Download citation
Download citation
link to html
Isoguanine, an analogue of guanine, is of intrinsic interest as a noncanonical nucleobase. The crystal structure of isoguaninium chloride (systematic name: 6-amino-2-oxo-1H,7H-purin-3-ium chloride), C5H6N5O+·Cl, has been determined by single-crystal X-ray diffraction. Structure analysis was supported by electrostatic interaction energy (Ees) calculations based on charge density reconstructed with the UBDB databank. In the structure, two kinds of molecular tapes are observed, one parallel to (010) and the other parallel to (50\overline{4}). The tapes are formed by dimers of isoguaninium cations interacting with chloride anions. Ees analysis indicates that cations in one kind of tape are oriented so as to minimize repulsive electrostatic interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617017685/ly3059sup1.cif
Contains datablocks I, global

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229617017685/ly3059Isup2.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017685/ly3059Isup3.hkl
Contains datablock I

CCDC reference: 1569459

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-Amino-2-oxo-1H,7H-purin-3-ium chloride top
Crystal data top
C5H6N5O+·ClF(000) = 768
Mr = 187.60Dx = 1.685 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.0359 (6) ÅCell parameters from 11926 reflections
b = 13.6930 (5) Åθ = 4.5–76.2°
c = 7.7026 (3) ŵ = 4.25 mm1
β = 92.754 (4)°T = 100 K
V = 1478.68 (10) Å3Needle, colourless
Z = 80.73 × 0.12 × 0.09 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
5522 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source4803 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.132
Detector resolution: 5.2195 pixels mm-1θmax = 76.9°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1717
Tmin = 0.465, Tmax = 1.000l = 99
42770 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062All H-atom parameters refined
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.1497P)2 + 0.6578P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5522 reflectionsΔρmax = 0.72 e Å3
266 parametersΔρmin = 0.60 e Å3
0 restraints
Special details top

Experimental. Single crystals of iGHCl were selected and mounted with paratone-N oil on a MiTeGen micro-mount. The crystal was kept at 100.0 (1) K during diffraction data collection on a Rigaku Oxford Diffraction (former Agilent Technologies) SuperNova four-circle diffractometer with a Cu Kα radiation and Atlas detector. The temperature was controlled with an Oxford Cryosystems low-temperature nitrogen gas-flow device (Cryostream Plus). The crystal was positioned 74 mm from the detector. A total of 5060 frames were collected in 49 runs using ω scan with a rotation width of 1.0°. The exposure time was in the range of 1–5 s. The determination of unit-cell parameters, integration of reflection intensities and data reduction, including a multiscan absorption correction, were performed using CrysAlis PRO (Agilent, 2014).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32116 (6)0.36689 (7)0.13649 (13)0.0208 (3)
Cl20.20744 (6)0.17005 (6)0.53743 (13)0.0202 (3)
O10.28818 (18)0.3810 (2)0.3447 (4)0.0224 (6)
N10.4323 (2)0.3775 (2)0.1963 (4)0.0151 (6)
N30.4224 (2)0.3789 (2)0.5007 (4)0.0167 (7)
N70.6673 (2)0.3796 (2)0.3906 (5)0.0163 (7)
N90.5746 (2)0.3807 (2)0.6363 (4)0.0174 (6)
N100.5733 (2)0.3759 (2)0.0266 (5)0.0183 (7)
C20.3741 (2)0.3795 (3)0.3490 (5)0.0172 (7)
C40.5196 (2)0.3785 (3)0.4958 (5)0.0145 (7)
C50.5741 (2)0.3775 (3)0.3414 (5)0.0162 (7)
C60.5293 (2)0.3771 (3)0.1807 (5)0.0157 (8)
C80.6635 (2)0.3806 (3)0.5653 (6)0.0170 (7)
H10.403 (4)0.376 (4)0.096 (8)0.028 (13)*
H30.388 (3)0.377 (3)0.610 (7)0.022 (12)*
H70.715 (4)0.383 (4)0.330 (8)0.040 (16)*
H80.721 (4)0.385 (4)0.634 (7)0.038 (15)*
H10A0.637 (3)0.367 (3)0.024 (7)0.021 (12)*
H10B0.539 (4)0.371 (4)0.064 (7)0.026 (13)*
O20.12492 (17)0.42561 (19)0.4301 (4)0.0217 (6)
N110.0093 (2)0.4414 (2)0.2529 (4)0.0159 (6)
N130.0473 (2)0.2868 (2)0.3411 (4)0.0156 (6)
N170.15561 (19)0.2389 (2)0.0712 (4)0.0149 (6)
N190.0456 (2)0.1495 (2)0.2204 (4)0.0148 (6)
N200.1439 (2)0.4653 (2)0.0703 (5)0.0196 (7)
C120.0590 (2)0.3861 (3)0.3468 (5)0.0169 (7)
C140.0260 (2)0.2465 (3)0.2420 (5)0.0142 (7)
C150.0924 (2)0.3033 (3)0.1533 (5)0.0157 (7)
C160.0853 (2)0.4063 (3)0.1548 (5)0.0156 (7)
C180.1249 (2)0.1489 (3)0.1165 (5)0.0166 (7)
H110.002 (3)0.506 (4)0.267 (6)0.026 (12)*
H130.090 (3)0.252 (3)0.392 (6)0.013 (10)*
H170.206 (3)0.253 (3)0.009 (6)0.012 (9)*
H180.153 (3)0.088 (3)0.075 (6)0.016 (10)*
H20A0.196 (3)0.443 (4)0.015 (6)0.024 (12)*
H20B0.139 (4)0.531 (5)0.075 (8)0.053 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0167 (4)0.0303 (5)0.0150 (5)0.0023 (3)0.0016 (3)0.0001 (4)
Cl20.0193 (4)0.0157 (4)0.0249 (5)0.0000 (3)0.0060 (3)0.0008 (3)
O10.0158 (12)0.0296 (15)0.0216 (17)0.0011 (10)0.0012 (11)0.0014 (12)
N10.0137 (13)0.0227 (16)0.0089 (16)0.0003 (11)0.0013 (12)0.0004 (12)
N30.0157 (14)0.0240 (16)0.0102 (17)0.0017 (11)0.0026 (12)0.0008 (12)
N70.0144 (14)0.0213 (16)0.0131 (17)0.0007 (11)0.0003 (12)0.0007 (13)
N90.0173 (13)0.0202 (15)0.0147 (17)0.0017 (11)0.0006 (12)0.0018 (13)
N100.0173 (14)0.0253 (17)0.0120 (17)0.0002 (11)0.0021 (12)0.0003 (13)
C20.0184 (16)0.0193 (17)0.014 (2)0.0003 (13)0.0030 (14)0.0012 (15)
C40.0162 (15)0.0139 (16)0.0133 (19)0.0011 (12)0.0008 (13)0.0003 (13)
C50.0140 (15)0.0177 (17)0.017 (2)0.0005 (12)0.0008 (14)0.0004 (14)
C60.0157 (15)0.0126 (16)0.019 (2)0.0002 (12)0.0004 (14)0.0016 (14)
C80.0168 (15)0.0173 (17)0.017 (2)0.0004 (12)0.0026 (14)0.0006 (14)
O20.0193 (11)0.0153 (12)0.0295 (17)0.0016 (9)0.0085 (11)0.0013 (11)
N110.0186 (13)0.0103 (14)0.0185 (17)0.0000 (10)0.0022 (12)0.0008 (11)
N130.0154 (12)0.0131 (14)0.0177 (17)0.0010 (11)0.0042 (11)0.0012 (12)
N170.0129 (12)0.0156 (15)0.0159 (17)0.0004 (10)0.0027 (11)0.0012 (12)
N190.0156 (13)0.0132 (14)0.0155 (17)0.0008 (10)0.0005 (11)0.0014 (12)
N200.0189 (14)0.0154 (15)0.0239 (19)0.0003 (11)0.0054 (13)0.0024 (13)
C120.0171 (15)0.0158 (17)0.017 (2)0.0002 (12)0.0016 (13)0.0013 (14)
C140.0153 (14)0.0159 (16)0.0113 (18)0.0016 (13)0.0008 (12)0.0001 (13)
C150.0153 (14)0.0142 (17)0.018 (2)0.0002 (12)0.0010 (13)0.0002 (14)
C160.0146 (14)0.0135 (16)0.019 (2)0.0003 (12)0.0027 (13)0.0006 (14)
C180.0181 (15)0.0131 (16)0.019 (2)0.0020 (12)0.0055 (14)0.0012 (14)
Geometric parameters (Å, º) top
O1—C21.208 (4)O2—C121.226 (4)
N1—C21.399 (5)N11—C121.397 (5)
N1—C61.361 (4)N11—C161.365 (4)
N1—H10.89 (6)N11—H110.90 (6)
N3—C21.378 (5)N13—C121.369 (5)
N3—C41.363 (4)N13—C141.368 (4)
N3—H30.95 (5)N13—H130.85 (4)
N7—C51.379 (4)N17—C151.383 (4)
N7—C81.344 (5)N17—C181.346 (5)
N7—H70.80 (6)N17—H170.86 (4)
N9—C41.359 (5)N19—C141.365 (5)
N9—C81.338 (4)N19—C181.339 (5)
N10—C61.312 (5)N20—C161.304 (5)
N10—H10A0.91 (5)N20—H20A0.88 (5)
N10—H10B0.87 (5)N20—H20B0.91 (7)
C4—C51.383 (5)C14—C151.370 (5)
C5—C61.415 (5)C15—C161.413 (5)
C8—H80.98 (6)C18—H180.97 (5)
C2—N1—H1117 (3)C12—N11—H11114 (3)
C6—N1—C2127.9 (3)C16—N11—C12126.5 (3)
C6—N1—H1115 (3)C16—N11—H11120 (3)
C2—N3—H3120 (3)C12—N13—H13117 (3)
C4—N3—C2120.6 (3)C14—N13—C12120.3 (3)
C4—N3—H3119 (3)C14—N13—H13122 (3)
C5—N7—H7128 (4)C15—N17—H17127 (3)
C8—N7—C5106.4 (3)C18—N17—C15106.0 (3)
C8—N7—H7125 (4)C18—N17—H17126 (3)
C8—N9—C4103.2 (3)C18—N19—C14103.7 (3)
C6—N10—H10A116 (3)C16—N20—H20A120 (3)
C6—N10—H10B118 (3)C16—N20—H20B123 (4)
H10A—N10—H10B124 (4)H20A—N20—H20B116 (5)
O1—C2—N1121.3 (4)O2—C12—N11120.9 (3)
O1—C2—N3123.7 (4)O2—C12—N13122.8 (3)
N3—C2—N1114.9 (3)N13—C12—N11116.3 (3)
N3—C4—C5122.3 (3)N13—C14—C15121.6 (3)
N9—C4—N3125.7 (3)N19—C14—N13127.1 (3)
N9—C4—C5111.9 (3)N19—C14—C15111.3 (3)
N7—C5—C4104.8 (3)N17—C15—C16133.1 (3)
N7—C5—C6135.1 (4)C14—C15—N17105.8 (3)
C4—C5—C6120.1 (3)C14—C15—C16121.1 (3)
N1—C6—C5114.1 (3)N11—C16—C15114.1 (3)
N10—C6—N1120.4 (4)N20—C16—N11121.0 (3)
N10—C6—C5125.5 (3)N20—C16—C15124.9 (3)
N7—C8—H8123 (3)N17—C18—H18125 (3)
N9—C8—N7113.6 (3)N19—C18—N17113.3 (3)
N9—C8—H8123 (3)N19—C18—H18121 (3)
N3—C4—C5—N7178.7 (3)N13—C14—C15—N17179.0 (3)
N3—C4—C5—C60.1 (5)N13—C14—C15—C162.7 (5)
N7—C5—C6—N1178.1 (4)N17—C15—C16—N11178.8 (4)
N7—C5—C6—N102.2 (7)N17—C15—C16—N200.3 (7)
N9—C4—C5—N70.3 (4)N19—C14—C15—N170.6 (4)
N9—C4—C5—C6178.8 (3)N19—C14—C15—C16179.0 (3)
C2—N1—C6—N10179.4 (3)C12—N11—C16—N20178.9 (4)
C2—N1—C6—C50.8 (5)C12—N11—C16—C150.3 (5)
C2—N3—C4—N9178.0 (3)C12—N13—C14—N19178.5 (3)
C2—N3—C4—C50.8 (5)C12—N13—C14—C153.4 (5)
C4—N3—C2—O1179.2 (4)C14—N13—C12—O2178.1 (4)
C4—N3—C2—N11.4 (5)C14—N13—C12—N112.4 (5)
C4—N9—C8—N70.7 (4)C14—N19—C18—N170.3 (4)
C4—C5—C6—N10.1 (5)C14—C15—C16—N111.1 (5)
C4—C5—C6—N10179.8 (4)C14—C15—C16—N20178.0 (4)
C5—N7—C8—N90.9 (4)C15—N17—C18—N190.7 (4)
C6—N1—C2—O1179.0 (4)C16—N11—C12—O2179.6 (4)
C6—N1—C2—N31.5 (5)C16—N11—C12—N130.9 (5)
C8—N7—C5—C40.7 (4)C18—N17—C15—C140.8 (4)
C8—N7—C5—C6178.9 (4)C18—N17—C15—C16178.8 (4)
C8—N9—C4—N3179.1 (3)C18—N19—C14—N13178.5 (4)
C8—N9—C4—C50.2 (4)C18—N19—C14—C150.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.89 (6)2.18 (6)3.067 (3)175 (5)
N3—H3···Cl1i0.95 (5)2.13 (5)3.078 (3)175 (4)
N7—H7···Cl2ii0.80 (6)2.56 (6)3.240 (4)144 (5)
N7—H7···O2iii0.80 (6)2.48 (6)3.014 (4)125 (5)
N10—H10A···Cl2ii0.91 (5)2.24 (5)3.146 (3)174 (4)
N10—H10B···N9iv0.87 (5)2.34 (5)3.006 (5)134 (4)
N11—H11···N19v0.90 (6)2.07 (6)2.957 (4)167 (4)
N13—H13···Cl20.85 (4)2.25 (5)3.093 (3)176 (4)
N17—H17···Cl10.86 (4)2.47 (4)3.267 (3)154 (4)
N17—H17···O1vi0.86 (4)2.48 (4)2.981 (4)118 (4)
C18—H18···O1vi0.97 (5)2.57 (4)3.057 (5)111 (3)
C18—H18···O2vii0.97 (5)2.26 (5)3.078 (4)141 (3)
N20—H20A···Cl10.88 (5)2.31 (5)3.188 (3)173 (4)
N20—H20B···Cl2v0.91 (7)2.28 (6)3.045 (3)141 (5)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y, z+1; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2; (vii) x, y1/2, z1/2.
Interaction energy (kcal mol-1) of selected dimers in iGH and GH chloride crystals top
iGHClGUANCD02GUANCH01
dim1 (tape1)dim2 (tape2)dim1dim2dim1dim2
Ees43.231.641.940.58.542.1
ECoul43.147.748.043.251.047.6
ECoul-Ees-0.116.16.12.742.55.6
Centre of mass distance (Å)7.706.966.927.686.516.97
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds