Download citation
Download citation
link to html
Bacterial biofilm formation is an extremely widespread phenomenon involving the secretion of a protective exopolysaccharide matrix which helps the bacteria to attach to surfaces and to overcome a variety of stresses in different environments. This matrix may also include proteins, lipids, DNA and metal ions. Its composition depends on the bacterial species and growth conditions, but one of the most widely found components is polymeric β-1,6-N-acetyl-D-glucosamine (PGA). Several studies have suggested that PGA is an essential component of biofilm and it is produced by numerous bacteria, including Escherichia coli, Staphylococcus epidermis, Yersinia pestis, Bordetella spp. and Actinobacillus spp. In E. coli, PGA production and export are dependent on four genes that form a single operon, pgaABCD, which appears to have been transferred between various species. Biofilms themselves are recognized as environments in which such horizontal gene transfer may occur. The pga operon of E. coli, which is even found in innocuous laboratory strains, is highly homologous to that from the plague bacterium Yersinia pestis, and biofilm is believed to play an important role in the transmission of Yersinia. The crystal structure of the N-­terminal domain of PgaB, which has deacetylase activity, is described and compared with models of other deacetylases.
Keywords: biofilms; PgaB.

Supporting information

PDB reference: N-terminal domain of PgaB, 3vus


Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds