.0037 (12)0.0035 (12)0.0052 (12)
C60.0202 (16)0.0233 (16)0.0227 (15)0.0016 (12)0.0042 (12)0.0074 (12)
C70.0210 (16)0.0221 (16)0.0232 (15)0.0006 (12)0.0052 (12)0.0053 (12)
C80.0222 (16)0.0214 (16)0.0233 (15)0.0009 (12)0.0072 (12)0.0048 (12)
C90.0242 (17)0.0220 (16)0.0262 (17)0.0018 (13)0.0055 (13)0.0056 (13)
C100.0206 (16)0.0224 (16)0.0245 (16)0.0021 (12)0.0032 (12)0.0044 (12)
C110.0225 (17)0.0262 (18)0.0282 (17)0.0003 (13)0.0065 (13)0.0058 (13)
C120.0289 (19)0.0269 (18)0.0275 (17)0.0025 (14)0.0083 (14)0.0067 (14)
C130.0271 (18)0.0231 (17)0.0237 (16)0.0005 (13)0.0044 (13)0.0064 (13)
C140.0258 (18)0.0199 (16)0.0263 (16)0.0007 (13)0.0040 (13)0.0061 (12)
C150.032 (2)0.0248 (17)0.0268 (18)0.0030 (14)0.0045 (14)0.0051 (14)
C160.0253 (17)0.0234 (16)0.0229 (16)0.0005 (13)0.0049 (13)0.0009 (12)
C170.0252 (18)0.032 (2)0.0271 (17)0.0011 (14)0.0012 (13)0.0030 (14)
C180.0242 (18)0.035 (2)0.0291 (18)0.0017 (14)0.0027 (14)0.0006 (15)
C190.0227 (18)0.0254 (18)0.0348 (19)0.0057 (13)0.0051 (14)0.0019 (14)
C200.0242 (17)0.0224 (16)0.0252 (16)0.0018 (12)0.0055 (12)0.0041 (12)
C210.0254 (17)0.0224 (16)0.0243 (16)0.0028 (13)0.0027 (12)0.0022 (12)
C220.0239 (17)0.0257 (17)0.0255 (16)0.0027 (13)0.0027 (13)0.0031 (13)
C230.0229 (17)0.0220 (16)0.0240 (16)0.0032 (13)0.0021 (12)0.0067 (12)
C240.0222 (17)0.0242 (16)0.0235 (16)0.0005 (13)0.0045 (12)0.0036 (12)
C250.0189 (16)0.0238 (16)0.0227 (15)0.0011 (12)0.0039 (12)0.0062 (12)
C260.0189 (15)0.0236 (16)0.0207 (15)0.0000 (12)0.0018 (11)0.0024 (12)
C270.0202 (17)0.0284 (18)0.0286 (17)0.0017 (13)0.0048 (13)0.0071 (14)
C280.0225 (17)0.0271 (17)0.0232 (16)0.0021 (13)0.0036 (13)0.0041 (13)
C290.0207 (16)0.0219 (15)0.0249 (16)0.0014 (12)0.0039 (12)0.0051 (12)
C300.0193 (16)0.0245 (17)0.0259 (16)0.0006 (13)0.0027 (12)0.0069 (13)
C310.0214 (16)0.0218 (15)0.0238 (15)0.0027 (12)0.0039 (12)0.0073 (12)
C320.0212 (16)0.0238 (16)0.0245 (16)0.0021 (12)0.0043 (12)0.0069 (13)
C330.0228 (17)0.0223 (16)0.0273 (16)0.0005 (12)0.0025 (13)0.0083 (13)
C340.0194 (16)0.0245 (17)0.0326 (18)0.0022 (12)0.0013 (13)0.0092 (14)
C350.0196 (16)0.0274 (17)0.0302 (17)0.0004 (13)0.0043 (13)0.0095 (13)
C360.0274 (18)0.0229 (16)0.0246 (16)0.0010 (13)0.0028 (13)0.0031 (12)
C370.0223 (17)0.0241 (16)0.0221 (16)0.0011 (13)0.0009 (12)0.0024 (12)
C380.0209 (17)0.0311 (19)0.0293 (18)0.0044 (14)0.0036 (13)0.0008 (14)
C390.0199 (17)0.035 (2)0.0293 (18)0.0029 (14)0.0072 (13)0.0002 (14)
C400.0198 (17)0.0303 (19)0.0333 (19)0.0033 (14)0.0017 (14)0.0032 (15)
C410.0210 (16)0.0232 (16)0.0261 (16)0.0021 (12)0.0025 (12)0.0024 (13)
C420.0220 (17)0.0218 (16)0.0278 (16)0.0012 (12)0.0051 (12)0.0036 (12)
Cl10.0703 (9)0.0375 (6)0.0415 (6)0.0101 (5)0.0137 (5)0.0074 (5)
C430.035 (2)0.0242 (18)0.0315 (19)0.0030 (15)0.0041 (15)0.0075 (14)
C440.028 (2)0.036 (2)0.0318 (19)0.0023 (15)0.0064 (15)0.0088 (15)
C450.040 (2)0.034 (2)0.033 (2)0.0101 (17)0.0089 (17)0.0093 (16)
C460.037 (2)0.0231 (19)0.056 (3)0.0001 (16)0.005 (2)0.0093 (18)
C470.036 (3)0.042 (3)0.074 (4)0.001 (2)0.014 (2)0.028 (3)
C480.053 (3)0.038 (2)0.042 (2)0.004 (2)0.024 (2)0.0173 (19)
Geometric parameters (Å, º) top
O1—C101.207 (4)C22—H22B0.9900
O2—C151.410 (5)C22—C231.502 (5)
O2—C161.374 (5)C23—C241.383 (5)
O3—C201.353 (5)C23—C281.393 (5)
O3—C221.420 (5)C24—H240.9500
O4—C291.214 (4)C24—C251.377 (5)
O5—C361.415 (5)C25—C261.402 (5)
O5—C371.362 (4)C25—C291.492 (5)
O6—C11.420 (4)C26—C271.377 (5)
O6—C411.363 (4)C26—C311.473 (5)
C1—H1A0.9900C27—H270.9500
C1—H1B0.9900C27—C281.401 (5)
C1—C21.504 (5)C28—H280.9500
C2—C31.393 (5)C29—C301.479 (5)
C2—C71.389 (5)C30—C311.400 (5)
C3—H30.9500C30—C321.371 (5)
C3—C41.382 (5)C31—C351.370 (5)
C4—H40.9500C32—H320.9500
C4—C51.376 (5)C32—C331.382 (5)
C5—C61.404 (5)C33—C341.392 (5)
C5—C81.472 (5)C33—C361.509 (5)
C6—C71.377 (5)C34—H340.9500
C6—C101.491 (5)C34—C351.389 (5)
C7—H70.9500C35—H350.9500
C8—C91.396 (5)C36—H36A0.9900
C8—C111.376 (5)C36—H36B0.9900
C9—C101.479 (5)C37—C381.377 (5)
C9—C141.383 (5)C37—C421.388 (5)
C11—H110.9500C38—H380.9500
C11—C121.390 (5)C38—C391.384 (6)
C12—H120.9500C39—H390.9500
C12—C131.387 (5)C39—C401.387 (6)
C13—C141.386 (5)C40—H400.9500
C13—C151.495 (5)C40—C411.377 (5)
C14—H140.9500C41—C421.375 (5)
C15—H15A0.9900C42—H420.9500
C15—H15B0.9900Cl1—C431.732 (4)
C16—C171.385 (5)C43—C441.362 (5)
C16—C211.372 (5)C43—C481.371 (6)
C17—H170.9500C44—H440.9500
C17—C181.378 (6)C44—C451.372 (6)
C18—H180.9500C45—H450.9500
C18—C191.383 (6)C45—C461.373 (7)
C19—H190.9500C46—H460.9500
C19—C201.382 (5)C46—C471.364 (7)
C20—C211.392 (5)C47—H470.9500
C21—H210.9500C47—C481.381 (7)
C22—H22A0.9900C48—H480.9500
C16—O2—C15117.1 (3)C24—C23—C28119.8 (3)
C20—O3—C22116.5 (3)C28—C23—C22118.7 (3)
C37—O5—C36116.8 (3)C23—C24—H24120.6
C41—O6—C1118.1 (3)C25—C24—C23118.8 (3)
O6—C1—H1A108.6C25—C24—H24120.6
O6—C1—H1B108.6C24—C25—C26121.5 (3)
O6—C1—C2114.5 (3)C24—C25—C29129.7 (3)
H1A—C1—H1B107.6C26—C25—C29108.5 (3)
C2—C1—H1A108.6C25—C26—C31108.6 (3)
C2—C1—H1B108.6C27—C26—C25120.2 (3)
C3—C2—C1117.3 (3)C27—C26—C31131.1 (3)
C7—C2—C1122.5 (3)C26—C27—H27121.0
C7—C2—C3120.2 (3)C26—C27—C28118.0 (3)
C2—C3—H3119.1C28—C27—H27121.0
C4—C3—C2121.9 (3)C23—C28—C27121.6 (3)
C4—C3—H3119.1C23—C28—H28119.2
C3—C4—H4120.9C27—C28—H28119.2
C5—C4—C3118.3 (3)O4—C29—C25127.1 (3)
C5—C4—H4120.9O4—C29—C30127.5 (3)
C4—C5—C6119.9 (3)C30—C29—C25105.3 (3)
C4—C5—C8131.2 (3)C31—C30—C29109.1 (3)
C6—C5—C8108.7 (3)C32—C30—C29129.5 (3)
C5—C6—C10107.9 (3)C32—C30—C31121.3 (3)
C7—C6—C5122.1 (3)C30—C31—C26108.4 (3)
C7—C6—C10129.9 (3)C35—C31—C26131.4 (3)
C2—C7—H7121.2C35—C31—C30120.1 (3)
C6—C7—C2117.7 (3)C30—C32—H32120.5
C6—C7—H7121.2C30—C32—C33119.0 (3)
C9—C8—C5108.5 (3)C33—C32—H32120.5
C11—C8—C5131.3 (3)C32—C33—C34119.5 (3)
C11—C8—C9120.1 (3)C32—C33—C36120.7 (3)
C8—C9—C10108.7 (3)C34—C33—C36119.7 (3)
C14—C9—C8121.4 (3)C33—C34—H34119.2
C14—C9—C10129.8 (3)C35—C34—C33121.6 (3)
O1—C10—C6126.6 (3)C35—C34—H34119.2
O1—C10—C9127.7 (3)C31—C35—C34118.4 (3)
C9—C10—C6105.7 (3)C31—C35—H35120.8
C8—C11—H11121.1C34—C35—H35120.8
C8—C11—C12117.9 (3)O5—C36—C33114.3 (3)
C12—C11—H11121.1O5—C36—H36A108.7
C11—C12—H12118.9O5—C36—H36B108.7
C13—C12—C11122.3 (4)C33—C36—H36A108.7
C13—C12—H12118.9C33—C36—H36B108.7
C12—C13—C15117.1 (3)H36A—C36—H36B107.6
C14—C13—C12119.3 (3)O5—C37—C38116.1 (3)
C14—C13—C15123.4 (3)O5—C37—C42123.0 (3)
C9—C14—C13118.6 (3)C38—C37—C42120.9 (4)
C9—C14—H14120.7C37—C38—H38120.5
C13—C14—H14120.7C37—C38—C39118.9 (3)
O2—C15—C13114.4 (3)C39—C38—H38120.5
O2—C15—H15A108.7C38—C39—H39119.5
O2—C15—H15B108.7C38—C39—C40121.0 (4)
C13—C15—H15A108.7C40—C39—H39119.5
C13—C15—H15B108.7C39—C40—H40120.6
H15A—C15—H15B107.6C41—C40—C39118.8 (4)
O2—C16—C17115.7 (3)C41—C40—H40120.6
C21—C16—O2122.8 (3)O6—C41—C40115.9 (3)
C21—C16—C17121.5 (3)O6—C41—C42122.9 (3)
C16—C17—H17120.9C42—C41—C40121.2 (3)
C18—C17—C16118.3 (4)C37—C42—H42120.5
C18—C17—H17120.9C41—C42—C37119.1 (3)
C17—C18—H18119.3C41—C42—H42120.5
C17—C18—C19121.5 (4)C44—C43—Cl1119.8 (3)
C19—C18—H18119.3C44—C43—C48121.6 (4)
C18—C19—H19120.3C48—C43—Cl1118.6 (3)
C20—C19—C18119.3 (3)C43—C44—H44120.3
C20—C19—H19120.3C43—C44—C45119.5 (4)
O3—C20—C19116.9 (3)C45—C44—H44120.3
O3—C20—C21123.1 (3)C44—C45—H45120.1
C19—C20—C21120.0 (4)C44—C45—C46119.8 (4)
C16—C21—C20119.4 (3)C46—C45—H45120.1
C16—C21—H21120.3C45—C46—H46119.9
C20—C21—H21120.3C47—C46—C45120.2 (4)
O3—C22—H22A108.7C47—C46—H46119.9
O3—C22—H22B108.7C46—C47—H47119.7
O3—C22—C23114.1 (3)C46—C47—C48120.6 (4)
H22A—C22—H22B107.6C48—C47—H47119.7
C23—C22—H22A108.7C43—C48—C47118.3 (4)
C23—C22—H22B108.7C43—C48—H48120.8
C24—C23—C22121.4 (3)C47—C48—H48120.8
O2—C16—C17—C18178.9 (3)C19—C20—C21—C160.1 (5)
O2—C16—C21—C20178.5 (3)C20—O3—C22—C2380.0 (4)
O3—C20—C21—C16179.4 (3)C21—C16—C17—C180.5 (6)
O3—C22—C23—C2430.7 (5)C22—O3—C20—C19165.2 (3)
O3—C22—C23—C28152.4 (3)C22—O3—C20—C2115.4 (5)
O4—C29—C30—C31179.6 (4)C22—C23—C24—C25174.6 (3)
O4—C29—C30—C323.9 (7)C22—C23—C28—C27174.6 (3)
O5—C37—C38—C39179.1 (3)C23—C24—C25—C260.1 (5)
O5—C37—C42—C41178.6 (3)C23—C24—C25—C29174.4 (3)
O6—C1—C2—C3165.4 (3)C24—C23—C28—C272.3 (5)
O6—C1—C2—C712.6 (5)C24—C25—C26—C271.9 (5)
O6—C41—C42—C37179.0 (3)C24—C25—C26—C31174.7 (3)
C1—O6—C41—C40160.6 (3)C24—C25—C29—O44.5 (6)
C1—O6—C41—C4219.3 (5)C24—C25—C29—C30173.6 (4)
C1—C2—C3—C4175.2 (4)C25—C26—C27—C281.8 (5)
C1—C2—C7—C6175.9 (3)C25—C26—C31—C300.0 (4)
C2—C3—C4—C50.5 (6)C25—C26—C31—C35177.1 (4)
C3—C2—C7—C62.1 (5)C25—C29—C30—C311.5 (4)
C3—C4—C5—C62.3 (5)C25—C29—C30—C32174.2 (4)
C3—C4—C5—C8172.2 (4)C26—C25—C29—O4179.6 (4)
C4—C5—C6—C73.1 (5)C26—C25—C29—C301.5 (4)
C4—C5—C6—C10179.0 (3)C26—C27—C28—C230.3 (6)
C4—C5—C8—C9174.1 (4)C26—C31—C35—C34174.0 (4)
C4—C5—C8—C113.6 (7)C27—C26—C31—C30176.1 (4)
C5—C6—C7—C20.8 (5)C27—C26—C31—C351.0 (7)
C5—C6—C10—O1173.4 (4)C28—C23—C24—C252.2 (5)
C5—C6—C10—C96.1 (4)C29—C25—C26—C27177.5 (3)
C5—C8—C9—C104.8 (4)C29—C25—C26—C310.9 (4)
C5—C8—C9—C14172.1 (3)C29—C30—C31—C261.0 (4)
C5—C8—C11—C12173.4 (4)C29—C30—C31—C35178.4 (3)
C6—C5—C8—C90.9 (4)C29—C30—C32—C33174.1 (4)
C6—C5—C8—C11178.6 (4)C30—C31—C35—C342.8 (5)
C7—C2—C3—C42.9 (5)C30—C32—C33—C344.0 (5)
C7—C6—C10—O111.1 (6)C30—C32—C33—C36171.1 (3)
C7—C6—C10—C9169.4 (4)C31—C26—C27—C28173.9 (4)
C8—C5—C6—C7172.6 (3)C31—C30—C32—C331.2 (5)
C8—C5—C6—C103.3 (4)C32—C30—C31—C26175.2 (3)
C8—C9—C10—O1172.7 (4)C32—C30—C31—C352.3 (5)
C8—C9—C10—C66.7 (4)C32—C33—C34—C353.5 (5)
C8—C9—C14—C132.0 (5)C32—C33—C36—O533.9 (5)
C8—C11—C12—C131.6 (6)C33—C34—C35—C310.0 (6)
C9—C8—C11—C124.0 (5)C34—C33—C36—O5151.0 (3)
C10—C6—C7—C2175.7 (3)C36—O5—C37—C38167.2 (3)
C10—C9—C14—C13178.2 (4)C36—O5—C37—C4213.0 (5)
C11—C8—C9—C10177.2 (3)C36—C33—C34—C35171.7 (3)
C11—C8—C9—C145.9 (6)C37—O5—C36—C3378.4 (4)
C11—C12—C13—C145.5 (6)C37—C38—C39—C400.1 (6)
C11—C12—C13—C15170.5 (4)C38—C37—C42—C411.3 (5)
C12—C13—C14—C93.6 (5)C38—C39—C40—C410.0 (6)
C12—C13—C15—O2168.8 (3)C39—C40—C41—O6179.6 (3)
C14—C9—C10—O110.7 (7)C39—C40—C41—C420.5 (5)
C14—C9—C10—C6169.9 (4)C40—C41—C42—C371.2 (5)
C14—C13—C15—O27.0 (5)C41—O6—C1—C290.6 (4)
C15—O2—C16—C17158.0 (3)C42—C37—C38—C390.7 (5)
C15—O2—C16—C2123.6 (5)Cl1—C43—C44—C45177.9 (3)
C15—C13—C14—C9172.1 (3)Cl1—C43—C48—C47177.0 (4)
C16—O2—C15—C1391.6 (4)C43—C44—C45—C460.5 (6)
C16—C17—C18—C190.7 (6)C44—C43—C48—C472.2 (7)
C17—C16—C21—C200.2 (6)C44—C45—C46—C471.4 (7)
C17—C18—C19—C200.7 (6)C45—C46—C47—C480.5 (7)
C18—C19—C20—O3179.7 (3)C46—C47—C48—C431.3 (7)
C18—C19—C20—C210.3 (6)C48—C43—C44—C451.3 (7)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg15 are the centroids of the C5/C6/C10/C9/C8, C25/C29/C30/C31/C26 and C43–C48 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cl1i0.952.833.547 (4)133
C35—H35···O1ii0.952.583.491 (5)161
C46—H46···O6iii0.952.553.418 (5)152
C1—H1A···Cg2iv0.992.953.610 (4)125
C22—H22A···Cg1v0.992.733.711 (4)170
C36—H36B···Cg15vi0.992.843.713 (4)148
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+1, z; (vi) x1, y, z1.
 

Funding information

The authors thank the National Academy of Sciences of Ukraine for financial support in the framework of the projects `New supramolecular systems based on cyclophanes with fluorenone and benzimidazole fragments. Design, synthesis, structure, perspectives' (0120U100122) and `Functional materials for biomedical purposes based on halogen-containing organic compounds' (0120U102660).

References

First citationBarnes, J. C., Juríček, M., Strutt, N. L., Frasconi, M., Sampath, S., Giesener, M. A., McGrier, P. L., Bruns, C. J., Stern, C. L., Sarjeant, A. A. & Stoddart, J. F. (2013). J. Am. Chem. Soc. 135, 183–192.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDale, E. J., Vermeulen, N. A., Juríček, M., Barnes, J. C., Young, R. M., Wasielewski, M. R. & Stoddart, J. F. (2016). Acc. Chem. Res. 49, 262–273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDiederich, F. (1991). Cyclophanes. Cambridge: The Royal Society of Chemistry.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGong, H.-Y., Rambo, B. M., Karnas, E., Lynch, V. M. & Sessler, J. L. (2010). Nat. Chem. 2, 406–409.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaenel, M. W., Irngartinger, H. & Krieger, C. (1985). Chem. Ber. 118, 144–162.  CSD CrossRef CAS Web of Science Google Scholar
First citationLukyanenko, N. G., Kirichenko, T. I., Lyapunov, A. Yu., Bogaschenko, T. Yu., Pastushok, V. N., Simonov, Yu. A., Fonari, M. S. & Botoshansky, M. M. (2003). Tetrahedron Lett. 44, 7373–7376.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Dyakonenko, V. V., Shishkin, O. V., Semynozhenko, V. P., Bogashchenko, T. Yu., Lyapunov, A. Yu. & Kirichenko, T. I. (2021). Struct. Chem. https://doi.org/10.21203/rs.3.rs-747526/v1  Google Scholar
First citationSimonov, Yu. A., Bogashchenko, N. Yu., Pastushok, V. N., Botoshanskii, M. M., Fonar', M. S., Lyapunov, A. Yu. & Luk'yanenko, N. G. (2006). Russ. J. Org. Chem. 42, 1075–1082.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://Hirshfeldsurface.net  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds