Download citation
Download citation
link to html
Transition metal complexes containing dimethyl sulfoxide (DMSO) are important precursors in catalysis and metallodrugs. Understanding the solid-state supramolecular structure is crucial for predicting the properties and biological activity of the material. Several crystalline phases of DMSO-coordinated iridium anions with different cations, potassium (1a) and n-butyl­ammonium (1b), were obtained and their structures determined by X-ray crystallography. Compound (1a) is present in two solvatomorphic forms: α and β; the β form contains disordered solvent water. In addition, the structures exhibit different rotamers of the trans-[IrCl4(DMSO)2] anion with the trans-DMSO ligands being oriented in anti and gauche conformations. In consideration of these various conformers, the effects of the crystallized solvent and intermolecular interactions on the conformational preferences of the anion are discussed. In addition, density functional theory calculations were used to investigate the energies of the anions in the different conformations. It was found that hydrogen bonds between water and the DMSO complex stabilize the gauche conformation which is the least stable form of the trans-DMSO complex. Consequently, by controlling the number of hydrogen-bond donors and acceptors and the amount of water, it may be possible to obtain different solvatomorphs of clinically significant metallodrugs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617011490/lo5014sup1.cif
Contains datablocks 1a_alpha, 1a_beta, 1b, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617011490/lo50141a_alphasup2.hkl
Contains datablock 1a_alpha

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617011490/lo50141a_betasup3.hkl
Contains datablock 1a_beta

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617011490/lo50141bsup4.hkl
Contains datablock 1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617011490/lo50142sup5.hkl
Contains datablock 2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617011490/lo5014sup6.pdf
Supplementary figures and schemes

CCDC references: 1566729; 1566730; 1566731; 1566732

Computing details top

For all structures, data collection: COLLECT (Enraf-Nonius, 1997-2004). Cell refinement: SCALEPACK (Otwinowski & Minor 1997) for 1a_alpha, 1a_beta, (1b); 'SCALEPACK (Otwinowski & Minor 1997)' for (2). For all structures, data reduction: 'DENZO and SCALEPACK (Otwinowski & Minor 1997)'. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1986) for 1a_alpha, 1a_beta, (2); SIR2004 (Giacovazzo et al., 2004) for (1b). For all structures, program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2016); molecular graphics: C.B. Hubschle, G.M. Scheldrick, and B. Dittrich Shelxle: a Qt graphical user interface for SHELXL J. Appl. Cryst., 44 (2011) 1281–1284; software used to prepare material for publication: The pyMOL Molecular Graphics System, Version #, Schrodinger, LLC. Version 1.7.2.1.

'Potassium tetrachlorobis(dimethyl sulfoxide)iridate(III) monohydrate' (1a_alpha) top
Crystal data top
K·C4H12Cl4IrO2S2·H2OF(000) = 1032
Mr = 547.37Dx = 2.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1963 (2) ÅCell parameters from 17784 reflections
b = 7.4652 (2) Åθ = 2.9–26.0°
c = 16.4793 (4) ŵ = 10.21 mm1
β = 96.055 (1)°T = 293 K
V = 1492.03 (6) Å3Prism, orange
Z = 40.38 × 0.20 × 0.12 mm
Data collection top
KappaCCD
diffractometer
2614 independent reflections
Radiation source: Enraf Nonius FR5902582 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.061
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1414
Absorption correction: gaussian
P. Coppens, L. Leiserowitz, D Rabinovich, Acta Cryst. (1965), 18, 1035-1038
k = 88
Tmin = 0.064, Tmax = 0.292l = 1919
8722 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + 0.9117P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2614 reflectionsΔρmax = 0.70 e Å3
141 parametersΔρmin = 1.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.24218 (2)0.46664 (2)0.13709 (2)0.02112 (10)
K10.51889 (10)0.43327 (17)0.31396 (8)0.0416 (3)
Cl10.42630 (9)0.3868 (2)0.12178 (8)0.0418 (3)
Cl20.30679 (10)0.66104 (15)0.24523 (7)0.0342 (3)
Cl30.05972 (11)0.54715 (18)0.15351 (9)0.0412 (3)
Cl40.17749 (11)0.27387 (17)0.02982 (8)0.0369 (3)
S10.23376 (9)0.24668 (15)0.23463 (7)0.0268 (3)
S20.25551 (9)0.68862 (16)0.04040 (8)0.0298 (3)
O10.3396 (3)0.1670 (5)0.2671 (2)0.0413 (9)
O20.3124 (3)0.8528 (5)0.0699 (2)0.0439 (9)
O1W0.4085 (4)0.4049 (7)0.4513 (3)0.0643 (13)
H2W0.382 (2)0.466 (4)0.484 (3)0.096*
H1W0.3887 (16)0.304 (8)0.4571 (6)0.096*
C10.1427 (5)0.0713 (7)0.1990 (4)0.0399 (13)
H1A0.1700460.0139030.1530350.060*
H1B0.0708720.1199720.1828900.060*
H1C0.1381030.0146880.2418070.060*
C20.1677 (5)0.3264 (8)0.3182 (3)0.0400 (12)
H2A0.2122050.4177970.3462720.060*
H2B0.1580000.2292950.3549370.060*
H2C0.0970210.3753640.2986290.060*
C30.3208 (6)0.6107 (9)0.0441 (4)0.0586 (17)
H3A0.3973280.5881010.0271800.088*
H3B0.3145360.6998990.0862940.088*
H3C0.2860140.5020660.0644910.088*
C40.1246 (5)0.7504 (9)0.0079 (4)0.0537 (16)
H4A0.1337500.8331590.0512990.080*
H4B0.0824100.8059440.0311220.080*
H4C0.0867140.6455690.0298730.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01871 (14)0.02648 (15)0.01827 (14)0.00006 (6)0.00244 (8)0.00115 (6)
K10.0327 (6)0.0560 (7)0.0351 (7)0.0073 (5)0.0006 (5)0.0012 (5)
Cl10.0224 (6)0.0666 (9)0.0377 (8)0.0076 (6)0.0091 (5)0.0020 (6)
Cl20.0435 (7)0.0319 (6)0.0261 (7)0.0057 (5)0.0014 (5)0.0051 (5)
Cl30.0252 (7)0.0580 (9)0.0416 (9)0.0131 (5)0.0088 (6)0.0037 (6)
Cl40.0431 (7)0.0409 (7)0.0256 (7)0.0049 (5)0.0016 (5)0.0097 (5)
S10.0272 (6)0.0300 (6)0.0235 (6)0.0011 (5)0.0039 (5)0.0027 (5)
S20.0305 (6)0.0350 (6)0.0232 (7)0.0059 (5)0.0007 (5)0.0052 (5)
O10.0303 (18)0.045 (2)0.047 (2)0.0052 (15)0.0019 (16)0.0167 (17)
O20.046 (2)0.040 (2)0.044 (2)0.0151 (16)0.0049 (17)0.0073 (17)
O1W0.073 (3)0.066 (3)0.057 (3)0.014 (2)0.023 (2)0.010 (2)
C10.041 (3)0.034 (3)0.045 (4)0.007 (2)0.007 (3)0.001 (2)
C20.048 (3)0.047 (3)0.027 (3)0.006 (2)0.013 (2)0.003 (2)
C30.080 (5)0.065 (4)0.036 (4)0.003 (3)0.028 (3)0.007 (3)
C40.041 (3)0.065 (4)0.051 (4)0.003 (3)0.016 (3)0.029 (3)
Geometric parameters (Å, º) top
Ir1—S12.3077 (12)S2—O21.466 (4)
Ir1—S22.3165 (12)S2—C41.768 (5)
Ir1—Cl32.3481 (12)S2—C31.773 (6)
Ir1—Cl42.3503 (12)O1W—H2W0.80 (6)
Ir1—Cl12.3625 (11)O1W—H1W0.80 (6)
Ir1—Cl22.3678 (12)C1—H1A0.9600
K1—O2i2.725 (4)C1—H1B0.9600
K1—O1W2.762 (5)C1—H1C0.9600
K1—O1ii2.880 (4)C2—H2A0.9600
K1—O12.995 (4)C2—H2B0.9600
K1—Cl2i3.1684 (17)C2—H2C0.9600
K1—Cl23.2012 (17)C3—H3A0.9600
K1—Cl13.2665 (19)C3—H3B0.9600
K1—Cl1ii3.5891 (19)C3—H3C0.9600
S1—O11.470 (4)C4—H4A0.9600
S1—C21.770 (5)C4—H4B0.9600
S1—C11.776 (5)C4—H4C0.9600
S1—Ir1—S2178.48 (4)Cl2i—K1—K1i48.01 (3)
S1—Ir1—Cl389.40 (4)Cl2—K1—K1i104.33 (5)
S2—Ir1—Cl391.85 (5)Cl1—K1—K1i54.74 (4)
S1—Ir1—Cl492.99 (4)Cl1ii—K1—K1i166.73 (6)
S2—Ir1—Cl487.88 (4)K1ii—K1—K1i121.05 (6)
Cl3—Ir1—Cl489.79 (5)Ir1—Cl1—K196.03 (5)
S1—Ir1—Cl190.43 (4)Ir1—Cl1—K1i110.86 (5)
S2—Ir1—Cl188.31 (5)K1—Cl1—K1i77.27 (4)
Cl3—Ir1—Cl1179.46 (5)Ir1—Cl2—K1ii110.02 (5)
Cl4—Ir1—Cl190.73 (5)Ir1—Cl2—K197.65 (4)
S1—Ir1—Cl286.99 (4)K1ii—Cl2—K184.62 (3)
S2—Ir1—Cl292.14 (4)O1—S1—C2107.9 (3)
Cl3—Ir1—Cl290.04 (5)O1—S1—C1108.5 (2)
Cl4—Ir1—Cl2179.83 (4)C2—S1—C1100.7 (3)
Cl1—Ir1—Cl289.45 (5)O1—S1—Ir1116.07 (15)
O2i—K1—O1W78.73 (14)C2—S1—Ir1111.09 (19)
O2i—K1—O1ii90.82 (12)C1—S1—Ir1111.5 (2)
O1W—K1—O1ii142.61 (13)O2—S2—C4107.7 (3)
O2i—K1—O1120.75 (11)O2—S2—C3107.3 (3)
O1W—K1—O175.79 (13)C4—S2—C3101.0 (4)
O1ii—K1—O1137.68 (6)O2—S2—Ir1115.80 (16)
O2i—K1—Cl2i66.01 (8)C4—S2—Ir1111.8 (2)
O1W—K1—Cl2i127.17 (12)C3—S2—Ir1112.0 (2)
O1ii—K1—Cl2i77.97 (8)S1—O1—K1i128.5 (2)
O1—K1—Cl2i89.45 (8)S1—O1—K1114.50 (19)
O2i—K1—Cl2152.57 (9)K1i—O1—K193.71 (10)
O1W—K1—Cl283.40 (12)S2—O2—K1ii135.5 (2)
O1ii—K1—Cl290.89 (8)K1—O1W—H2W140.8
O1—K1—Cl273.77 (7)K1—O1W—H1W110.5
Cl2i—K1—Cl2140.82 (5)H2W—O1W—H1W108.0
O2i—K1—Cl1144.66 (9)S1—C1—H1A109.5
O1W—K1—Cl1129.64 (11)S1—C1—H1B109.5
O1ii—K1—Cl177.15 (8)H1A—C1—H1B109.5
O1—K1—Cl160.74 (8)S1—C1—H1C109.5
Cl2i—K1—Cl178.93 (4)H1A—C1—H1C109.5
Cl2—K1—Cl161.94 (4)H1B—C1—H1C109.5
O2i—K1—Cl1ii84.11 (8)S1—C2—H2A109.5
O1W—K1—Cl1ii85.54 (11)S1—C2—H2B109.5
O1ii—K1—Cl1ii57.53 (8)H2A—C2—H2B109.5
O1—K1—Cl1ii144.11 (8)S1—C2—H2C109.5
Cl2i—K1—Cl1ii125.86 (5)H2A—C2—H2C109.5
Cl2—K1—Cl1ii73.84 (4)H2B—C2—H2C109.5
Cl1—K1—Cl1ii114.88 (5)S2—C3—H3A109.5
O2i—K1—K1ii124.84 (9)S2—C3—H3B109.5
O1W—K1—K1ii115.68 (11)H3A—C3—H3B109.5
O1ii—K1—K1ii44.20 (8)S2—C3—H3C109.5
O1—K1—K1ii114.40 (8)H3A—C3—H3C109.5
Cl2i—K1—K1ii116.61 (6)H3B—C3—H3C109.5
Cl2—K1—K1ii47.37 (3)S2—C4—H4A109.5
Cl1—K1—K1ii66.90 (5)S2—C4—H4B109.5
Cl1ii—K1—K1ii48.00 (3)H4A—C4—H4B109.5
O2i—K1—K1i100.80 (8)S2—C4—H4C109.5
O1W—K1—K1i107.44 (11)H4A—C4—H4C109.5
O1ii—K1—K1i109.76 (9)H4B—C4—H4C109.5
O1—K1—K1i42.09 (7)
C2—S1—O1—K1i164.4 (2)Ir1—S1—O1—K146.8 (2)
C1—S1—O1—K1i56.2 (3)C4—S2—O2—K1ii158.3 (3)
Ir1—S1—O1—K1i70.2 (2)C3—S2—O2—K1ii93.7 (4)
C2—S1—O1—K178.6 (3)Ir1—S2—O2—K1ii32.3 (4)
C1—S1—O1—K1173.2 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
'Potassium tetrachlorobis(dimethyl sulfoxide)iridate(III) 0.25-hydrate' (1a_beta) top
Crystal data top
K·C4H23Cl4IrO2S2·0.25(H2O)F(000) = 1002
Mr = 533.90Dx = 2.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7530 (4) ÅCell parameters from 41415 reflections
b = 7.8356 (2) Åθ = 2.9–26.4°
c = 15.3277 (5) ŵ = 10.69 mm1
β = 111.581 (2)°T = 293 K
V = 1424.29 (8) Å3Prism, yellow
Z = 40.16 × 0.11 × 0.09 mm
Data collection top
KappaCCD
diffractometer
1781 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.104
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
Absorption correction: gaussian
P. Coppens, L. Leiserowitz, D Rabinovich, Acta Cryst. (1965), 18, 1035-1038
h = 1515
Tmin = 0.134, Tmax = 0.517k = 99
8611 measured reflectionsl = 1718
2490 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
2490 reflectionsΔρmax = 1.73 e Å3
143 parametersΔρmin = 2.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.0000000.0000000.0000000.02889 (18)
Ir20.5000000.5000000.0000000.03579 (19)
Cl10.19291 (12)0.0688 (2)0.06398 (12)0.0445 (4)
Cl20.03468 (13)0.24915 (19)0.09313 (11)0.0416 (4)
Cl30.38743 (16)0.7121 (2)0.03150 (16)0.0609 (5)
Cl40.33565 (15)0.3439 (3)0.08381 (13)0.0566 (5)
S10.02358 (14)0.1465 (2)0.12207 (11)0.0390 (4)
S20.50000 (15)0.3508 (3)0.13000 (12)0.0494 (5)
O10.0338 (5)0.3332 (6)0.1116 (4)0.0624 (15)
O20.4076 (4)0.3911 (8)0.1619 (4)0.0687 (16)
O1W0.2819 (17)0.427 (3)0.2499 (14)0.060 (5)0.25
H1W0.3268870.3473530.2637370.090*0.25
H2W0.3237760.4997010.2824870.090*0.25
C10.0881 (6)0.1045 (10)0.2297 (4)0.0496 (18)
H1A0.0715380.1555060.2801520.074*
H1B0.1568120.1518690.2281200.074*
H1C0.0965910.0165280.2393370.074*
C20.1399 (6)0.0696 (11)0.1459 (6)0.058 (2)
H2A0.2083350.0987400.0949950.087*
H2B0.1402930.1202720.2028130.087*
H2C0.1345770.0522050.1529200.087*
C30.4973 (8)0.1264 (10)0.1132 (6)0.074 (3)
H3A0.4264920.0940790.0660370.111*
H3B0.5063090.0698800.1710490.111*
H3C0.5576360.0939680.0933110.111*
C40.6276 (6)0.3763 (13)0.2269 (5)0.072 (3)
H4A0.6272350.3035740.2771580.108*
H4B0.6352100.4930010.2472670.108*
H4C0.6897350.3460760.2088190.108*
K10.18504 (14)0.4720 (2)0.03656 (13)0.0543 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0255 (3)0.0293 (3)0.0299 (3)0.00003 (12)0.0079 (2)0.00262 (12)
Ir20.0273 (3)0.0432 (3)0.0336 (3)0.00532 (13)0.0073 (2)0.00232 (13)
Cl10.0274 (8)0.0547 (11)0.0458 (10)0.0042 (7)0.0067 (7)0.0018 (8)
Cl20.0491 (9)0.0344 (9)0.0407 (9)0.0044 (7)0.0159 (7)0.0109 (7)
Cl30.0573 (11)0.0508 (11)0.0836 (14)0.0024 (9)0.0366 (11)0.0036 (9)
Cl40.0410 (10)0.0721 (13)0.0461 (10)0.0231 (9)0.0037 (8)0.0064 (9)
S10.0429 (10)0.0385 (9)0.0335 (9)0.0047 (7)0.0116 (7)0.0011 (7)
S20.0408 (10)0.0642 (13)0.0382 (10)0.0098 (8)0.0086 (8)0.0062 (8)
O10.098 (4)0.030 (3)0.051 (3)0.018 (3)0.018 (3)0.001 (2)
O20.054 (3)0.102 (5)0.056 (3)0.004 (3)0.027 (3)0.013 (3)
O1W0.056 (12)0.058 (13)0.074 (15)0.011 (11)0.033 (11)0.007 (10)
C10.051 (4)0.066 (5)0.027 (4)0.002 (4)0.010 (3)0.005 (3)
C20.048 (4)0.081 (6)0.054 (5)0.011 (4)0.028 (4)0.004 (4)
C30.092 (7)0.048 (5)0.073 (6)0.017 (4)0.019 (5)0.015 (4)
C40.048 (5)0.107 (7)0.042 (4)0.013 (4)0.006 (4)0.020 (4)
K10.0426 (10)0.0475 (9)0.0659 (12)0.0024 (7)0.0120 (9)0.0004 (7)
Geometric parameters (Å, º) top
Ir1—S1i2.3071 (17)S2—O21.466 (6)
Ir1—S12.3072 (17)S2—C41.765 (7)
Ir1—Cl12.3517 (15)S2—C31.776 (8)
Ir1—Cl1i2.3517 (15)O1—K1iv2.826 (5)
Ir1—Cl22.3622 (14)O2—K12.853 (5)
Ir1—Cl2i2.3622 (14)O1W—K13.06 (2)
Ir2—S2ii2.3101 (18)O1W—H1W0.8200
Ir2—S22.3101 (18)O1W—H2W0.8156
Ir2—Cl4ii2.3577 (16)C1—H1A0.9600
Ir2—Cl42.3577 (16)C1—H1B0.9600
Ir2—Cl3ii2.3593 (18)C1—H1C0.9600
Ir2—Cl32.3593 (18)C2—H2A0.9600
Cl1—K13.184 (2)C2—H2B0.9600
Cl2—K1iii3.229 (2)C2—H2C0.9600
Cl2—K1i3.279 (2)C3—H3A0.9600
Cl3—K13.218 (3)C3—H3B0.9600
Cl4—K13.272 (3)C3—H3C0.9600
S1—O11.472 (5)C4—H4A0.9600
S1—C21.760 (7)C4—H4B0.9600
S1—C11.770 (6)C4—H4C0.9600
S1i—Ir1—S1180.0H1A—C1—H1C109.5
S1i—Ir1—Cl191.37 (6)H1B—C1—H1C109.5
S1—Ir1—Cl188.63 (6)S1—C2—H2A109.5
S1i—Ir1—Cl1i88.63 (6)S1—C2—H2B109.5
S1—Ir1—Cl1i91.37 (6)H2A—C2—H2B109.5
Cl1—Ir1—Cl1i180.0S1—C2—H2C109.5
S1i—Ir1—Cl291.58 (6)H2A—C2—H2C109.5
S1—Ir1—Cl288.42 (6)H2B—C2—H2C109.5
Cl1—Ir1—Cl290.17 (6)S2—C3—H3A109.5
Cl1i—Ir1—Cl289.83 (6)S2—C3—H3B109.5
S1i—Ir1—Cl2i88.42 (6)H3A—C3—H3B109.5
S1—Ir1—Cl2i91.58 (6)S2—C3—H3C109.5
Cl1—Ir1—Cl2i89.83 (6)H3A—C3—H3C109.5
Cl1i—Ir1—Cl2i90.17 (6)H3B—C3—H3C109.5
Cl2—Ir1—Cl2i180.0S2—C4—H4A109.5
S2ii—Ir2—S2180.0S2—C4—H4B109.5
S2ii—Ir2—Cl4ii85.72 (6)H4A—C4—H4B109.5
S2—Ir2—Cl4ii94.28 (6)S2—C4—H4C109.5
S2ii—Ir2—Cl494.28 (6)H4A—C4—H4C109.5
S2—Ir2—Cl485.73 (6)H4B—C4—H4C109.5
Cl4ii—Ir2—Cl4180.0O1iv—K1—O2151.27 (17)
S2ii—Ir2—Cl3ii89.25 (7)O1iv—K1—O1W144.0 (4)
S2—Ir2—Cl3ii90.75 (7)O2—K1—O1W49.0 (4)
Cl4ii—Ir2—Cl3ii89.49 (7)O1iv—K1—Cl1128.41 (12)
Cl4—Ir2—Cl3ii90.51 (7)O2—K1—Cl173.47 (13)
S2ii—Ir2—Cl390.75 (7)O1W—K1—Cl176.3 (4)
S2—Ir2—Cl389.25 (7)O1iv—K1—Cl388.91 (13)
Cl4ii—Ir2—Cl390.51 (7)O2—K1—Cl362.47 (12)
Cl4—Ir2—Cl389.49 (7)O1W—K1—Cl394.7 (4)
Cl3ii—Ir2—Cl3180.0Cl1—K1—Cl3126.64 (7)
Ir1—Cl1—K1101.25 (6)O1iv—K1—Cl2v63.46 (11)
Ir1—Cl2—K1iii113.25 (7)O2—K1—Cl2v120.77 (14)
Ir1—Cl2—K1i98.36 (6)O1W—K1—Cl2v80.7 (4)
Ir2—Cl3—K198.44 (7)Cl1—K1—Cl2v128.98 (7)
Ir2—Cl4—K197.02 (7)Cl3—K1—Cl2v99.88 (6)
O1—S1—C2108.4 (4)O1iv—K1—Cl494.64 (13)
O1—S1—C1107.2 (3)O2—K1—Cl470.51 (12)
C2—S1—C1101.2 (4)O1W—K1—Cl4118.5 (4)
O1—S1—Ir1116.1 (2)Cl1—K1—Cl476.91 (6)
C2—S1—Ir1111.7 (3)Cl3—K1—Cl461.53 (6)
C1—S1—Ir1111.3 (2)Cl2v—K1—Cl4152.70 (7)
O2—S2—C4107.5 (4)O1iv—K1—Cl2i67.80 (12)
O2—S2—C3106.7 (4)O2—K1—Cl2i134.97 (14)
C4—S2—C3101.3 (4)O1W—K1—Cl2i120.3 (4)
O2—S2—Ir2115.7 (2)Cl1—K1—Cl2i61.98 (5)
C4—S2—Ir2112.1 (3)Cl3—K1—Cl2i144.17 (8)
C3—S2—Ir2112.5 (3)Cl2v—K1—Cl2i93.65 (6)
S1—O1—K1iv129.2 (3)Cl4—K1—Cl2i92.45 (6)
S2—O2—K1123.1 (3)O1iv—K1—K1iv52.97 (13)
K1—O1W—H1W109.5O2—K1—K1iv153.05 (13)
K1—O1W—H2W119.3O1W—K1—K1iv104.7 (4)
H1W—O1W—H2W97.7Cl1—K1—K1iv96.32 (6)
S1—C1—H1A109.5Cl3—K1—K1iv136.17 (7)
S1—C1—H1B109.5Cl2v—K1—K1iv47.30 (4)
H1A—C1—H1B109.5Cl4—K1—K1iv132.52 (8)
S1—C1—H1C109.5Cl2i—K1—K1iv46.35 (4)
C2—S1—O1—K1iv72.2 (5)C4—S2—O2—K1161.7 (4)
C1—S1—O1—K1iv179.4 (4)C3—S2—O2—K190.3 (4)
Ir1—S1—O1—K1iv54.3 (4)Ir2—S2—O2—K135.6 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x, y+1, z.
'N-Butylammonium tetrachlorobis(dimethyl sulfoxide)iridate(III) hemihydrate' (1b) top
Crystal data top
(C4H12Cl4IrO2S2)·(C4H12N)·0.5H2OF(000) = 2216
Mr = 573.44Dx = 2.055 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.8210 (4) ÅCell parameters from 32346 reflections
b = 10.0830 (2) Åθ = 2.9–26.7°
c = 19.5720 (5) ŵ = 8.01 mm1
β = 108.657 (2)°T = 293 K
V = 3706.01 (15) Å3Prism, yellow
Z = 80.21 × 0.12 × 0.11 mm
Data collection top
KappaCCD
diffractometer
3050 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.099
CCD rotation images, thick slices scansθmax = 25.5°, θmin = 2.9°
Absorption correction: gaussian
P. Coppens, L. Leiserowitz, D Rabinovich, Acta Cryst. (1965), 18, 1035-1038
h = 2324
Tmin = 0.263, Tmax = 0.659k = 1212
18983 measured reflectionsl = 2323
3424 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.074P)2 + 31.6594P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3424 reflectionsΔρmax = 3.53 e Å3
176 parametersΔρmin = 1.96 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.5000000.72595 (4)0.2500000.03584 (17)
Ir20.2500000.7500000.5000000.03713 (17)
Cl10.41409 (11)0.5629 (2)0.24985 (12)0.0499 (5)
Cl20.41675 (10)0.8949 (2)0.24664 (11)0.0483 (5)
Cl30.33783 (11)0.6704 (2)0.60413 (12)0.0527 (5)
Cl40.31152 (11)0.9528 (2)0.50844 (12)0.0526 (5)
S10.54364 (11)0.7253 (2)0.37442 (11)0.0407 (5)
S20.30821 (11)0.6623 (2)0.42474 (12)0.0491 (5)
O10.5205 (3)0.8386 (6)0.4091 (3)0.0526 (15)
O20.3722 (4)0.5843 (9)0.4585 (4)0.080 (2)
N10.5292 (4)0.1119 (8)0.3728 (4)0.0525 (18)
H1D0.5122980.1574830.3318860.079*
H1E0.5162680.0273370.3648620.079*
H1F0.5765490.1173680.3885690.079*
C10.5221 (5)0.5778 (9)0.4114 (5)0.056 (2)
H1A0.4713980.5715610.4000760.084*
H1B0.5440870.5788310.4628330.084*
H1C0.5392050.5029340.3915030.084*
C20.6381 (4)0.7143 (10)0.4069 (5)0.053 (2)
H2A0.6540810.7121630.4586060.080*
H2B0.6581580.7900030.3907010.080*
H2C0.6529540.6348290.3887630.080*
C30.2509 (6)0.5662 (12)0.3549 (6)0.073 (3)
H3A0.2378390.4870050.3747940.110*
H3B0.2748370.5428080.3209860.110*
H3C0.2088870.6164360.3308070.110*
C40.3303 (6)0.7883 (11)0.3718 (6)0.067 (3)
H4A0.3468310.7481300.3356550.101*
H4B0.3670810.8437600.4023060.101*
H4C0.2888730.8410520.3489940.101*
C50.5007 (5)0.1672 (13)0.4271 (5)0.067 (3)
H5A0.5105860.2615650.4320560.081*
H5B0.5239540.1256060.4733110.081*
C60.4220 (8)0.1452 (18)0.4063 (8)0.106 (5)
H6A0.4136090.0523570.3934690.127*
H6B0.4087930.1585530.4494440.127*
C70.3758 (8)0.216 (2)0.3533 (12)0.149 (9)
H7A0.3857540.1949660.3090950.178*
H7B0.3873610.3084580.3635470.178*
C80.2956 (7)0.2015 (17)0.3374 (9)0.111 (5)
H8A0.2834220.2253260.3794470.166*
H8B0.2817630.1113900.3244320.166*
H8C0.2712430.2591260.2981970.166*
O1W0.5000000.2891 (9)0.2500000.059 (2)
H1W0.5337870.3366850.2710200.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0358 (3)0.0377 (3)0.0346 (3)0.0000.01210 (18)0.000
Ir20.0322 (3)0.0383 (3)0.0397 (3)0.00194 (15)0.00987 (19)0.00591 (16)
Cl10.0486 (11)0.0480 (12)0.0542 (12)0.0130 (9)0.0178 (9)0.0001 (9)
Cl20.0463 (11)0.0498 (12)0.0508 (12)0.0102 (9)0.0182 (9)0.0033 (9)
Cl30.0447 (11)0.0582 (13)0.0484 (12)0.0040 (9)0.0053 (9)0.0114 (10)
Cl40.0524 (12)0.0447 (11)0.0598 (13)0.0146 (9)0.0168 (10)0.0051 (10)
S10.0420 (11)0.0426 (11)0.0371 (11)0.0012 (8)0.0120 (8)0.0005 (8)
S20.0443 (11)0.0552 (13)0.0510 (12)0.0041 (9)0.0199 (9)0.0054 (10)
O10.075 (4)0.046 (3)0.044 (3)0.012 (3)0.029 (3)0.004 (3)
O20.064 (4)0.111 (7)0.071 (5)0.039 (4)0.027 (4)0.018 (4)
N10.050 (4)0.055 (4)0.051 (4)0.001 (3)0.013 (3)0.005 (3)
C10.066 (6)0.054 (5)0.049 (5)0.002 (4)0.020 (4)0.012 (4)
C20.036 (4)0.073 (6)0.046 (5)0.001 (4)0.006 (4)0.002 (4)
C30.084 (7)0.071 (7)0.073 (7)0.019 (6)0.038 (6)0.018 (6)
C40.078 (7)0.074 (7)0.063 (6)0.014 (6)0.040 (5)0.003 (5)
C50.050 (5)0.100 (9)0.056 (6)0.003 (5)0.022 (4)0.010 (6)
C60.119 (12)0.120 (13)0.084 (10)0.015 (10)0.040 (9)0.008 (9)
C70.091 (13)0.23 (3)0.120 (14)0.063 (13)0.023 (10)0.009 (15)
C80.054 (7)0.139 (14)0.129 (13)0.013 (8)0.018 (8)0.034 (11)
O1W0.070 (6)0.055 (5)0.051 (5)0.0000.018 (4)0.000
Geometric parameters (Å, º) top
Ir1—S1i2.309 (2)C1—H1C0.9600
Ir1—S12.309 (2)C2—H2A0.9600
Ir1—Cl2i2.358 (2)C2—H2B0.9600
Ir1—Cl22.358 (2)C2—H2C0.9600
Ir1—Cl1i2.367 (2)C3—H3A0.9600
Ir1—Cl12.367 (2)C3—H3B0.9600
Ir2—S2ii2.317 (2)C3—H3C0.9600
Ir2—S22.317 (2)C4—H4A0.9600
Ir2—Cl32.3576 (19)C4—H4B0.9600
Ir2—Cl3ii2.3576 (19)C4—H4C0.9600
Ir2—Cl42.360 (2)C5—C61.496 (17)
Ir2—Cl4ii2.360 (2)C5—H5A0.9700
S1—O11.475 (6)C5—H5B0.9700
S1—C11.765 (9)C6—C71.34 (2)
S1—C21.777 (8)C6—H6A0.9700
S2—O21.459 (7)C6—H6B0.9700
S2—C31.762 (10)C7—C81.525 (19)
S2—C41.780 (10)C7—H7A0.9700
N1—C51.465 (12)C7—H7B0.9700
N1—H1D0.8900C8—H8A0.9600
N1—H1E0.8900C8—H8B0.9600
N1—H1F0.8900C8—H8C0.9600
C1—H1A0.9600O1W—H1W0.8197
C1—H1B0.9600O1W—H1Wi0.8196
S1i—Ir1—S1179.68 (10)S1—C1—H1B109.5
S1i—Ir1—Cl2i93.11 (7)H1A—C1—H1B109.5
S1—Ir1—Cl2i87.13 (7)S1—C1—H1C109.5
S1i—Ir1—Cl287.13 (7)H1A—C1—H1C109.5
S1—Ir1—Cl293.10 (7)H1B—C1—H1C109.5
Cl2i—Ir1—Cl287.47 (11)S1—C2—H2A109.5
S1i—Ir1—Cl1i91.49 (7)S1—C2—H2B109.5
S1—Ir1—Cl1i88.29 (7)H2A—C2—H2B109.5
Cl2i—Ir1—Cl1i90.30 (8)S1—C2—H2C109.5
Cl2—Ir1—Cl1i177.31 (8)H2A—C2—H2C109.5
S1i—Ir1—Cl188.29 (7)H2B—C2—H2C109.5
S1—Ir1—Cl191.49 (7)S2—C3—H3A109.5
Cl2i—Ir1—Cl1177.31 (7)S2—C3—H3B109.5
Cl2—Ir1—Cl190.30 (8)H3A—C3—H3B109.5
Cl1i—Ir1—Cl191.96 (11)S2—C3—H3C109.5
S2ii—Ir2—S2180.0H3A—C3—H3C109.5
S2ii—Ir2—Cl387.74 (8)H3B—C3—H3C109.5
S2—Ir2—Cl392.26 (8)S2—C4—H4A109.5
S2ii—Ir2—Cl3ii92.26 (8)S2—C4—H4B109.5
S2—Ir2—Cl3ii87.74 (8)H4A—C4—H4B109.5
Cl3—Ir2—Cl3ii180.0S2—C4—H4C109.5
S2ii—Ir2—Cl488.63 (8)H4A—C4—H4C109.5
S2—Ir2—Cl491.37 (8)H4B—C4—H4C109.5
Cl3—Ir2—Cl490.71 (8)N1—C5—C6111.0 (9)
Cl3ii—Ir2—Cl489.29 (8)N1—C5—H5A109.4
S2ii—Ir2—Cl4ii91.37 (8)C6—C5—H5A109.4
S2—Ir2—Cl4ii88.63 (8)N1—C5—H5B109.4
Cl3—Ir2—Cl4ii89.29 (8)C6—C5—H5B109.4
Cl3ii—Ir2—Cl4ii90.71 (8)H5A—C5—H5B108.0
Cl4—Ir2—Cl4ii180.0C7—C6—C5121.6 (16)
O1—S1—C1108.2 (4)C7—C6—H6A106.9
O1—S1—C2109.3 (4)C5—C6—H6A106.9
C1—S1—C299.6 (5)C7—C6—H6B106.9
O1—S1—Ir1114.6 (3)C5—C6—H6B106.9
C1—S1—Ir1112.1 (3)H6A—C6—H6B106.7
C2—S1—Ir1111.9 (3)C6—C7—C8121.1 (19)
O2—S2—C3107.8 (6)C6—C7—H7A107.0
O2—S2—C4108.0 (5)C8—C7—H7A107.0
C3—S2—C499.1 (5)C6—C7—H7B107.0
O2—S2—Ir2117.1 (3)C8—C7—H7B107.0
C3—S2—Ir2112.0 (4)H7A—C7—H7B106.8
C4—S2—Ir2111.3 (4)C7—C8—H8A109.5
C5—N1—H1D109.5C7—C8—H8B109.5
C5—N1—H1E109.5H8A—C8—H8B109.5
H1D—N1—H1E109.5C7—C8—H8C109.5
C5—N1—H1F109.5H8A—C8—H8C109.5
H1D—N1—H1F109.5H8B—C8—H8C109.5
H1E—N1—H1F109.5H1W—O1W—H1Wi108.3
S1—C1—H1A109.5
N1—C5—C6—C774 (2)C5—C6—C7—C8174.2 (16)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z+1.
Potassium tetrachlorobis(dimethylsulfoxide)iridate(III) (2) top
Crystal data top
C4H12Cl4IrKO2S2F(000) = 992
Mr = 529.36Dx = 2.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9902 (7) ÅCell parameters from 2542 reflections
b = 15.1990 (14) Åθ = 3.5–28.9°
c = 10.7569 (9) ŵ = 10.36 mm1
β = 91.425 (7)°T = 293 K
V = 1469.4 (2) Å3Needle, yellow
Z = 40.14 × 0.05 × 0.05 mm
Data collection top
Gemini
diffractometer
2582 independent reflections
Radiation source: Enhance (Mo) X-ray Source1704 reflections with I > 2σ(I)
Detector resolution: 16.1158 pixels mm-1Rint = 0.133
ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) (compiled Jan 20 2011,15:58:25) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1010
Tmin = 0.271, Tmax = 1.000k = 1816
8941 measured reflectionsl = 1211
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.183 w = 1/[σ2(Fo2) + (0.0647P)2 + 13.5359P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2582 reflectionsΔρmax = 2.94 e Å3
131 parametersΔρmin = 2.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.28570 (8)0.61353 (5)0.26792 (7)0.0329 (3)
K10.5409 (6)0.6218 (3)0.5981 (5)0.0606 (14)
Cl10.2611 (7)0.4819 (4)0.1571 (6)0.0665 (18)
Cl20.5394 (6)0.5752 (4)0.3036 (6)0.0607 (16)
Cl30.3126 (7)0.7372 (4)0.3968 (6)0.0730 (19)
Cl40.2362 (7)0.5342 (5)0.4528 (5)0.0664 (18)
S10.3560 (7)0.6945 (4)0.1060 (6)0.0652 (18)
S20.0420 (5)0.6467 (3)0.2359 (5)0.0411 (12)
O10.2424 (19)0.7464 (11)0.0400 (14)0.074 (5)
O20.0024 (16)0.7381 (9)0.2477 (13)0.056 (4)
C10.446 (5)0.6300 (19)0.005 (3)0.138 (18)
H1A0.4690980.6656000.0754640.207*
H1B0.3827270.5823320.0304710.207*
H1C0.5370070.6067490.0313300.207*
C20.502 (3)0.7701 (18)0.146 (3)0.119 (13)
H2A0.5519100.7873830.0718520.179*
H2B0.5715330.7424910.2024410.179*
H2C0.4603640.8211920.1844350.179*
C30.027 (3)0.6111 (14)0.088 (2)0.068 (7)
H3A0.1332720.6085860.0878880.102*
H3B0.0123800.5538190.0698970.102*
H3C0.0041400.6518720.0250370.102*
C40.067 (3)0.5856 (18)0.340 (3)0.093 (11)
H4A0.1628800.6132320.3467800.140*
H4B0.0183580.5836200.4198440.140*
H4C0.0804780.5268390.3085120.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.0275 (4)0.0398 (5)0.0317 (5)0.0001 (3)0.0074 (3)0.0031 (3)
K10.065 (3)0.051 (3)0.066 (3)0.004 (3)0.004 (3)0.002 (3)
Cl10.075 (4)0.051 (4)0.073 (4)0.014 (3)0.003 (3)0.023 (3)
Cl20.035 (3)0.073 (4)0.073 (4)0.008 (3)0.003 (3)0.022 (3)
Cl30.063 (4)0.076 (4)0.079 (5)0.001 (3)0.012 (4)0.031 (4)
Cl40.057 (4)0.097 (5)0.046 (3)0.003 (3)0.009 (3)0.030 (3)
S10.057 (4)0.070 (4)0.071 (4)0.015 (3)0.041 (3)0.028 (3)
S20.030 (2)0.051 (3)0.041 (3)0.004 (2)0.000 (2)0.003 (2)
O10.089 (13)0.087 (13)0.047 (10)0.029 (10)0.028 (9)0.025 (9)
O20.050 (9)0.064 (10)0.054 (9)0.036 (8)0.010 (7)0.004 (8)
C10.21 (4)0.11 (3)0.11 (3)0.08 (3)0.12 (3)0.07 (2)
C20.08 (2)0.08 (2)0.19 (4)0.046 (18)0.00 (2)0.07 (2)
C30.071 (18)0.060 (15)0.072 (17)0.018 (13)0.020 (14)0.003 (13)
C40.036 (14)0.10 (2)0.15 (3)0.008 (14)0.016 (16)0.06 (2)
Geometric parameters (Å, º) top
Ir1—S12.236 (6)S1—C21.79 (3)
Ir1—S22.266 (5)S2—O21.451 (14)
Ir1—Cl12.337 (6)S2—C41.77 (2)
Ir1—Cl32.344 (6)S2—C31.78 (2)
Ir1—Cl22.376 (5)C1—H1A0.9600
Ir1—Cl42.377 (5)C1—H1B0.9600
K1—O2i2.703 (15)C1—H1C0.9600
K1—O1i2.782 (17)C2—H2A0.9600
K1—Cl4ii3.161 (8)C2—H2B0.9600
K1—Cl23.246 (9)C2—H2C0.9600
K1—Cl2ii3.262 (8)C3—H3A0.9600
K1—Cl43.392 (8)C3—H3B0.9600
K1—Cl33.428 (8)C3—H3C0.9600
K1—Cl1ii3.515 (8)C4—H4A0.9600
S1—O11.461 (16)C4—H4B0.9600
S1—C11.76 (3)C4—H4C0.9600
S1—Ir1—S292.9 (2)Cl3—K1—K1ii92.19 (19)
S1—Ir1—Cl195.7 (3)Cl1ii—K1—K1ii93.35 (18)
S2—Ir1—Cl191.9 (2)Ir1—Cl1—K1ii87.82 (19)
S1—Ir1—Cl389.6 (3)Ir1—Cl2—K194.8 (2)
S2—Ir1—Cl389.8 (2)Ir1—Cl2—K1ii93.3 (2)
Cl1—Ir1—Cl3174.4 (2)K1—Cl2—K1ii83.08 (19)
S1—Ir1—Cl288.4 (2)Ir1—Cl3—K190.8 (2)
S2—Ir1—Cl2178.52 (19)Ir1—Cl4—K1ii95.9 (2)
Cl1—Ir1—Cl287.2 (2)Ir1—Cl4—K191.2 (2)
Cl3—Ir1—Cl291.0 (2)K1ii—Cl4—K182.29 (19)
S1—Ir1—Cl4173.2 (2)O1—S1—C1107.6 (14)
S2—Ir1—Cl492.27 (19)O1—S1—C2105.6 (12)
Cl1—Ir1—Cl488.6 (2)C1—S1—C299.9 (19)
Cl3—Ir1—Cl486.0 (3)O1—S1—Ir1117.9 (7)
Cl2—Ir1—Cl486.5 (2)C1—S1—Ir1111.4 (9)
O2i—K1—O1i70.8 (4)C2—S1—Ir1112.8 (11)
O2i—K1—Cl4ii142.7 (4)O2—S2—C4106.8 (12)
O1i—K1—Cl4ii94.7 (4)O2—S2—C3106.2 (9)
O2i—K1—Cl2139.1 (4)C4—S2—C3102.7 (14)
O1i—K1—Cl285.7 (3)O2—S2—Ir1117.8 (6)
Cl4ii—K1—Cl269.79 (18)C4—S2—Ir1109.8 (8)
O2i—K1—Cl2ii119.6 (4)C3—S2—Ir1112.4 (9)
O1i—K1—Cl2ii152.1 (4)S1—O1—K1iii137.0 (9)
Cl4ii—K1—Cl2ii60.92 (17)S2—O2—K1iii131.1 (8)
Cl2—K1—Cl2ii96.92 (19)S1—C1—H1A109.5
O2i—K1—Cl4117.2 (4)S1—C1—H1B109.5
O1i—K1—Cl4134.6 (4)H1A—C1—H1B109.5
Cl4ii—K1—Cl497.71 (19)S1—C1—H1C109.5
Cl2—K1—Cl458.74 (17)H1A—C1—H1C109.5
Cl2ii—K1—Cl466.83 (17)H1B—C1—H1C109.5
O2i—K1—Cl383.1 (4)S1—C2—H2A109.5
O1i—K1—Cl382.7 (4)S1—C2—H2B109.5
Cl4ii—K1—Cl3130.3 (2)H2A—C2—H2B109.5
Cl2—K1—Cl360.49 (17)S1—C2—H2C109.5
Cl2ii—K1—Cl3122.7 (2)H2A—C2—H2C109.5
Cl4—K1—Cl356.35 (17)H2B—C2—H2C109.5
O2i—K1—Cl1ii89.1 (4)S2—C3—H3A109.5
O1i—K1—Cl1ii99.8 (4)S2—C3—H3B109.5
Cl4ii—K1—Cl1ii58.79 (16)H3A—C3—H3B109.5
Cl2—K1—Cl1ii128.5 (2)S2—C3—H3C109.5
Cl2ii—K1—Cl1ii57.14 (16)H3A—C3—H3C109.5
Cl4—K1—Cl1ii123.9 (2)H3B—C3—H3C109.5
Cl3—K1—Cl1ii170.6 (2)S2—C4—H4A109.5
O2i—K1—K1ii160.3 (4)S2—C4—H4B109.5
O1i—K1—K1ii127.7 (4)H4A—C4—H4B109.5
Cl4ii—K1—K1ii51.16 (16)S2—C4—H4C109.5
Cl2—K1—K1ii48.63 (15)H4A—C4—H4C109.5
Cl2ii—K1—K1ii48.30 (15)H4B—C4—H4C109.5
Cl4—K1—K1ii46.55 (15)
C1—S1—O1—K1iii175.0 (17)C4—S2—O2—K1iii163.0 (13)
C2—S1—O1—K1iii69.0 (19)C3—S2—O2—K1iii53.9 (14)
Ir1—S1—O1—K1iii58.0 (17)Ir1—S2—O2—K1iii73.1 (11)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds