organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o240-o241

The tripeptide N-Cbz-βGly-Gly-Gly-Obz

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Indian Institute of Science, Bangalore 560012, India
*Correspondence e-mail: sumeshnicholas@gmail.com

Edited by M. Lopez-Rodriguez, Universidad de La Laguna, Tenerife (Received 14 January 2015; accepted 2 March 2015; online 14 March 2015)

The title peptide, N-benzyl­oxycarbonyl-β-glycylglycylglycine benzyl ester, C22H25N3O6, contains a non-proteinogenic amino acid residue, β-glycine, which is a homologated analogue of glycine. In the mol­ecular structure, β-glycine adopts an extended conformation with a trans conformation about its Cβ—Cα bond. The second glycine residue adopts an extended conformation while the third glycine residue adopts a helical conformation. In the crystal, three N—H⋯O hydrogen bonds, two involving the same carbonyl O atom as acceptor, results in an infinite two-dimensional network parallel to the bc plane.

1. Related literature

For comprehensive reviews on β-amino acids and β-peptides, see: Cheng et al. (2001[Cheng, R. P., Gellman, S. H. & DeGrado, W. F. (2001). Chem. Rev. 101, 3219-3232.]); Seebach et al. (2004[Seebach, D., Beck, A. K. & Bierbaum, D. J. (2004). Chem. Biodivers. 1, 1111-1239.]). For conformations and structural features of β-peptides, see: Appella et al. (1996[Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R. & Gellman, S. H. (1996). J. Am. Chem. Soc. 118, 13071-13072.], 1997[Appella, D. H., Christianson, L. A., Klein, D. A., Powell, D. R., Huang, X., Barchi, J. J. Jr & Gellman, S. H. (1997). Nature, 387, 381-384.]); Seebach & Matthews (1997[Seebach, D. & Matthews, J. L. (1997). Chem. Commun. pp. 2015-2022.]); Gellman (1998[Gellman, S. H. (1998). Acc. Chem. Res. 31, 173-180.]); Hill et al. (2001[Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3893-4012.]); Seebach et al. (1996[Seebach, D., Overhand, M., Kühnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U. & Widmer, H. (1996). Helv. Chim. Acta, 79, 913-941.], 2005[Seebach, D., Mathad, R. I., Kimmerlin, T., Mahajan, Y. R., Bindschädler, P., Rueping, M., Jaun, B., Hilty, C. & Etezady-Esfarjani, T. (2005). Helv. Chim. Acta, 88, 1969-1982.], 2006[Seebach, D., Hook, D. F. & Glättli, A. (2006). Biopolymers, 84, 23-37.]). For the conformations of hybrid peptide sequences formed of α-, β- and higher ω-amino acids, see: Banerjee & Balaram (1997[Banerjee, A. & Balaram, P. (1997). Curr. Sci. 73, 1067-1077.]); Karle et al. (1997[Karle, I. L., Pramanik, A., Banerjee, A., Bhattacharjya, S. & Balaram, P. (1997). J. Am. Chem. Soc. 119, 9087-9095.]); Gopi et al. (2002[Gopi, H. N., Roy, R. S., Raghothama, S. R., Karle, I. L. & Balaram, P. (2002). Helv. Chim. Acta, 85, 3313-3330.]); Roy & Balaram (2004[Roy, R. S. & Balaram, P. (2004). J. Pept. Res. 63, 279-289.]); Ananda et al. (2005[Ananda, K., Vasudev, P. G., Sengupta, A., Raja, K. M. P., Shamala, N. & Balaram, P. (2005). J. Am. Chem. Soc. 127, 16668-16674.]); Roy et al. (2005[Roy, R. S., Gopi, H. N., Raghothama, S., Gilardi, R. D., Karle, I. L. & Balaram, P. (2005). Biopolymers, 80, 787-799.]); Schmitt et al. (2005[Schmitt, M. A., Choi, S. H., Guzei, I. A. & Gellman, S. H. (2005). J. Am. Chem. Soc. 127, 13130-13131.], 2006[Schmitt, M. A., Choi, S. H., Guzei, I. A. & Gellman, S. H. (2006). J. Am. Chem. Soc. 128, 4538-4539.]); Sharma et al. (2009[Sharma, G. V., Babu, B. S., Ramakrishna, K. V., Nagendar, P., Kunwar, A. C., Schramm, P., Baldauf, C. & Hofmann, H. J. (2009). Chem. Eur. J. 15, 5552-5566.]); Schramm et al. (2010[Schramm, P., Sharma, G. V. & Hofmann, H. J. (2010). Biopolymers, 94, 279-291.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H25N3O6

  • Mr = 427.45

  • Monoclinic, P 21 /c

  • a = 24.713 (3) Å

  • b = 9.6794 (10) Å

  • c = 8.9445 (10) Å

  • β = 92.257 (5)°

  • V = 2137.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.4 × 0.2 × 0.04 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.746

  • 17172 measured reflections

  • 5253 independent reflections

  • 2790 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.326

  • S = 1.06

  • 5253 reflections

  • 300 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.83 (4) 2.13 (4) 2.951 (3) 169 (4)
N3—H3⋯O2ii 0.79 (5) 2.11 (5) 2.868 (3) 161 (5)
N1—H1⋯O2iii 0.76 (5) 2.20 (5) 2.959 (4) 176 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Chemical context top

Insertion of methyl­ene units to the backbone of α-amino acids generates a family of amino acids referred to as ω-amino acids (Cheng et al., 2001; Seebach et al., 2004). β-Amino acids are obtained when a single methyl­ene unit is added to the backbone of an α-amino acid. Compounds containing β-amino acids are ubiquitously found in biological systems (Seebach et al., 2004). The simplest β-amino acid, β-glycine, is a component of co-enzyme A, pantothenic acid and carnosine. β-amino acids have an additional degree of torsional freedom about the Cβ—Cα bond (θ) and this increases the conformational possibilities of peptides formed of β-amino acids.

Inter­est in β-amino acids has resulted in a considerable body of work on the conformation of polypeptides formed of β-amino acids (Seebach and Matthews, 1997; Gellman, 1998; Hill et al., 2001; Cheng et al., 2001; Seebach et al., 2004, 2005, 2006). Hybrid sequences containing α-, β- and higher ω-amino acids have also been investigated (Banerjee and Balaram, 1997; Karle et al., 1997; Gopi et al., 2002; Roy and Balaram, 2004; Ananda et al., 2005; Roy et al., 2005; Schmitt et al., 2005, 2006; Sharma et al., 2009; Schramm et al., 2010). Helical structures formed by β-peptides have been observed by several research groups (Seebach et al., 1996, 2005; Appella et al., 1996, 1997).

In case of β-amino acids, information regarding the conformational preferences can only be obtained by crystallographic characterization of synthetic peptides unlike in case of α-amino acids where such information can be gathered from the crystal structures of proteins. This paper presents the crystallographic characterization of a synthetic peptide containing a β-glycine residue.

Molecular Conformation top

The first two glycine residues of the peptide molecule adopt extended conformations while the third glycine residue adopts a helical conformation. βGly(1) adopts torsion angle values φ1 = 146.5° and ψ1 = -155.9°. Trans conformation is observed about the Cβ—Cα bond of the βGly(1) residue. Gly(2) adopts torsion angles φ2 = -61.0° and ψ2 = 151.4° while Gly(3) adopts torsion angle values φ3 = -137.2° and ψ3 = -170.4°. Since the crystal structure is that of an achiral peptide crystallized in a centrosymmetric space group, the choice of sign for torsion angles is arbitrary. There are no intra­molecular hydrogen bonds in the crystal structure.

Supra­molecular features top

An analysis of the packing of molecules in the crystal revealed the presence of three inter­molecular hydrogen bonds. Molecules related by the symmetry (-x, 1/2 + y, 1/2 - z) associate through hydrogen bonds resulting in columns of hydrogen bonded molecules extending along the crystallographic b-direction. Aggregation also occurs via inter­molecular bifurcated hydrogen bonding involving a carbonyl oxygen and two donor NH groups.

Synthesis and crystallization top

The title compound was purchased commercially. Plate-like crystals of the title compound were obtained by slow evaporation from methanol/water solution.

Refinement top

The N-bound H atoms and H-atoms bound to C2A could be located from difference Fourier maps. The remaining C-bound H atoms were fixed geometrically in calculated positions and refined as riding atoms. During refinement, H-atoms attached to aromatic rings were positioned with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) while methyl­ene H-atoms were positioned with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Related literature top

For comprehensive reviews on β-amino acids and β-peptides, see: Cheng et al. (2001); Seebach et al. (2004). For conformation and structural features of β-peptides, see: Appella et al. (1996, 1997); Seebach & Matthews (1997); Gellman (1998); Hill et al. (2001); Seebach et al. (1996, 2005, 2006). For the conformations of hybrid peptide sequences formed of α-, β- and higher ω-amino acids, see: Banerjee & Balaram (1997); Karle et al. (1997); Gopi et al. (2002); Roy & Balaram (2004); Ananda et al. (2005); Roy et al. (2005); Schmitt et al. (2005, 2006); Sharma et al. (2009); Schramm et al. (2010).

Structure description top

Insertion of methyl­ene units to the backbone of α-amino acids generates a family of amino acids referred to as ω-amino acids (Cheng et al., 2001; Seebach et al., 2004). β-Amino acids are obtained when a single methyl­ene unit is added to the backbone of an α-amino acid. Compounds containing β-amino acids are ubiquitously found in biological systems (Seebach et al., 2004). The simplest β-amino acid, β-glycine, is a component of co-enzyme A, pantothenic acid and carnosine. β-amino acids have an additional degree of torsional freedom about the Cβ—Cα bond (θ) and this increases the conformational possibilities of peptides formed of β-amino acids.

Inter­est in β-amino acids has resulted in a considerable body of work on the conformation of polypeptides formed of β-amino acids (Seebach and Matthews, 1997; Gellman, 1998; Hill et al., 2001; Cheng et al., 2001; Seebach et al., 2004, 2005, 2006). Hybrid sequences containing α-, β- and higher ω-amino acids have also been investigated (Banerjee and Balaram, 1997; Karle et al., 1997; Gopi et al., 2002; Roy and Balaram, 2004; Ananda et al., 2005; Roy et al., 2005; Schmitt et al., 2005, 2006; Sharma et al., 2009; Schramm et al., 2010). Helical structures formed by β-peptides have been observed by several research groups (Seebach et al., 1996, 2005; Appella et al., 1996, 1997).

In case of β-amino acids, information regarding the conformational preferences can only be obtained by crystallographic characterization of synthetic peptides unlike in case of α-amino acids where such information can be gathered from the crystal structures of proteins. This paper presents the crystallographic characterization of a synthetic peptide containing a β-glycine residue.

The first two glycine residues of the peptide molecule adopt extended conformations while the third glycine residue adopts a helical conformation. βGly(1) adopts torsion angle values φ1 = 146.5° and ψ1 = -155.9°. Trans conformation is observed about the Cβ—Cα bond of the βGly(1) residue. Gly(2) adopts torsion angles φ2 = -61.0° and ψ2 = 151.4° while Gly(3) adopts torsion angle values φ3 = -137.2° and ψ3 = -170.4°. Since the crystal structure is that of an achiral peptide crystallized in a centrosymmetric space group, the choice of sign for torsion angles is arbitrary. There are no intra­molecular hydrogen bonds in the crystal structure.

An analysis of the packing of molecules in the crystal revealed the presence of three inter­molecular hydrogen bonds. Molecules related by the symmetry (-x, 1/2 + y, 1/2 - z) associate through hydrogen bonds resulting in columns of hydrogen bonded molecules extending along the crystallographic b-direction. Aggregation also occurs via inter­molecular bifurcated hydrogen bonding involving a carbonyl oxygen and two donor NH groups.

For comprehensive reviews on β-amino acids and β-peptides, see: Cheng et al. (2001); Seebach et al. (2004). For conformation and structural features of β-peptides, see: Appella et al. (1996, 1997); Seebach & Matthews (1997); Gellman (1998); Hill et al. (2001); Seebach et al. (1996, 2005, 2006). For the conformations of hybrid peptide sequences formed of α-, β- and higher ω-amino acids, see: Banerjee & Balaram (1997); Karle et al. (1997); Gopi et al. (2002); Roy & Balaram (2004); Ananda et al. (2005); Roy et al. (2005); Schmitt et al. (2005, 2006); Sharma et al. (2009); Schramm et al. (2010).

Synthesis and crystallization top

The title compound was purchased commercially. Plate-like crystals of the title compound were obtained by slow evaporation from methanol/water solution.

Refinement details top

The N-bound H atoms and H-atoms bound to C2A could be located from difference Fourier maps. The remaining C-bound H atoms were fixed geometrically in calculated positions and refined as riding atoms. During refinement, H-atoms attached to aromatic rings were positioned with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) while methyl­ene H-atoms were positioned with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal Ellipsoid plot of NCbz-β Gly-Gly-Gly-Obz drawn at 50% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the packing of NCbz-βGly-Gly-Gly-Obz as viewed down the b-axis. Intermolecular hydrogen bonds are represented as dotted lines.
[Figure 3] Fig. 3. Atomic labeling and definition of backbone torsion angles in case of β-residues.
N-Benzyloxycarbonyl-β-glycylglycylglycine benzyl ester top
Crystal data top
C22H25N3O6Z = 4
Mr = 427.45F(000) = 904
Monoclinic, P21/cDx = 1.328 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 24.713 (3) ŵ = 0.10 mm1
b = 9.6794 (10) ÅT = 293 K
c = 8.9445 (10) ÅPlaty, colourless
β = 92.257 (5)°0.4 × 0.2 × 0.04 mm
V = 2137.9 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5253 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scanθmax = 29.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3232
Tmin = 0.623, Tmax = 0.746k = 1212
17172 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.326H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1714P)2 + 1.0437P]
where P = (Fo2 + 2Fc2)/3
5253 reflections(Δ/σ)max = 0.002
300 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C22H25N3O6V = 2137.9 (4) Å3
Mr = 427.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 24.713 (3) ŵ = 0.10 mm1
b = 9.6794 (10) ÅT = 293 K
c = 8.9445 (10) Å0.4 × 0.2 × 0.04 mm
β = 92.257 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5253 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2790 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.746Rint = 0.031
17172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0960 restraints
wR(F2) = 0.326H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.36 e Å3
5253 reflectionsΔρmin = 0.48 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.1225 (17)0.939 (5)0.538 (4)0.076 (13)*
H30.1457 (19)0.725 (5)0.070 (5)0.090 (14)*
H20.0217 (15)1.030 (4)0.199 (4)0.065 (10)*
H50.0956 (12)0.980 (3)0.076 (3)0.049 (8)*
H40.0636 (16)0.839 (4)0.028 (5)0.080 (11)*
O10.00828 (10)0.7312 (2)0.2548 (3)0.0649 (7)
O20.12260 (10)0.8556 (2)0.3578 (2)0.0591 (6)
N20.03006 (12)0.9470 (3)0.1942 (3)0.0547 (7)
O080.19841 (12)0.8357 (2)0.6131 (3)0.0756 (8)
C2'0.11788 (14)0.8269 (3)0.2236 (3)0.0493 (7)
N30.14819 (13)0.7339 (3)0.1580 (3)0.0570 (7)
C2A0.07814 (14)0.9016 (3)0.1194 (3)0.0513 (8)
C1'0.00243 (15)0.8557 (3)0.2570 (3)0.0556 (8)
N10.12109 (16)0.8660 (3)0.5058 (4)0.0796 (11)
O00.15371 (13)0.6498 (3)0.5322 (3)0.0879 (9)
O40.27562 (12)0.5598 (3)0.2021 (3)0.0794 (8)
C3A0.19058 (15)0.6565 (3)0.2351 (3)0.0618 (9)
H3A10.17770.56400.25580.074*
H3A20.20000.70080.32980.074*
C3'0.24000 (15)0.6480 (3)0.1422 (3)0.0576 (8)
C1A0.05199 (16)0.9118 (3)0.3264 (4)0.0690 (10)
H1A10.04381.00140.37010.083*
H1A20.08030.92440.24930.083*
O30.24681 (12)0.7125 (3)0.0322 (3)0.0932 (10)
C020.27765 (19)0.9393 (4)0.8130 (4)0.0769 (11)
H020.24290.96930.84050.092*
C410.37438 (18)0.5699 (4)0.2075 (4)0.0718 (11)
C010.28408 (18)0.8251 (4)0.7229 (4)0.0675 (10)
C070.23646 (18)0.7421 (4)0.6764 (5)0.0773 (11)
H07A0.21980.69510.76230.093*
H07B0.24790.67330.60300.093*
C0'0.15636 (17)0.7739 (3)0.5494 (4)0.0674 (10)
C050.3807 (2)0.8538 (5)0.7305 (5)0.0931 (13)
H050.41550.82530.70190.112*
C1B0.0713 (2)0.8209 (5)0.4406 (5)0.0958 (16)
H1B10.04350.81260.51960.115*
H1B20.07710.72980.39760.115*
C420.3766 (2)0.6760 (5)0.3076 (5)0.0898 (14)
H420.34550.72620.32620.108*
C470.32398 (19)0.5314 (5)0.1195 (5)0.0872 (13)
H47A0.32230.58300.02640.105*
H47B0.32510.43380.09500.105*
C040.3732 (2)0.9655 (5)0.8217 (6)0.0973 (15)
H040.40311.01240.85650.117*
C030.3215 (2)1.0095 (5)0.8629 (5)0.0915 (13)
H030.31651.08650.92410.110*
C460.4205 (2)0.4963 (5)0.1821 (6)0.0921 (13)
H460.41920.42360.11400.110*
C060.3362 (2)0.7829 (4)0.6806 (5)0.0812 (12)
H060.34120.70670.61840.097*
C440.4706 (3)0.6345 (6)0.3560 (6)0.1102 (17)
H440.50300.65630.40690.132*
C450.4691 (2)0.5289 (6)0.2569 (7)0.1087 (16)
H450.50030.47870.23910.130*
C430.4254 (3)0.7092 (6)0.3820 (6)0.1114 (19)
H430.42700.78240.44930.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0805 (17)0.0314 (10)0.0850 (16)0.0001 (10)0.0296 (13)0.0009 (10)
O20.0866 (17)0.0504 (11)0.0408 (10)0.0104 (11)0.0110 (10)0.0026 (8)
N20.0747 (19)0.0301 (11)0.0610 (14)0.0063 (12)0.0226 (13)0.0056 (10)
O080.0919 (19)0.0478 (12)0.0901 (17)0.0053 (12)0.0418 (15)0.0023 (11)
C2'0.073 (2)0.0336 (12)0.0429 (13)0.0043 (13)0.0195 (13)0.0007 (10)
N30.080 (2)0.0487 (14)0.0428 (13)0.0124 (13)0.0082 (12)0.0041 (11)
C2A0.069 (2)0.0389 (13)0.0473 (14)0.0048 (14)0.0177 (14)0.0096 (12)
C1'0.073 (2)0.0342 (13)0.0610 (16)0.0038 (14)0.0187 (15)0.0019 (12)
N10.102 (3)0.0498 (16)0.091 (2)0.0121 (17)0.053 (2)0.0010 (16)
O00.109 (2)0.0499 (14)0.107 (2)0.0084 (14)0.0342 (18)0.0139 (13)
O40.0870 (18)0.0826 (17)0.0705 (14)0.0332 (15)0.0259 (13)0.0257 (13)
C3A0.084 (2)0.0523 (17)0.0496 (15)0.0149 (17)0.0118 (15)0.0027 (13)
C3'0.076 (2)0.0447 (15)0.0525 (16)0.0003 (15)0.0087 (15)0.0006 (13)
C1A0.074 (2)0.0430 (16)0.092 (2)0.0066 (16)0.0323 (19)0.0056 (16)
O30.088 (2)0.110 (2)0.0832 (18)0.0185 (17)0.0207 (15)0.0444 (17)
C020.092 (3)0.060 (2)0.080 (2)0.000 (2)0.022 (2)0.0021 (18)
C410.095 (3)0.0567 (19)0.0655 (19)0.0159 (19)0.027 (2)0.0156 (16)
C010.087 (3)0.0499 (17)0.0670 (19)0.0021 (18)0.0212 (18)0.0065 (15)
C070.087 (3)0.0515 (18)0.095 (3)0.0002 (19)0.027 (2)0.0023 (18)
C0'0.091 (3)0.0515 (18)0.0609 (18)0.0132 (18)0.0239 (18)0.0045 (14)
C050.097 (3)0.083 (3)0.101 (3)0.002 (3)0.015 (3)0.013 (3)
C1B0.110 (4)0.081 (3)0.100 (3)0.039 (3)0.062 (3)0.032 (2)
C420.113 (4)0.071 (2)0.088 (3)0.011 (3)0.034 (3)0.003 (2)
C470.097 (3)0.095 (3)0.072 (2)0.034 (3)0.026 (2)0.008 (2)
C040.108 (4)0.073 (3)0.114 (3)0.013 (3)0.040 (3)0.011 (3)
C030.115 (4)0.065 (2)0.097 (3)0.000 (3)0.038 (3)0.009 (2)
C460.102 (4)0.069 (2)0.107 (3)0.015 (3)0.017 (3)0.008 (2)
C060.099 (3)0.064 (2)0.082 (2)0.009 (2)0.016 (2)0.0005 (19)
C440.111 (4)0.105 (4)0.116 (4)0.017 (3)0.023 (3)0.006 (3)
C450.094 (4)0.092 (3)0.140 (4)0.012 (3)0.011 (3)0.014 (3)
C430.140 (5)0.090 (3)0.108 (4)0.016 (3)0.043 (4)0.023 (3)
Geometric parameters (Å, º) top
O1—C1'1.234 (3)C02—H020.9300
O2—C2'1.234 (3)C41—C421.362 (6)
N2—C1'1.333 (4)C41—C461.371 (6)
N2—C2A1.454 (4)C41—C471.495 (6)
N2—H20.83 (4)C01—C061.389 (6)
O08—C0'1.345 (4)C01—C071.497 (5)
O08—C071.438 (4)C07—H07A0.9700
C2'—N31.323 (4)C07—H07B0.9700
C2'—C2A1.511 (5)C05—C041.362 (7)
N3—C3A1.441 (4)C05—C061.386 (6)
N3—H30.79 (5)C05—H050.9300
C2A—H50.96 (3)C1B—H1B10.9700
C2A—H41.07 (4)C1B—H1B20.9700
C1'—C1A1.496 (5)C42—C431.391 (8)
N1—C0'1.317 (5)C42—H420.9300
N1—C1B1.449 (5)C47—H47A0.9700
N1—H10.76 (4)C47—H47B0.9700
O0—C0'1.214 (4)C04—C031.384 (8)
O4—C3'1.324 (4)C04—H040.9300
O4—C471.456 (5)C03—H030.9300
C3A—C3'1.506 (5)C46—C451.388 (8)
C3A—H3A10.9700C46—H460.9300
C3A—H3A20.9700C06—H060.9300
C3'—O31.183 (4)C44—C451.352 (7)
C1A—C1B1.444 (5)C44—C431.359 (8)
C1A—H1A10.9700C44—H440.9300
C1A—H1A20.9700C45—H450.9300
C02—C031.369 (6)C43—H430.9300
C02—C011.373 (5)
C1'—N2—C2A120.7 (2)O08—C07—H07A110.2
C1'—N2—H2118 (3)C01—C07—H07A110.2
C2A—N2—H2121 (3)O08—C07—H07B110.2
C0'—O08—C07114.5 (3)C01—C07—H07B110.2
O2—C2'—N3123.5 (3)H07A—C07—H07B108.5
O2—C2'—C2A121.8 (3)O0—C0'—N1126.4 (3)
N3—C2'—C2A114.7 (2)O0—C0'—O08122.7 (4)
C2'—N3—C3A123.7 (3)N1—C0'—O08110.9 (3)
C2'—N3—H3120 (3)C04—C05—C06119.7 (5)
C3A—N3—H3116 (3)C04—C05—H05120.1
N2—C2A—C2'112.6 (2)C06—C05—H05120.1
N2—C2A—H5109.7 (18)C1A—C1B—N1114.3 (3)
C2'—C2A—H5109.6 (18)C1A—C1B—H1B1108.7
N2—C2A—H4105 (2)N1—C1B—H1B1108.7
C2'—C2A—H4113 (2)C1A—C1B—H1B2108.7
H5—C2A—H4106 (3)N1—C1B—H1B2108.7
O1—C1'—N2120.5 (3)H1B1—C1B—H1B2107.6
O1—C1'—C1A122.7 (3)C41—C42—C43120.1 (5)
N2—C1'—C1A116.8 (3)C41—C42—H42120.0
C0'—N1—C1B119.8 (3)C43—C42—H42120.0
C0'—N1—H1118 (3)O4—C47—C41111.7 (3)
C1B—N1—H1119 (3)O4—C47—H47A109.3
C3'—O4—C47117.6 (3)C41—C47—H47A109.3
N3—C3A—C3'110.8 (3)O4—C47—H47B109.3
N3—C3A—H3A1109.5C41—C47—H47B109.3
C3'—C3A—H3A1109.5H47A—C47—H47B107.9
N3—C3A—H3A2109.5C03—C04—C05120.4 (5)
C3'—C3A—H3A2109.5C03—C04—H04119.8
H3A1—C3A—H3A2108.1C05—C04—H04119.8
O3—C3'—O4124.2 (3)C04—C03—C02119.7 (4)
O3—C3'—C3A125.1 (3)C04—C03—H03120.2
O4—C3'—C3A110.7 (3)C02—C03—H03120.2
C1B—C1A—C1'111.8 (3)C41—C46—C45120.7 (5)
C1B—C1A—H1A1109.3C41—C46—H46119.7
C1'—C1A—H1A1109.3C45—C46—H46119.7
C1B—C1A—H1A2109.3C01—C06—C05120.4 (4)
C1'—C1A—H1A2109.3C01—C06—H06119.8
H1A1—C1A—H1A2107.9C05—C06—H06119.8
C03—C02—C01121.1 (5)C45—C44—C43120.8 (6)
C03—C02—H02119.5C45—C44—H44119.6
C01—C02—H02119.5C43—C44—H44119.6
C42—C41—C46119.2 (5)C44—C45—C46119.3 (6)
C42—C41—C47123.1 (4)C44—C45—H45120.3
C46—C41—C47117.6 (4)C46—C45—H45120.3
C02—C01—C06118.7 (4)C44—C43—C42119.9 (5)
C02—C01—C07121.4 (4)C44—C43—H43120.1
C06—C01—C07119.8 (3)C42—C43—H43120.1
O08—C07—C01107.7 (3)
O2—C2'—N3—C3A0.8 (5)C07—O08—C0'—O07.7 (6)
C2A—C2'—N3—C3A176.5 (3)C07—O08—C0'—N1174.6 (4)
C1'—N2—C2A—C2'61.0 (4)C1'—C1A—C1B—N1176.6 (4)
O2—C2'—C2A—N231.3 (4)C0'—N1—C1B—C1A146.5 (5)
N3—C2'—C2A—N2151.4 (3)C46—C41—C42—C430.4 (6)
C2A—N2—C1'—O11.2 (5)C47—C41—C42—C43177.8 (4)
C2A—N2—C1'—C1A177.8 (3)C3'—O4—C47—C41119.7 (4)
C2'—N3—C3A—C3'137.2 (3)C42—C41—C47—O431.4 (5)
C47—O4—C3'—O35.8 (6)C46—C41—C47—O4150.4 (4)
C47—O4—C3'—C3A175.3 (3)C06—C05—C04—C030.9 (7)
N3—C3A—C3'—O310.8 (5)C05—C04—C03—C020.8 (7)
N3—C3A—C3'—O4170.4 (3)C01—C02—C03—C040.2 (7)
O1—C1'—C1A—C1B25.1 (6)C42—C41—C46—C450.1 (7)
N2—C1'—C1A—C1B155.9 (4)C47—C41—C46—C45178.2 (4)
C03—C02—C01—C061.1 (6)C02—C01—C06—C051.0 (6)
C03—C02—C01—C07175.8 (4)C07—C01—C06—C05176.0 (4)
C0'—O08—C07—C01172.3 (3)C04—C05—C06—C010.0 (6)
C02—C01—C07—O0852.3 (5)C43—C44—C45—C460.5 (9)
C06—C01—C07—O08130.8 (4)C41—C46—C45—C440.1 (8)
C1B—N1—C0'—O05.3 (7)C45—C44—C43—C420.9 (9)
C1B—N1—C0'—O08177.1 (4)C41—C42—C43—C440.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.83 (4)2.13 (4)2.951 (3)169 (4)
N3—H3···O2ii0.79 (5)2.11 (5)2.868 (3)161 (5)
N1—H1···O2iii0.76 (5)2.20 (5)2.959 (4)176 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.83 (4)2.13 (4)2.951 (3)169 (4)
N3—H3···O2ii0.79 (5)2.11 (5)2.868 (3)161 (5)
N1—H1···O2iii0.76 (5)2.20 (5)2.959 (4)176 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+2, z+1.
 

Acknowledgements

Financial assistances from the Indian Institute of Science, Bangalore, and the Council of Scientific and Industrial Research (CSIR), India, are gratefully acknowledged. The X-ray diffraction facility at the IISc, Bangalore, is acknowledged.

References

First citationAnanda, K., Vasudev, P. G., Sengupta, A., Raja, K. M. P., Shamala, N. & Balaram, P. (2005). J. Am. Chem. Soc. 127, 16668–16674.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAppella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R. & Gellman, S. H. (1996). J. Am. Chem. Soc. 118, 13071–13072.  CSD CrossRef CAS Web of Science Google Scholar
First citationAppella, D. H., Christianson, L. A., Klein, D. A., Powell, D. R., Huang, X., Barchi, J. J. Jr & Gellman, S. H. (1997). Nature, 387, 381–384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBanerjee, A. & Balaram, P. (1997). Curr. Sci. 73, 1067–1077.  CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, R. P., Gellman, S. H. & DeGrado, W. F. (2001). Chem. Rev. 101, 3219–3232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGellman, S. H. (1998). Acc. Chem. Res. 31, 173–180.  Web of Science CrossRef CAS Google Scholar
First citationGopi, H. N., Roy, R. S., Raghothama, S. R., Karle, I. L. & Balaram, P. (2002). Helv. Chim. Acta, 85, 3313–3330.  Web of Science CSD CrossRef CAS Google Scholar
First citationHill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. (2001). Chem. Rev. 101, 3893–4012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKarle, I. L., Pramanik, A., Banerjee, A., Bhattacharjya, S. & Balaram, P. (1997). J. Am. Chem. Soc. 119, 9087–9095.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoy, R. S. & Balaram, P. (2004). J. Pept. Res. 63, 279–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoy, R. S., Gopi, H. N., Raghothama, S., Gilardi, R. D., Karle, I. L. & Balaram, P. (2005). Biopolymers, 80, 787–799.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmitt, M. A., Choi, S. H., Guzei, I. A. & Gellman, S. H. (2005). J. Am. Chem. Soc. 127, 13130–13131.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchmitt, M. A., Choi, S. H., Guzei, I. A. & Gellman, S. H. (2006). J. Am. Chem. Soc. 128, 4538–4539.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchramm, P., Sharma, G. V. & Hofmann, H. J. (2010). Biopolymers, 94, 279–291.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeebach, D., Beck, A. K. & Bierbaum, D. J. (2004). Chem. Biodivers. 1, 1111–1239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeebach, D., Hook, D. F. & Glättli, A. (2006). Biopolymers, 84, 23–37.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeebach, D., Mathad, R. I., Kimmerlin, T., Mahajan, Y. R., Bindschädler, P., Rueping, M., Jaun, B., Hilty, C. & Etezady-Esfarjani, T. (2005). Helv. Chim. Acta, 88, 1969–1982.  Web of Science CrossRef CAS Google Scholar
First citationSeebach, D. & Matthews, J. L. (1997). Chem. Commun. pp. 2015–2022.  CrossRef Web of Science Google Scholar
First citationSeebach, D., Overhand, M., Kühnle, F. N. M., Martinoni, B., Oberer, L., Hommel, U. & Widmer, H. (1996). Helv. Chim. Acta, 79, 913–941.  CSD CrossRef CAS Web of Science Google Scholar
First citationSharma, G. V., Babu, B. S., Ramakrishna, K. V., Nagendar, P., Kunwar, A. C., Schramm, P., Baldauf, C. & Hofmann, H. J. (2009). Chem. Eur. J. 15, 5552–5566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o240-o241
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds