metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­(imidazole)­cadmium(II)]-μ3-benzene-1,3-di­carboxyl­ato]

aSchool of Sciences, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
*Correspondence e-mail: hongyan@fjirsm.ac.cn

(Received 21 April 2010; accepted 9 June 2010; online 16 June 2010)

In the title compound, [Cd(C8H4O4)(C3H4N2)(H2O)]n, the CdII ion is seven-coordinated by five O atoms from three crystallographically independent benzene-1,3-carboxylate ligands, one N atom from the imidazole ligand and one coordinated water mol­ecule. Neighboring CdII ions are bridged by the benzene-1,3-dicarboxyl­ate ligands, forming a zigzag polymeric chain structure. These chains are further extended into a three-dimensional supra­molecular structure through O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]). For related structures, see: Ma et al. (2008[Ma, S., Sun, D., Simmons, J. M., Collier, C. D., Yuan, D. & Zhou, H. C. (2008). J. Am. Chem. Soc. 130, 1012-1016.]); Wang et al. (2008[Wang, J., Lin, Z., Ou, Y. C., Yang, N. L., Zhang, Y. H. & Tong, M. L. (2008). Inorg. Chem. 47, 190-199.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H4O4)(C3H4N2)(H2O)]

  • Mr = 362.61

  • Triclinic, [P \overline 1]

  • a = 8.2616 (8) Å

  • b = 8.3138 (8) Å

  • c = 10.235 (1) Å

  • α = 67.017 (2)°

  • β = 68.176 (2)°

  • γ = 81.054 (2)°

  • V = 600.76 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.06 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.536, Tmax = 1.000

  • 3166 measured reflections

  • 2086 independent reflections

  • 2049 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.15

  • 2086 reflections

  • 184 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.216 (3)
Cd1—O3i 2.251 (3)
Cd1—O2ii 2.311 (3)
Cd1—O5 2.394 (3)
Cd1—O1 2.413 (3)
Cd1—O1ii 2.626 (3)
Cd1—O4i 2.663 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2iii 0.84 (8) 2.07 (8) 2.809 (4) 146 (7)
O5—H5B⋯O3iv 0.87 (8) 1.96 (8) 2.786 (4) 158 (7)
N2—H2⋯O4v 0.85 (7) 2.00 (7) 2.854 (5) 175 (6)
Symmetry codes: (iii) x, y-1, z; (iv) x, y-1, z+1; (v) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Simemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Simemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, considerable effort was paied in the study of metal-organic hybrid materials with the extended supermolecular framework structures, owing to their intriguing network topologies and potential application in adsorption, molecular recognition, catalysis and maganetism (Yaghi et al., 1998 ). Currently, carboxylic acids have been widely used as polydentate and bridging ligands since they can bind metal ions in diverse modes and play an important role in adjusting verious topologies structures. A number of promising supramolecular complexes have been designed and constructed by using carboxylic acids as favorable conditions. (Ma et al., 2008; Wang et al., 2008). In this paper, we report the synthesis and structural characterzation of the title compound in which the isophthalic acid ligand displayed its good coordination ability and diverse coordination modes.

The CdII ion is six-coordinated by four O atoms from three crystallographically independent benzene-1,3- dicarboxylate ligands and one N atom from the chelating imidazole ligand and one coordinated water molecule (Fig. 1 & Table 1). The neighboring Cdi ion is bridged by the benzene-1, 3-dicarboxylate ligands to form a one-dimensional chain structure. In the crystal structure, the adjacent chains are linked via O–H···O and N–H···O hydrogen bonds (Fig. 2 & Table 2) resulting in the formation of a three dimensional supramolecular structure.

Related literature top

For the synthesis, see: Yaghi et al. (1998). For related structures, see: Ma et al. (2008); Wang et al. (2008).

Experimental top

A 10 ml aqueous solution of imidazole (0.014 g, 0.20 mmol) and isophthalic acid (0.034 g,0.020 mmol) was slowly added into cadmium nitrate (0.062 g, 0.20 mmol) solution in methanol (10 ml), and the mixed solution was stirred for 20 min and then was heated in a 30 ml Teflon-line autoclave under autogeneous pressure at 423 K for 3 d. After cooling to room temperature, colorless block crystals were obtained. (yield 38%).

Refinement top

H atoms bound to H2O and NH atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+1, -z+1; (iii) x, y, z+1.]
[Figure 2] Fig. 2. The crystal packing of (I), showing one layer of molecules connected by O–H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted. [Symmetry codes: (i) x, y-1 , z; (ii) x, y-1, z+1; (iii) x+1, y, z; (iv) -x, -y+1, -z+1; (v) -x, -y+1, -z+2.]
catena-Poly[[aqua(imidazole)cadmium(II)]-µ3-benzene-1,3-dicarboxylato] top
Crystal data top
[Cd(C8H4O4)(C3H4N2)(H2O)]Z = 2
Mr = 362.61F(000) = 356
Triclinic, P1Dx = 2.005 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2616 (8) ÅCell parameters from 3126 reflections
b = 8.3138 (8) Åθ = 3.3–27.5°
c = 10.235 (1) ŵ = 1.84 mm1
α = 67.017 (2)°T = 293 K
β = 68.176 (2)°Block, yellow
γ = 81.054 (2)°0.27 × 0.18 × 0.06 mm
V = 600.76 (10) Å3
Data collection top
Bruker APEX CCD
diffractometer
2086 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 94
Tmin = 0.536, Tmax = 1.000l = 1211
3166 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: difference Fourier map
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.1125P]
where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Cd(C8H4O4)(C3H4N2)(H2O)]γ = 81.054 (2)°
Mr = 362.61V = 600.76 (10) Å3
Triclinic, P1Z = 2
a = 8.2616 (8) ÅMo Kα radiation
b = 8.3138 (8) ŵ = 1.84 mm1
c = 10.235 (1) ÅT = 293 K
α = 67.017 (2)°0.27 × 0.18 × 0.06 mm
β = 68.176 (2)°
Data collection top
Bruker APEX CCD
diffractometer
2086 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2049 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 1.000Rint = 0.019
3166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.41 e Å3
2086 reflectionsΔρmin = 0.79 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.08672 (3)0.32297 (3)0.90289 (3)0.02898 (11)
O10.0532 (4)0.6070 (4)0.8593 (3)0.0337 (6)
O20.0672 (4)0.8334 (4)0.8475 (3)0.0382 (6)
O30.1082 (4)0.7617 (4)0.1628 (3)0.0347 (6)
O40.1232 (4)0.6718 (4)0.3685 (3)0.0405 (7)
O50.2389 (4)0.0533 (4)0.9029 (4)0.0414 (7)
H5A0.209 (10)0.017 (10)0.849 (9)0.10 (2)*
H5B0.211 (10)0.024 (10)0.994 (9)0.10 (3)*
N10.3422 (4)0.4507 (4)0.8114 (4)0.0340 (7)
N20.5999 (5)0.5524 (5)0.6516 (4)0.0453 (9)
H20.687 (9)0.587 (9)0.570 (8)0.08 (2)*
C10.0393 (5)0.7429 (5)0.7840 (4)0.0272 (7)
C20.1174 (5)0.7962 (5)0.6165 (4)0.0255 (7)
C30.2660 (5)0.8979 (5)0.5366 (4)0.0325 (8)
H30.31530.93720.58680.039*
C40.3406 (5)0.9406 (6)0.3814 (5)0.0398 (9)
H40.44281.00480.32840.048*
C50.2642 (5)0.8885 (5)0.3047 (4)0.0333 (8)
H50.31450.91840.20060.040*
C80.0251 (5)0.7384 (5)0.3016 (4)0.0293 (8)
C70.0420 (4)0.7439 (4)0.5394 (4)0.0248 (7)
H70.05750.67570.59300.030*
C110.4652 (6)0.4570 (6)0.6844 (5)0.0425 (10)
H110.45920.40100.62350.051*
C100.4032 (6)0.5481 (6)0.8641 (5)0.0436 (10)
H100.34410.56880.95320.052*
C90.5632 (6)0.6097 (7)0.7663 (6)0.0488 (11)
H90.63380.67790.77620.059*
C60.1121 (5)0.7914 (5)0.3837 (4)0.0261 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03179 (17)0.03293 (17)0.02429 (16)0.01047 (11)0.00754 (11)0.01069 (12)
O10.0381 (15)0.0359 (15)0.0243 (13)0.0070 (12)0.0089 (11)0.0074 (11)
O20.0528 (17)0.0447 (16)0.0260 (13)0.0095 (13)0.0144 (12)0.0175 (12)
O30.0442 (15)0.0420 (15)0.0236 (13)0.0069 (12)0.0114 (11)0.0154 (11)
O40.0422 (16)0.0530 (18)0.0302 (14)0.0195 (13)0.0118 (12)0.0125 (13)
O50.0440 (17)0.0385 (16)0.0405 (17)0.0083 (13)0.0105 (14)0.0137 (15)
N10.0310 (16)0.0374 (18)0.0328 (17)0.0080 (13)0.0085 (13)0.0114 (14)
N20.0336 (19)0.055 (2)0.039 (2)0.0110 (17)0.0046 (16)0.0120 (18)
C10.0274 (18)0.0310 (19)0.0236 (17)0.0004 (14)0.0103 (14)0.0091 (15)
C20.0289 (18)0.0254 (17)0.0223 (17)0.0011 (14)0.0100 (14)0.0073 (14)
C30.036 (2)0.042 (2)0.0276 (19)0.0122 (16)0.0133 (16)0.0137 (16)
C40.033 (2)0.053 (3)0.032 (2)0.0214 (18)0.0048 (16)0.0118 (18)
C50.035 (2)0.042 (2)0.0202 (17)0.0076 (16)0.0060 (15)0.0092 (16)
C80.038 (2)0.0273 (18)0.0267 (18)0.0028 (15)0.0152 (16)0.0089 (15)
C70.0250 (17)0.0278 (17)0.0220 (17)0.0045 (13)0.0084 (13)0.0075 (14)
C110.040 (2)0.050 (3)0.040 (2)0.0124 (19)0.0100 (18)0.017 (2)
C100.036 (2)0.057 (3)0.042 (2)0.0128 (19)0.0100 (18)0.021 (2)
C90.040 (2)0.057 (3)0.054 (3)0.017 (2)0.015 (2)0.020 (2)
C60.0285 (18)0.0281 (18)0.0248 (17)0.0013 (14)0.0113 (14)0.0105 (14)
Geometric parameters (Å, º) top
Cd1—N12.216 (3)N2—H20.85 (7)
Cd1—O3i2.251 (3)C1—C21.492 (5)
Cd1—O2ii2.311 (3)C2—C71.384 (5)
Cd1—O52.394 (3)C2—C31.388 (5)
Cd1—O12.413 (3)C3—C41.389 (5)
Cd1—O1ii2.626 (3)C3—H30.9300
Cd1—O4i2.663 (3)C4—C51.387 (6)
O1—C11.266 (5)C4—H40.9300
O2—C11.260 (4)C5—C61.391 (5)
O3—C81.276 (4)C5—H50.9300
O4—C81.252 (5)C8—C61.501 (5)
O5—H5A0.84 (8)C7—C61.387 (5)
O5—H5B0.87 (8)C7—H70.9300
N1—C111.306 (5)C11—H110.9300
N1—C101.368 (5)C10—C91.356 (6)
N2—C111.330 (6)C10—H100.9300
N2—C91.351 (6)C9—H90.9300
N1—Cd1—O3i143.34 (11)C9—N2—H2124 (4)
N1—Cd1—O2ii127.43 (11)O2—C1—O1121.5 (3)
O3i—Cd1—O2ii88.49 (10)O2—C1—C2119.4 (3)
N1—Cd1—O588.63 (11)O1—C1—C2119.1 (3)
O3i—Cd1—O587.33 (11)C7—C2—C3119.4 (3)
O2ii—Cd1—O585.20 (11)C7—C2—C1120.0 (3)
N1—Cd1—O189.20 (11)C3—C2—C1120.5 (3)
O3i—Cd1—O189.03 (10)C2—C3—C4119.7 (3)
O2ii—Cd1—O1103.25 (10)C2—C3—H3120.2
O5—Cd1—O1170.71 (11)C4—C3—H3120.2
N1—Cd1—O1ii83.08 (10)C5—C4—C3120.6 (4)
O3i—Cd1—O1ii131.61 (9)C5—C4—H4119.7
O2ii—Cd1—O1ii52.58 (9)C3—C4—H4119.7
O5—Cd1—O1ii112.79 (11)C4—C5—C6119.8 (3)
O1—Cd1—O1ii75.89 (9)C4—C5—H5120.1
N1—Cd1—O4i91.00 (10)C6—C5—H5120.1
O3i—Cd1—O4i52.54 (9)O4—C8—O3121.5 (3)
O2ii—Cd1—O4i137.72 (9)O4—C8—C6120.7 (3)
O5—Cd1—O4i78.09 (11)O3—C8—C6117.8 (3)
O1—Cd1—O4i92.92 (9)C2—C7—C6121.2 (3)
O1ii—Cd1—O4i167.35 (9)C2—C7—H7119.4
C1—O1—Cd1119.5 (2)C6—C7—H7119.4
C1—O1—Cd1ii85.5 (2)N1—C11—N2112.7 (4)
Cd1—O1—Cd1ii104.11 (9)N1—C11—H11123.7
C1—O2—Cd1ii100.4 (2)N2—C11—H11123.7
C8—O3—Cd1i102.2 (2)C9—C10—N1109.4 (4)
Cd1—O5—H5A108 (5)C9—C10—H10125.3
Cd1—O5—H5B110 (5)N1—C10—H10125.3
H5A—O5—H5B109 (7)N2—C9—C10106.5 (4)
C11—N1—C10104.7 (3)N2—C9—H9126.7
C11—N1—Cd1125.3 (3)C10—C9—H9126.7
C10—N1—Cd1129.8 (3)C7—C6—C5119.1 (3)
C11—N2—C9106.7 (4)C7—C6—C8120.4 (3)
C11—N2—H2129 (4)C5—C6—C8120.4 (3)
N1—Cd1—O1—C19.8 (3)O2—C1—C2—C7156.1 (3)
O3i—Cd1—O1—C1133.6 (3)O1—C1—C2—C724.1 (5)
O2ii—Cd1—O1—C1138.2 (3)O2—C1—C2—C324.1 (5)
O1ii—Cd1—O1—C192.8 (3)O1—C1—C2—C3155.6 (4)
O4i—Cd1—O1—C181.2 (3)C7—C2—C3—C42.3 (6)
N1—Cd1—O1—Cd1ii83.06 (11)C1—C2—C3—C4177.5 (4)
O3i—Cd1—O1—Cd1ii133.56 (10)C2—C3—C4—C52.6 (7)
O2ii—Cd1—O1—Cd1ii45.34 (11)C3—C4—C5—C60.5 (7)
O1ii—Cd1—O1—Cd1ii0.0Cd1i—O3—C8—O44.2 (4)
O4i—Cd1—O1—Cd1ii174.03 (9)Cd1i—O3—C8—C6176.6 (3)
O3i—Cd1—N1—C1124.3 (5)C3—C2—C7—C60.1 (5)
O2ii—Cd1—N1—C11142.2 (3)C1—C2—C7—C6179.9 (3)
O5—Cd1—N1—C1159.3 (4)C10—N1—C11—N20.4 (5)
O1—Cd1—N1—C11111.6 (4)Cd1—N1—C11—N2175.6 (3)
O1ii—Cd1—N1—C11172.5 (4)C9—N2—C11—N11.0 (6)
O4i—Cd1—N1—C1118.7 (4)C11—N1—C10—C90.4 (5)
O3i—Cd1—N1—C10150.6 (3)Cd1—N1—C10—C9176.1 (3)
O2ii—Cd1—N1—C1042.9 (4)C11—N2—C9—C101.2 (5)
O5—Cd1—N1—C10125.8 (4)N1—C10—C9—N20.9 (6)
O1—Cd1—N1—C1063.3 (4)C2—C7—C6—C52.1 (5)
O1ii—Cd1—N1—C1012.6 (4)C2—C7—C6—C8178.0 (3)
O4i—Cd1—N1—C10156.2 (4)C4—C5—C6—C71.8 (6)
Cd1ii—O2—C1—O10.1 (4)C4—C5—C6—C8178.3 (4)
Cd1ii—O2—C1—C2179.6 (3)O4—C8—C6—C79.7 (5)
Cd1—O1—C1—O2103.8 (4)O3—C8—C6—C7169.4 (3)
Cd1ii—O1—C1—O20.1 (3)O4—C8—C6—C5170.4 (4)
Cd1—O1—C1—C276.0 (4)O3—C8—C6—C510.4 (5)
Cd1ii—O1—C1—C2179.6 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2iii0.84 (8)2.07 (8)2.809 (4)146 (7)
O5—H5B···O3iv0.87 (8)1.96 (8)2.786 (4)158 (7)
N2—H2···O4v0.85 (7)2.00 (7)2.854 (5)175 (6)
Symmetry codes: (iii) x, y1, z; (iv) x, y1, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C3H4N2)(H2O)]
Mr362.61
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2616 (8), 8.3138 (8), 10.235 (1)
α, β, γ (°)67.017 (2), 68.176 (2), 81.054 (2)
V3)600.76 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.84
Crystal size (mm)0.27 × 0.18 × 0.06
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.536, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3166, 2086, 2049
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.15
No. of reflections2086
No. of parameters184
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.79

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.216 (3)Cd1—O12.413 (3)
Cd1—O3i2.251 (3)Cd1—O1ii2.626 (3)
Cd1—O2ii2.311 (3)Cd1—O4i2.663 (3)
Cd1—O52.394 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2iii0.84 (8)2.07 (8)2.809 (4)146 (7)
O5—H5B···O3iv0.87 (8)1.96 (8)2.786 (4)158 (7)
N2—H2···O4v0.85 (7)2.00 (7)2.854 (5)175 (6)
Symmetry codes: (iii) x, y1, z; (iv) x, y1, z+1; (v) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20971122) and the State Key Laboratory of Structural Chemistry for financial support.

References

First citationMa, S., Sun, D., Simmons, J. M., Collier, C. D., Yuan, D. & Zhou, H. C. (2008). J. Am. Chem. Soc. 130, 1012-1016.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Simemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWang, J., Lin, Z., Ou, Y. C., Yang, N. L., Zhang, Y. H. & Tong, M. L. (2008). Inorg. Chem. 47, 190–199.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds