metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m175-m176

2-Acetyl­pyridinium 3-amino-2-chloro­pyridinium tetra­chloridocobaltate(II)

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 18 December 2008; accepted 7 January 2009; online 10 January 2009)

In the title complex, (C5H6ClN2)(C7H8NO)[CoCl4], the CoII ions are tetra­hedrally coordinated. The crystal structure is built from hydrogen-bonded centrosymmetric tetra­mers of tetra­chloridocobaltate(II) dianions and 3-amino-2-chloro­pyridinium cations, additionally strengthened by significant ππ stacking of pyridinium rings [interplanar distance 3.389 (3) Å]. The tetra­mers are linked by N—H⋯Cl hydrogen bonds into chains; the second kind of cations, viz. 2-acetyl­pyridinium, are connected by N—H⋯Cl hydrogen bonds to both sides of the chain. The Co—Cl bond lengths in the dianion correlate with the number of hydrogen bonds accepted by the Cl atom. An intramolecular C—H⋯Cl interaction is also present.

Related literature

There are only few examples of structures involving the ligands present in the title structure. For related structures, see: 2-acetyl­pyridine itself (Laurent, 1966[Laurent, A. (1966). Acta Cryst. 21, 710-715.]) and its cation in perchlorate (Husak, 1996[Husak, M. (1996). Private communication (refcode NABLIL). CCDC, Cambridge, England.]) and in the complex with tetra­phenyl­porphyrin-zinc(II) (Byrn et al., 1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]), and a free base 3-amino-2-chloro­pyridine (Saha et al., 2006[Saha, B. K., Nangia, A. & Nicoud, J.-F. (2006). Cryst. Growth Des. 6, 1278-1281.]), and the latter as the dihydrogenphosphate (Hamed et al., 2007[Hamed, K., Samah, A. & Mohamed, R. (2007). Acta Cryst. E63, o2896.]) and as the silver complexes (Tong et al., 2002[Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. C58, m481-m482.]; Li et al., 2002[Li, W., Tong, M.-L., Chen, X.-M., Yuan, J.-X. & Hu, M.-L. (2002). Acta Cryst. E58, m203-m205.]). For literature on the Schiff base complexes, see Häner & Hall (1999[Häner, R. & Hall, J. (1999). Antisense Nucleic Acid Drug Dev. 7, 423-430.]); Mukherjee et al. (2005[Mukherjee, A., Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 349-353.]); Radecka-Paryzek et al. (2005[Radecka-Paryzek, W., Patroniak, V. & Lisowski, J. (2005). Coord. Chem. Rev. 249, 2156-2175.]); Yam & Lo (1999[Yam, V. & Lo, K. K.-W. (1999). Coord. Chem. Rev. 184, 157-240.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H6ClN2)(C7H8NO)[CoCl4]

  • Mr = 452.44

  • Triclinic, [P \overline 1]

  • a = 7.3255 (5) Å

  • b = 8.3188 (5) Å

  • c = 16.2657 (11) Å

  • α = 89.114 (5)°

  • β = 82.806 (5)°

  • γ = 64.145 (6)°

  • V = 884.13 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 100 (1) K

  • 0.4 × 0.15 × 0.1 mm

Data collection
  • Kuma KM-4-CCD four-circle diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxfordshire, England.]) Tmin = 0.616, Tmax = 0.841

  • 10954 measured reflections

  • 3798 independent reflections

  • 3470 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.065

  • S = 1.24

  • 3798 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯Cl1 0.88 (3) 2.28 (4) 3.126 (2) 161 (3)
N1A—H1A⋯Cl2i 0.84 (3) 2.41 (3) 3.127 (2) 145 (3)
N31A—H31A⋯Cl2ii 0.90 (4) 2.51 (4) 3.323 (3) 151 (3)
N31A—H31B⋯Cl3 0.96 (4) 2.33 (4) 3.267 (3) 167 (3)
C6B—H6B⋯Cl4 0.95 2.71 3.647 (3) 171
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are often employed as ligands in the metal ion - directed assembly of coordination architectures (Radecka-Paryzek et al., 2005). Such complexes are used as luminescent probes in the visible and near-IR spectral domains (Yam et al., 1999), as precursors for doped materials where metal centers must be implemented at a fixed distance and as catalysts for specific DNA (Mukherjee et al., 2005) and RNA (Häner & Hall, 1999) cleavage. In the course of our studies of Schiff base metal complexes with novel chemical properties we have accidentally synthesized the interesting example of three-component complex with CoCl4 dianion and two different cations: 3-amino-chloropyridinium (a) and 2-acetylpyridinium (b) (Scheme & Fig. 1).

Both cations are planar within the experimental error; the maximum deviation from the least-squares planes are as small as 0.006 (2)Å in (a) and 0.002 (2)Å in (b). In the latter case the plane of acetyl group makes a dihedral angle of 11.0 (2)° with the ring plane. In the crystal structure, two motifs involving the (a) cations, R44(12) and R44(18, act together to make the double chain of these cations and dianions along [110] direction. The R44(18) motif is additionally strengthened by the π-π stacking of pyridinium rings. The distance between the exactly parallel least-squares planes is 3.389 (3) Å, with relatively small offset of only 0.708 Å. The second kind of cations, (b) are joined - by means of the N—H···Cl hydrogen bonds - to the chain, on its both sides (Fig. 2). Additionally, relatively short and linear C—H···Cl hydrogen bond is accepted by the Cl4 atom, not involved in any N—H···Cl interactions.

The Co is tetrahedrally coordinated in the anions (Fig. 1); the distortion from the ideal geometry is small. The angles are close to the ideal values {106.68 (3) - 112.35 (3)°}. The differences in the Co—Cl bond lengths correlate with the number of hydrogen bonds accepted by the Cl atom: Co—Cl2 bond is the longest {2.2893 (7) Å; Cl2 accepts two h.b.'s}, Co—Cl1 and Co—Cl3 have similar, intermediate lengths of 2.2751 (7)Å and 2.2771 (7) Å, and Cl4, which accepts only C—H···Cl hydrogen bonds, makes the shortest Co—Cl bond of 2.2593 (7) Å.

Related literature top

There are only few examples of structures involving the ligands present in the title structure. For related structures, see: 2-acetylpyridine itself (Laurent, 1966) and its cation in perchlorate (Husak, 1996) and in the complex with tetraphenylporphyrin-zinc(II) (Byrn et al., 1993), and 3-amino-2-chloropyridine a free base (Saha et al., 2006) as the dihydrogenphosphate (Hamed et al., 2007) and as the silver complexes (Tong et al., 2002; Li et al., 2002). For literature on the Schiff base complexes, see Häner & Hall (1999); Mukherjee et al. (2005); Radecka-Paryzek et al. (2005); Yam & Lo (1999).

Experimental top

To a mixture of cobalt chloride hexahydrate (18.2 mg; 0.08 mmol) and 2-acetylpyridine (9.4 mg; 0.08.m mol) in acetonitrile (20 cm3), 3-amino-2-chloropyridine (0.01 g; 0.08 mmol) in acetonitrile (10 cm3) was added dropwise with stirring. The reaction mixture was stirred for 24 h, at room temperature. The green crystals were obtained by slow diffusion of chloroform to the acetonitrile solution.

Refinement top

Hydrogen atoms from N—H groups were located in difference Fourier maps and isotropically refined; other H atoms were located geometrically and refined as the 'riding model' with Uiso's set at 1.2 (1.4 for methyl group) times Ueq's of appropriate oxygen atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of compound 1 together with atom labelling scheme (Siemens, 1989). The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The fragment of the crystal packing of complex 1. Hydrogen bonds and π-π interactions are shown as dashed lines. Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+2, -z; (iv) x-1, y+1 , z.]
2-Acetylpyridinium 3-amino-2-chloropyridinium tetrachloridocobaltate(II) top
Crystal data top
(C5H6ClN2)(C7H8NO)[CoCl4]Z = 2
Mr = 452.44F(000) = 454
Triclinic, P1Dx = 1.700 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3255 (5) ÅCell parameters from 7316 reflections
b = 8.3188 (5) Åθ = 3–25°
c = 16.2657 (11) ŵ = 1.73 mm1
α = 89.114 (5)°T = 100 K
β = 82.806 (5)°Plate, blue
γ = 64.145 (6)°0.4 × 0.15 × 0.1 mm
V = 884.13 (10) Å3
Data collection top
Kuma KM-4-CCD four-circle
diffractometer
3798 independent reflections
Radiation source: fine-focus sealed tube3470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.1929 pixels mm-1θmax = 27.0°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1010
Tmin = 0.616, Tmax = 0.841l = 2019
10954 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.24 w = 1/[σ2(Fo2) + (0.0083P)2 + 1.4737P]
where P = (Fo2 + 2Fc2)/3
3798 reflections(Δ/σ)max < 0.001
216 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C5H6ClN2)(C7H8NO)[CoCl4]γ = 64.145 (6)°
Mr = 452.44V = 884.13 (10) Å3
Triclinic, P1Z = 2
a = 7.3255 (5) ÅMo Kα radiation
b = 8.3188 (5) ŵ = 1.73 mm1
c = 16.2657 (11) ÅT = 100 K
α = 89.114 (5)°0.4 × 0.15 × 0.1 mm
β = 82.806 (5)°
Data collection top
Kuma KM-4-CCD four-circle
diffractometer
3798 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3470 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.841Rint = 0.019
10954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.24Δρmax = 0.70 e Å3
3798 reflectionsΔρmin = 0.36 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.88393 (5)0.59259 (4)0.24288 (2)0.01220 (9)
Cl11.00305 (9)0.37850 (8)0.33709 (4)0.01584 (13)
Cl20.70499 (9)0.51487 (8)0.15843 (4)0.01614 (13)
Cl31.15608 (9)0.60998 (8)0.16588 (4)0.01751 (13)
Cl40.66564 (10)0.86213 (8)0.30354 (4)0.01991 (14)
N1A0.5900 (3)1.1877 (3)0.05439 (15)0.0177 (5)
H1A0.542 (5)1.229 (4)0.098 (2)0.026 (9)*
C2A0.7364 (4)1.0189 (3)0.06482 (16)0.0175 (5)
Cl2A0.82058 (10)0.92797 (9)0.16337 (4)0.02218 (15)
C3A0.8134 (4)0.9213 (3)0.00390 (16)0.0161 (5)
N31A0.9566 (4)0.7490 (3)0.00534 (16)0.0236 (5)
H31A1.011 (5)0.705 (4)0.058 (2)0.033 (9)*
H31B1.015 (5)0.690 (4)0.042 (2)0.032 (9)*
C4A0.7311 (4)1.0089 (4)0.08237 (17)0.0186 (5)
H4A0.77980.94790.13070.022*
C5A0.5794 (4)1.1834 (4)0.08995 (17)0.0209 (6)
H5A0.52541.24080.14340.025*
C6A0.5065 (4)1.2742 (4)0.02109 (18)0.0198 (6)
H6A0.40141.39330.02590.024*
N1B0.7520 (3)0.5002 (3)0.51335 (13)0.0148 (4)
H1B0.844 (5)0.447 (4)0.470 (2)0.032 (9)*
C2B0.7401 (4)0.4099 (3)0.58207 (15)0.0148 (5)
C21B0.9013 (4)0.2182 (3)0.57886 (16)0.0162 (5)
O21B1.0417 (3)0.1707 (3)0.52259 (12)0.0222 (4)
C22B0.8761 (4)0.1020 (4)0.64563 (17)0.0210 (6)
H22A0.97640.02220.63200.029*
H22B0.73760.11020.65030.029*
H22C0.89780.14160.69850.029*
C3B0.5901 (4)0.4969 (4)0.64742 (16)0.0176 (5)
H3B0.57730.43560.69590.021*
C4B0.4563 (4)0.6782 (4)0.64097 (17)0.0201 (6)
H4B0.35300.74070.68570.024*
C5B0.4745 (4)0.7655 (4)0.56984 (17)0.0198 (6)
H5B0.38390.88780.56530.024*
C6B0.6263 (4)0.6729 (3)0.50503 (17)0.0179 (5)
H6B0.64100.73080.45560.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01261 (16)0.01326 (16)0.01084 (17)0.00584 (13)0.00127 (12)0.00103 (13)
Cl10.0180 (3)0.0160 (3)0.0126 (3)0.0066 (2)0.0024 (2)0.0034 (2)
Cl20.0149 (3)0.0185 (3)0.0152 (3)0.0069 (2)0.0039 (2)0.0007 (2)
Cl30.0151 (3)0.0224 (3)0.0162 (3)0.0097 (2)0.0007 (2)0.0032 (2)
Cl40.0213 (3)0.0151 (3)0.0190 (3)0.0047 (2)0.0003 (2)0.0023 (2)
N1A0.0163 (11)0.0158 (11)0.0217 (12)0.0073 (9)0.0041 (9)0.0036 (9)
C2A0.0176 (12)0.0193 (13)0.0167 (13)0.0099 (10)0.0010 (10)0.0011 (10)
Cl2A0.0260 (3)0.0232 (3)0.0140 (3)0.0083 (3)0.0004 (2)0.0017 (2)
C3A0.0156 (12)0.0185 (13)0.0174 (13)0.0105 (10)0.0020 (10)0.0037 (10)
N31A0.0246 (12)0.0212 (12)0.0157 (12)0.0018 (10)0.0010 (10)0.0022 (10)
C4A0.0201 (13)0.0201 (13)0.0172 (13)0.0106 (11)0.0019 (10)0.0023 (11)
C5A0.0221 (13)0.0223 (14)0.0211 (14)0.0132 (11)0.0012 (11)0.0038 (11)
C6A0.0190 (13)0.0161 (13)0.0300 (15)0.0122 (11)0.0072 (11)0.0051 (11)
N1B0.0162 (10)0.0166 (11)0.0122 (10)0.0077 (9)0.0016 (8)0.0002 (9)
C2B0.0160 (12)0.0197 (13)0.0131 (12)0.0114 (10)0.0038 (10)0.0004 (10)
C21B0.0184 (12)0.0193 (13)0.0140 (13)0.0102 (10)0.0051 (10)0.0014 (10)
O21B0.0212 (10)0.0225 (10)0.0173 (10)0.0051 (8)0.0007 (8)0.0025 (8)
C22B0.0244 (14)0.0222 (14)0.0183 (13)0.0117 (11)0.0048 (11)0.0063 (11)
C3B0.0177 (12)0.0256 (14)0.0138 (12)0.0133 (11)0.0021 (10)0.0009 (11)
C4B0.0167 (12)0.0237 (14)0.0195 (14)0.0088 (11)0.0001 (10)0.0066 (11)
C5B0.0196 (13)0.0175 (13)0.0231 (14)0.0083 (11)0.0046 (11)0.0021 (11)
C6B0.0221 (13)0.0176 (13)0.0175 (13)0.0112 (11)0.0056 (10)0.0039 (10)
Geometric parameters (Å, º) top
Co1—Cl42.2593 (7)N1B—C6B1.342 (3)
Co1—Cl12.2751 (7)N1B—C2B1.352 (3)
Co1—Cl32.2771 (7)N1B—H1B0.88 (3)
Co1—Cl22.2893 (7)C2B—C3B1.378 (4)
N1A—C2A1.341 (3)C2B—C21B1.512 (4)
N1A—C6A1.362 (4)C21B—O21B1.214 (3)
N1A—H1A0.84 (3)C21B—C22B1.490 (4)
C2A—C3A1.399 (4)C22B—H22A0.9800
C2A—Cl2A1.705 (3)C22B—H22B0.9800
C3A—N31A1.354 (3)C22B—H22C0.9800
C3A—C4A1.406 (4)C3B—C4B1.406 (4)
N31A—H31A0.90 (4)C3B—H3B0.9500
N31A—H31B0.96 (4)C4B—C5B1.379 (4)
C4A—C5A1.386 (4)C4B—H4B0.9500
C4A—H4A0.9500C5B—C6B1.388 (4)
C5A—C6A1.372 (4)C5B—H5B0.9500
C5A—H5A0.9500C6B—H6B0.9500
C6A—H6A0.9500
Cl4—Co1—Cl1112.35 (3)C6B—N1B—C2B123.6 (2)
Cl4—Co1—Cl3110.42 (3)C6B—N1B—H1B116 (2)
Cl1—Co1—Cl3108.54 (3)C2B—N1B—H1B121 (2)
Cl4—Co1—Cl2106.68 (3)N1B—C2B—C3B119.1 (2)
Cl1—Co1—Cl2109.10 (3)N1B—C2B—C21B114.6 (2)
Cl3—Co1—Cl2109.72 (3)C3B—C2B—C21B126.3 (2)
C2A—N1A—C6A123.7 (2)O21B—C21B—C22B124.9 (2)
C2A—N1A—H1A113 (2)O21B—C21B—C2B117.8 (2)
C6A—N1A—H1A123 (2)C22B—C21B—C2B117.3 (2)
N1A—C2A—C3A120.3 (2)C21B—C22B—H22A109.5
N1A—C2A—Cl2A118.0 (2)C21B—C22B—H22B109.5
C3A—C2A—Cl2A121.7 (2)H22A—C22B—H22B109.5
N31A—C3A—C2A121.0 (2)C21B—C22B—H22C109.5
N31A—C3A—C4A122.0 (2)H22A—C22B—H22C109.5
C2A—C3A—C4A116.9 (2)H22B—C22B—H22C109.5
C3A—N31A—H31A117 (2)C2B—C3B—C4B118.8 (2)
C3A—N31A—H31B119 (2)C2B—C3B—H3B120.6
H31A—N31A—H31B123 (3)C4B—C3B—H3B120.6
C5A—C4A—C3A120.7 (2)C5B—C4B—C3B120.2 (2)
C5A—C4A—H4A119.7C5B—C4B—H4B119.9
C3A—C4A—H4A119.7C3B—C4B—H4B119.9
C6A—C5A—C4A120.7 (3)C4B—C5B—C6B119.4 (2)
C6A—C5A—H5A119.6C4B—C5B—H5B120.3
C4A—C5A—H5A119.6C6B—C5B—H5B120.3
N1A—C6A—C5A117.7 (2)N1B—C6B—C5B118.9 (2)
N1A—C6A—H6A121.2N1B—C6B—H6B120.5
C5A—C6A—H6A121.2C5B—C6B—H6B120.5
C6A—N1A—C2A—C3A0.5 (4)C6B—N1B—C2B—C21B178.2 (2)
C6A—N1A—C2A—Cl2A178.5 (2)N1B—C2B—C21B—O21B10.7 (3)
N1A—C2A—C3A—N31A177.9 (2)C3B—C2B—C21B—O21B168.3 (2)
Cl2A—C2A—C3A—N31A1.0 (4)N1B—C2B—C21B—C22B169.7 (2)
N1A—C2A—C3A—C4A0.3 (4)C3B—C2B—C21B—C22B11.3 (4)
Cl2A—C2A—C3A—C4A179.19 (19)N1B—C2B—C3B—C4B1.1 (4)
N31A—C3A—C4A—C5A177.7 (3)C21B—C2B—C3B—C4B177.9 (2)
C2A—C3A—C4A—C5A0.5 (4)C2B—C3B—C4B—C5B0.8 (4)
C3A—C4A—C5A—C6A0.0 (4)C3B—C4B—C5B—C6B0.2 (4)
C2A—N1A—C6A—C5A1.0 (4)C2B—N1B—C6B—C5B0.3 (4)
C4A—C5A—C6A—N1A0.8 (4)C4B—C5B—C6B—N1B0.1 (4)
C6B—N1B—C2B—C3B0.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···Cl10.88 (3)2.28 (4)3.126 (2)161 (3)
N1A—H1A···Cl2i0.84 (3)2.41 (3)3.127 (2)145 (3)
N31A—H31A···Cl2ii0.90 (4)2.51 (4)3.323 (3)151 (3)
N31A—H31B···Cl30.96 (4)2.33 (4)3.267 (3)167 (3)
C6B—H6B···Cl40.952.713.647 (3)171
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H6ClN2)(C7H8NO)[CoCl4]
Mr452.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3255 (5), 8.3188 (5), 16.2657 (11)
α, β, γ (°)89.114 (5), 82.806 (5), 64.145 (6)
V3)884.13 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.4 × 0.15 × 0.1
Data collection
DiffractometerKuma KM-4-CCD four-circle
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.616, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
10954, 3798, 3470
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.065, 1.24
No. of reflections3798
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···Cl10.88 (3)2.28 (4)3.126 (2)161 (3)
N1A—H1A···Cl2i0.84 (3)2.41 (3)3.127 (2)145 (3)
N31A—H31A···Cl2ii0.90 (4)2.51 (4)3.323 (3)151 (3)
N31A—H31B···Cl30.96 (4)2.33 (4)3.267 (3)167 (3)
C6B—H6B···Cl40.952.713.647 (3)171.4
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+1, z.
 

Acknowledgements

This research was carried out as part of a Polish Ministry of Higher Education and Science project (grant No. NN 204 2716 33).

References

First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationHamed, K., Samah, A. & Mohamed, R. (2007). Acta Cryst. E63, o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHäner, R. & Hall, J. (1999). Antisense Nucleic Acid Drug Dev. 7, 423–430.  Google Scholar
First citationHusak, M. (1996). Private communication (refcode NABLIL). CCDC, Cambridge, England.  Google Scholar
First citationLaurent, A. (1966). Acta Cryst. 21, 710–715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLi, W., Tong, M.-L., Chen, X.-M., Yuan, J.-X. & Hu, M.-L. (2002). Acta Cryst. E58, m203–m205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, A., Dhar, S., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 349–353.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Oxfordshire, England.  Google Scholar
First citationRadecka-Paryzek, W., Patroniak, V. & Lisowski, J. (2005). Coord. Chem. Rev. 249, 2156–2175.  Web of Science CrossRef CAS Google Scholar
First citationSaha, B. K., Nangia, A. & Nicoud, J.-F. (2006). Cryst. Growth Des. 6, 1278–1281.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTong, M.-L., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. C58, m481–m482.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYam, V. & Lo, K. K.-W. (1999). Coord. Chem. Rev. 184, 157–240.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m175-m176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds