Download citation
Download citation
link to html
Peptide deformylase (PDF) catalyzes the removal of the formyl group from the N-terminal methionine residue in newly synthesized polypeptides, which is an essential process in bacteria. Four new inhibitors of PDF that belong to two different classes, hydroxamate/pseudo­peptide compounds [PMT387 (7a) and PMT497] and reverse-hydroxamate/non­peptide compounds [PMT1039 (15e) and PMT1067], have been developed. These compounds inhibited the growth of several pathogens involved in respiratory-tract infections, such as Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae, and leading nosocomial pathogens such as Staphylococcus aureus and Klebsiella pneumoniae with a minimum inhibitory concentration (MIC) in the range 0.1-­0.8 mg ml-1. Interestingly, the reverse-hydroxamate/non­peptide compounds showed a 250-fold higher antimicrobial activity towards S. aureus, although the four compounds showed similar Ki values against S. aureus PDF enzymes, with Ki values in the 11-85 nM range. To provide a structural basis for the discovery of additional PDF inhibitors, the crystal structures of S. aureus PDF in complex with the four inhibitors were determined at resolutions of 1.90-2.30 Å. The inhibitor-bound structures displayed distinct deviations depending on the inhibitor class. The distance between the Zn2+ ion and the carbonyl O atom of the hydroxamate inhibitors (or the hydroxyl O atom of the reverse-hydroxamate inhibitors) appears to be correlated to S. aureus inhibition activity. The structural information reported in this study should aid in the discovery of new PDF inhibitors that can be used as novel antibacterial drugs.

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds