Download citation
Download citation
link to html
Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and entero­coccal pathogens is primarily conferred by the bifunctional enzyme AAC(6′)-Ie-APH(2′′)-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6′)-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2′′)-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2′′)-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6′)-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6′)-Ie enzyme is joined to APH(2′′)-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2′′)-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6′)-Ie-APH(2′′)-Ia enzyme.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1399004714017635/mn5069sup1.pdf
Supporting Information.

PDB reference: AAC(6′)-Ie, 4qc6


Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds