Download citation
Download citation
link to html
Crystallization of the (S)-enanti­omer of the title compound, C21H26NO2S, from methanol gave an unsolvated crystal structure in which one-dimensional strands of mol­ecules are formed through a series of C—H...O and C—H...S hydrogen bonds, and C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705249X/lx2021sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705249X/lx2021Isup2.hkl
Contains datablock I

CCDC reference: 667448

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.109
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 26.99 From the CIF: _reflns_number_total 3574 Count of symmetry unique reflns 2216 Completeness (_total/calc) 161.28% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1358 Fraction of Friedel pairs measured 0.613 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In an ongoing investigation of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) (Flippen et al., 1970) and the inclusion chemistry of its derivatives, we synthesized the title compound (Fig. 1, I) (Esterhuysen et al., 2005; Lloyd et al.,2005; Lloyd & Bredenkamp, 2005; Lloyd et al., 2006; Jacobs et al., 2006).

The title compound was synthesized as a chirally pure intermediate from (S)-4-(4-Hydroxyphenyl)-2,2,4-trimethylchroman in the preparation of the resolved thiol derivative of Dianin's compound. Here we report the structure of the resolved dimethylthiocarbamate derivative, which is very different from the corresponding racemic structure (de Vries et al., 2005). The molecules form bilayer-type sheets in the [100] plane (Fig 2). The molecule packing is stabilized by C—H···O and C—H···S hydrogen bonds, and intermolecular C—H···π interactions (Table 1, Cg is the centroid of the C10—C15 benzene ring), with the dimethylthiocarbamate moieties associating and the chroman moieties pointing towards each other.

Related literature top

For related literature, see: Esterhuysen et al. (2005); Flippen et al. (1970); Hardy et al. (1979); Jacobs et al. (2006); Lloyd & Bredenkamp (2005); Lloyd, Alen, Bredenkamp et al. (2006); Lloyd, Alen, Jacobs et al. (2006); Lloyd et al. (2005); de Vries et al. (2005); Brienne & Jacques (1975). Cg is the centroid of the C10–C15 benzene ring

Experimental top

(S)-4-p-hydroxyphenyl-2,2,4-trimethylchroman was chirally resolved according to the literature method (Brienne & Jacques, 1975) from a racemic mixture of the compound. This chirally pure species was then converted into the title compound according to the literature method (Hardy et al., 1979). Single crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol solution.

Refinement top

All the H atoms were included in the riding-model approximation, with C—H = 0.95–0.98, and with Uiso(H) = 1.2 or 1.5Ueq(C) (C20 and C21).

Structure description top

In an ongoing investigation of Dianin's compound (4-p-hydroxyphenyl-2,2,4-trimethylchroman) (Flippen et al., 1970) and the inclusion chemistry of its derivatives, we synthesized the title compound (Fig. 1, I) (Esterhuysen et al., 2005; Lloyd et al.,2005; Lloyd & Bredenkamp, 2005; Lloyd et al., 2006; Jacobs et al., 2006).

The title compound was synthesized as a chirally pure intermediate from (S)-4-(4-Hydroxyphenyl)-2,2,4-trimethylchroman in the preparation of the resolved thiol derivative of Dianin's compound. Here we report the structure of the resolved dimethylthiocarbamate derivative, which is very different from the corresponding racemic structure (de Vries et al., 2005). The molecules form bilayer-type sheets in the [100] plane (Fig 2). The molecule packing is stabilized by C—H···O and C—H···S hydrogen bonds, and intermolecular C—H···π interactions (Table 1, Cg is the centroid of the C10—C15 benzene ring), with the dimethylthiocarbamate moieties associating and the chroman moieties pointing towards each other.

For related literature, see: Esterhuysen et al. (2005); Flippen et al. (1970); Hardy et al. (1979); Jacobs et al. (2006); Lloyd & Bredenkamp (2005); Lloyd, Alen, Bredenkamp et al. (2006); Lloyd, Alen, Jacobs et al. (2006); Lloyd et al. (2005); de Vries et al. (2005); Brienne & Jacques (1975). Cg is the centroid of the C10–C15 benzene ring

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The bilayer-type packing of compound I, intermolecular interactions are shown as red dashed lines. Cg denotes the ring centroid. [Symmetry codes: (i) 1 - x, y - 1/2, -z; (ii) x, 1 + y, z; (iii) x, y - 1, z; (iv) 1 - x, y + 1/2, -z.]
(S)-O-[4-(2,2,4-Trimethylchroman-4-yl)phenyl] N,N-dimethylthiocarbamate top
Crystal data top
C21H25NO2SF(000) = 380
Mr = 355.48Dx = 1.260 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1032 reflections
a = 6.5858 (5) Åθ = 2.3–19.3°
b = 7.1397 (5) ŵ = 0.19 mm1
c = 19.996 (1) ÅT = 100 K
β = 94.780 (1)°Blocks, colourless
V = 936.95 (11) Å30.21 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 27.0°, θmin = 1.0°
Detector resolution: 10.0 pixels mm-1h = 68
ω scansk = 89
5663 measured reflectionsl = 2523
3574 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.15P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3574 reflectionsΔρmax = 0.46 e Å3
228 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1358 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C21H25NO2SV = 936.95 (11) Å3
Mr = 355.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.5858 (5) ŵ = 0.19 mm1
b = 7.1397 (5) ÅT = 100 K
c = 19.996 (1) Å0.21 × 0.18 × 0.15 mm
β = 94.780 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3479 reflections with I > 2σ(I)
5663 measured reflectionsRint = 0.043
3574 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.46 e Å3
S = 1.04Δρmin = 0.26 e Å3
3574 reflectionsAbsolute structure: Flack (1983), 1358 Friedel pairs
228 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.28200 (7)0.52502 (8)0.44057 (2)0.02235 (14)
O10.8148 (2)0.1302 (2)0.07012 (7)0.0197 (3)
O20.5200 (2)0.7164 (2)0.36253 (7)0.0236 (3)
N0.3274 (3)0.8928 (3)0.42094 (9)0.0228 (4)
C10.9298 (3)0.2663 (3)0.11193 (9)0.0179 (4)
C20.9973 (3)0.1746 (3)0.17922 (9)0.0162 (4)
H2A1.07530.26780.20760.019*
H2B1.09110.07020.17100.019*
C30.8242 (3)0.0978 (3)0.21874 (9)0.0148 (4)
C40.6675 (3)0.0035 (3)0.16921 (9)0.0151 (4)
C50.5173 (3)0.1144 (3)0.19136 (9)0.0170 (4)
H50.50980.13080.23820.020*
C60.3786 (3)0.2084 (3)0.14704 (10)0.0198 (4)
H60.27770.28700.16360.024*
C70.3887 (3)0.1864 (3)0.07831 (10)0.0189 (4)
H70.29490.25000.04760.023*
C80.5361 (3)0.0713 (3)0.05506 (9)0.0186 (4)
H80.54380.05680.00810.022*
C90.6736 (3)0.0237 (3)0.09965 (9)0.0159 (3)
C100.7311 (3)0.2545 (3)0.25958 (9)0.0147 (4)
C110.5289 (3)0.3112 (3)0.24875 (9)0.0165 (4)
H110.44110.24780.21610.020*
C120.4517 (3)0.4591 (3)0.28479 (10)0.0179 (4)
H120.31370.49720.27650.021*
C130.5801 (3)0.5485 (3)0.33256 (9)0.0181 (4)
C140.7813 (3)0.4949 (3)0.34578 (9)0.0187 (4)
H140.86730.55760.37910.022*
C150.8553 (3)0.3475 (3)0.30932 (9)0.0177 (4)
H150.99290.30900.31830.021*
C160.3755 (3)0.7167 (3)0.40763 (9)0.0167 (4)
C171.1158 (3)0.3091 (3)0.07366 (10)0.0224 (4)
H17A1.07100.36000.02940.027*
H17B1.19330.19370.06830.027*
H17C1.20230.40100.09880.027*
C180.8008 (3)0.4421 (3)0.11708 (11)0.0227 (4)
H18A0.67480.41040.13740.027*
H18B0.76720.49400.07210.027*
H18C0.87730.53510.14500.027*
C190.9192 (3)0.0513 (3)0.26836 (10)0.0205 (4)
H19A1.02490.00720.29890.025*
H19B0.97990.15170.24320.025*
H19C0.81300.10370.29440.025*
C200.4249 (4)1.0515 (3)0.39042 (11)0.0298 (5)
H20A0.56691.06110.40910.045*
H20B0.35221.16700.39990.045*
H20C0.42101.03280.34180.045*
C210.1799 (4)0.9357 (4)0.46943 (12)0.0313 (5)
H21A0.04150.92380.44770.047*
H21B0.20151.06400.48590.047*
H21C0.19780.84800.50720.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0260 (2)0.0186 (2)0.0239 (2)0.0034 (2)0.01069 (18)0.0010 (2)
O10.0236 (7)0.0221 (7)0.0143 (6)0.0046 (6)0.0065 (5)0.0005 (6)
O20.0322 (8)0.0145 (7)0.0267 (7)0.0010 (7)0.0171 (6)0.0043 (6)
N0.0322 (10)0.0172 (9)0.0205 (8)0.0033 (8)0.0119 (7)0.0025 (7)
C10.0183 (9)0.0181 (10)0.0178 (9)0.0012 (8)0.0045 (7)0.0020 (8)
C20.0151 (8)0.0158 (10)0.0184 (9)0.0018 (7)0.0051 (6)0.0007 (7)
C30.0157 (9)0.0152 (9)0.0138 (8)0.0002 (8)0.0030 (7)0.0017 (7)
C40.0174 (8)0.0121 (9)0.0161 (8)0.0022 (8)0.0033 (6)0.0029 (8)
C50.0210 (9)0.0158 (9)0.0149 (8)0.0003 (8)0.0058 (7)0.0008 (7)
C60.0212 (9)0.0140 (9)0.0252 (10)0.0009 (8)0.0070 (8)0.0022 (8)
C70.0201 (9)0.0137 (9)0.0228 (9)0.0007 (8)0.0010 (7)0.0046 (8)
C80.0224 (9)0.0188 (10)0.0151 (8)0.0038 (8)0.0040 (7)0.0017 (8)
C90.0166 (8)0.0142 (8)0.0175 (8)0.0024 (9)0.0052 (6)0.0003 (8)
C100.0191 (9)0.0126 (9)0.0132 (8)0.0001 (8)0.0068 (7)0.0004 (7)
C110.0191 (9)0.0157 (10)0.0152 (8)0.0008 (8)0.0043 (7)0.0013 (7)
C120.0176 (9)0.0170 (10)0.0201 (9)0.0037 (8)0.0078 (7)0.0022 (7)
C130.0263 (9)0.0119 (10)0.0175 (8)0.0009 (8)0.0106 (7)0.0017 (7)
C140.0235 (9)0.0175 (10)0.0157 (8)0.0043 (8)0.0049 (7)0.0020 (7)
C150.0186 (9)0.0203 (10)0.0146 (8)0.0009 (8)0.0044 (7)0.0012 (7)
C160.0183 (9)0.0187 (10)0.0137 (8)0.0007 (8)0.0043 (7)0.0008 (7)
C170.0235 (10)0.0217 (11)0.0234 (10)0.0022 (9)0.0108 (8)0.0001 (8)
C180.0248 (10)0.0198 (10)0.0245 (10)0.0045 (9)0.0077 (8)0.0050 (8)
C190.0232 (9)0.0192 (10)0.0193 (9)0.0045 (9)0.0017 (7)0.0002 (8)
C200.0473 (13)0.0154 (11)0.0285 (11)0.0012 (10)0.0128 (9)0.0003 (8)
C210.0375 (12)0.0286 (12)0.0305 (11)0.0058 (11)0.0188 (10)0.0068 (10)
Geometric parameters (Å, º) top
S—C161.659 (2)C8—H80.9500
O1—C91.372 (2)C10—C111.391 (3)
O1—C11.452 (2)C10—C151.401 (3)
O2—C161.365 (2)C11—C121.398 (3)
O2—C131.411 (2)C11—H110.9500
N—C161.329 (3)C12—C131.379 (3)
N—C201.461 (3)C12—H120.9500
N—C211.461 (3)C13—C141.383 (3)
C1—C181.525 (3)C14—C151.392 (3)
C1—C171.529 (3)C14—H140.9500
C1—C21.529 (3)C15—H150.9500
C2—C31.541 (2)C17—H17A0.9800
C2—H2A0.9900C17—H17B0.9800
C2—H2B0.9900C17—H17C0.9800
C3—C41.526 (2)C18—H18A0.9800
C3—C101.542 (3)C18—H18B0.9800
C3—C191.551 (3)C18—H18C0.9800
C4—C51.399 (3)C19—H19A0.9800
C4—C91.402 (2)C19—H19B0.9800
C5—C61.391 (3)C19—H19C0.9800
C5—H50.9500C20—H20A0.9800
C6—C71.390 (3)C20—H20B0.9800
C6—H60.9500C20—H20C0.9800
C7—C81.382 (3)C21—H21A0.9800
C7—H70.9500C21—H21B0.9800
C8—C91.393 (3)C21—H21C0.9800
C9—O1—C1117.53 (14)C12—C11—H11119.2
C16—O2—C13121.16 (15)C13—C12—C11118.60 (18)
C16—N—C20121.99 (17)C13—C12—H12120.7
C16—N—C21120.92 (19)C11—C12—H12120.7
C20—N—C21117.04 (18)C12—C13—C14121.78 (18)
O1—C1—C18108.83 (17)C12—C13—O2120.66 (18)
O1—C1—C17104.27 (15)C14—C13—O2116.86 (18)
C18—C1—C17110.09 (17)C13—C14—C15118.75 (18)
O1—C1—C2108.65 (16)C13—C14—H14120.6
C18—C1—C2114.59 (16)C15—C14—H14120.6
C17—C1—C2109.87 (16)C14—C15—C10121.39 (19)
C1—C2—C3115.50 (16)C14—C15—H15119.3
C1—C2—H2A108.4C10—C15—H15119.3
C3—C2—H2A108.4N—C16—O2108.95 (17)
C1—C2—H2B108.4N—C16—S126.74 (15)
C3—C2—H2B108.4O2—C16—S124.30 (15)
H2A—C2—H2B107.5C1—C17—H17A109.5
C4—C3—C2108.26 (14)C1—C17—H17B109.5
C4—C3—C10112.73 (15)H17A—C17—H17B109.5
C2—C3—C10110.92 (16)C1—C17—H17C109.5
C4—C3—C19109.12 (16)H17A—C17—H17C109.5
C2—C3—C19107.21 (15)H17B—C17—H17C109.5
C10—C3—C19108.45 (15)C1—C18—H18A109.5
C5—C4—C9117.09 (17)C1—C18—H18B109.5
C5—C4—C3121.19 (16)H18A—C18—H18B109.5
C9—C4—C3121.65 (17)C1—C18—H18C109.5
C6—C5—C4122.19 (17)H18A—C18—H18C109.5
C6—C5—H5118.9H18B—C18—H18C109.5
C4—C5—H5118.9C3—C19—H19A109.5
C7—C6—C5119.49 (19)C3—C19—H19B109.5
C7—C6—H6120.3H19A—C19—H19B109.5
C5—C6—H6120.3C3—C19—H19C109.5
C8—C7—C6119.52 (18)H19A—C19—H19C109.5
C8—C7—H7120.2H19B—C19—H19C109.5
C6—C7—H7120.2N—C20—H20A109.5
C7—C8—C9120.77 (17)N—C20—H20B109.5
C7—C8—H8119.6H20A—C20—H20B109.5
C9—C8—H8119.6N—C20—H20C109.5
O1—C9—C8114.96 (15)H20A—C20—H20C109.5
O1—C9—C4124.07 (17)H20B—C20—H20C109.5
C8—C9—C4120.93 (18)N—C21—H21A109.5
C11—C10—C15117.86 (17)N—C21—H21B109.5
C11—C10—C3123.12 (17)H21A—C21—H21B109.5
C15—C10—C3119.02 (17)N—C21—H21C109.5
C10—C11—C12121.60 (18)H21A—C21—H21C109.5
C10—C11—H11119.2H21B—C21—H21C109.5
C9—O1—C1—C1881.6 (2)C5—C4—C9—C80.5 (3)
C9—O1—C1—C17160.98 (17)C3—C4—C9—C8176.53 (18)
C9—O1—C1—C243.8 (2)C4—C3—C10—C114.1 (3)
O1—C1—C2—C358.0 (2)C2—C3—C10—C11117.48 (19)
C18—C1—C2—C363.9 (2)C19—C3—C10—C11125.04 (19)
C17—C1—C2—C3171.53 (17)C4—C3—C10—C15177.00 (16)
C1—C2—C3—C440.8 (2)C2—C3—C10—C1561.4 (2)
C1—C2—C3—C1083.3 (2)C19—C3—C10—C1556.1 (2)
C1—C2—C3—C19158.42 (16)C15—C10—C11—C121.6 (3)
C2—C3—C4—C5165.70 (17)C3—C10—C11—C12177.26 (17)
C10—C3—C4—C571.2 (2)C10—C11—C12—C130.7 (3)
C19—C3—C4—C549.3 (2)C11—C12—C13—C140.4 (3)
C2—C3—C4—C911.2 (3)C11—C12—C13—O2169.79 (16)
C10—C3—C4—C9111.9 (2)C16—O2—C13—C1272.1 (2)
C19—C3—C4—C9127.53 (19)C16—O2—C13—C14117.3 (2)
C9—C4—C5—C60.1 (3)C12—C13—C14—C150.5 (3)
C3—C4—C5—C6177.08 (19)O2—C13—C14—C15170.06 (17)
C4—C5—C6—C70.4 (3)C13—C14—C15—C100.5 (3)
C5—C6—C7—C80.1 (3)C11—C10—C15—C141.6 (3)
C6—C7—C8—C90.4 (3)C3—C10—C15—C14177.39 (17)
C1—O1—C9—C8165.62 (18)C20—N—C16—O20.9 (3)
C1—O1—C9—C416.5 (3)C21—N—C16—O2178.18 (19)
C7—C8—C9—O1178.71 (18)C20—N—C16—S177.94 (17)
C7—C8—C9—C40.7 (3)C21—N—C16—S0.7 (3)
C5—C4—C9—O1178.26 (18)C13—O2—C16—N171.51 (18)
C3—C4—C9—O11.3 (3)C13—O2—C16—S9.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.553.414 (2)151
C20—H20B···Sii0.982.733.671 (2)160
C20—H20C···Cgii0.983.223.543 (3)101
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H25NO2S
Mr355.48
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.5858 (5), 7.1397 (5), 19.996 (1)
β (°) 94.780 (1)
V3)936.95 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.21 × 0.18 × 0.15
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5663, 3574, 3479
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.04
No. of reflections3574
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.26
Absolute structureFlack (1983), 1358 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001; Atwood & Barbour, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.952.553.414 (2)151.2
C20—H20B···Sii0.982.733.671 (2)160.4
C20—H20C···Cgii0.983.223.543 (3)101.1
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds