addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Strontium tetra­fluoro­borate. Erratum

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia
*Correspondence e-mail: evgeny.goreshnik@ijs.si

(Received 14 December 2009; accepted 16 December 2009; online 27 February 2010)

In the paper by Bunič, Tavčar, Goreshnik & Žemva [Acta Cryst. (2007[Bunič, T., Tavčar, G., Goreshnik, E. & Žemva, B. (2007). Acta Cryst. C63, i75-i76.]), C63, i75–i76], the structure reported as Sr(BF4)2 is actually that of Cd(BF4)2. The correct structure of Sr(BF4)2 is now reported.

1. Comment

This erratum is to correct the report of the crystal structure of strontium tetra­fluoro­borate (Bunič et al., 2007[Bunič, T., Tavčar, G., Goreshnik, E. & Žemva, B. (2007). Acta Cryst. C63, i75-i76.]). The investigated compound was Cd(BF4)2 and not the reported Sr(BF4)2 because of experimental error. We report here the correct structure of strontium tetra­fluoro­borate, which appears to be isomorphous with the previously published structures of Ca(BF4)2 (Jordan et al., 1975[Jordan, T. H., Dickens, B., Schroeder, L. W. & Brown, W. E. (1975). Acta Cryst. B31, 669-672.]) and Cd(BF4)2 (Tavčar & Žemva, 2005[Tavčar, G. & Žemva, B. (2005). Inorg. Chem. 44, 1525-1529.]). In the Sr(BF4)2 structure, the metal atom possesses a coordination number of eight with a square-anti­prismatic coordination polyhedron. The Sr—F distances lie in the narrow range 2.490 (4)–2.538 (4) Å, compared with Ca—F distances in the range 2.330 (2)–2.401 (2) Å in Ca(BF4)2 and Cd—F distances in the range 2.296 (2)–2.381 (3) Å in Cd(BF4)2. The Sr metal center is bonded to eight BF4 units. In turn, each anion is connected to four Sr atoms. All four F atoms in each anion act as μ2-bridges between B and Sr atoms, resulting in similar B—F bond lengths of 1.376 (7)–1.402 (7) Å.

2. Experimental

Routine crystallization of strontium tetra­fluoro­borate from different solvents usually gives crystals of various solvates. However, crystals of the anhydrous salt were grown by dissolving Sr(BF4)2·2H2O, prepared by the reaction between SrCO3 (Aldrich, 99.99%) and excess aqueous HF (Aldrich, 40%), in acetone and further very slow crystallization.

2.1.1. Crystal data
  • Sr(BF4)2

  • Mr = 261.24

  • Orthorhombic, P b c a

  • a = 9.602 (5) Å

  • b = 9.259 (5) Å

  • c = 13.890 (6) Å

  • V = 1235.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.83 mm−1

  • T = 296 K

  • 0.1 × 0.1 × 0.08 mm

2.1.2. Data collection
  • Rigaku Mercury CCD (2×2 bin mode) diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.427, Tmax = 0.504

  • 9319 measured reflections

  • 1534 independent reflections

  • 1348 reflections with I > 2σ(I)

  • Rint = 0.055

2.1.3. Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.111

  • S = 1.34

  • 1534 reflections

  • 101 parameters

  • Δρmax = 1.49 e Å−3

  • Δρmin = −0.76 e Å−3

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]) and TEXSAN (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXSAN for Windows. Version 1.06. MSC, The Woodlands, Texas, USA.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Version 1.70; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Version 1.2; Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

This erratum is to correct the report of the crystal structure of strontium tetrafluoroborate (Bunič et al.., 2007). The investigated compound was Cd(BF4)2 and not the reported Sr(BF4)2 because of experimental error. We report here the correct structure of strontium tetrafluoroborate, which appears to be isomorphous with the previously published structures of Ca(BF4)2 (Jordan et al., 1975) and Cd(BF4)2) (Tavčar & Žemva, 2005). In the Sr(BF4)2 structure, the metal atom possesses a coordination number of eight with a square-antiprismatic coordination polyhedron. The Sr—F distances lie in the narrow range 2.490 (4)–2.538 (4)Å, compared with Ca—F distances in the range 2.330 (2)–2.401 (2)Å in Ca(BF4)2 and Cd—F distances in the range 2.296 (2)–2.381 (3)Å in Cd(BF4)2. The Sr metal center is bonded to eight BF4- units. In turn, each anion is connected to four Sr atoms. All four F atoms in each anion act as µ2-bridges between B and Sr atoms, resulting in similar B—F bond lengths of 1.376 (7)–1.402 (7)Å.

Related literature top

For related literature, see: Bunič et al. (2007); Jordan et al. (1975); Tavčar & Žemva (2005).

Experimental top

Routine crystallization of strontium tetrafluoroborate from different solvents usually gives crystals of various solvates. However, crystals of the anhydrous salt were grown by dissolving Sr(BF4)2.2H2O, prepared by the reaction between SrCO3 (Aldrich, 99.99%) and excess aqueous HF (Aldrich, 40%), in acetone and further very slow crystallization.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalClear (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993) and TEXSAN (Molecular Structure Corporation, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: WinGX (Version 1.70; Farrugia, 1999) and enCIFer (Version 1.2; Allen et al., 2004).

Strontium bis(tetrafluoroborate) top
Crystal data top
Sr(BF4)2F(000) = 960
Mr = 261.24Dx = 2.81 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 3850 reflections
a = 9.602 (5) Åθ = 2.1–28.8°
b = 9.259 (5) ŵ = 8.83 mm1
c = 13.890 (6) ÅT = 296 K
V = 1235.0 (10) Å3Chunk, colourless
Z = 80.1 × 0.1 × 0.08 mm
Data collection top
Rigaku Mercury CCD (2×2 bin mode)
diffractometer
1348 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.055
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 29.1°, θmin = 2.9°
Tmin = 0.427, Tmax = 0.504h = 1212
9319 measured reflectionsk = 1212
1534 independent reflectionsl = 1318
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0304P)2 + 3.9371P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max < 0.001
wR(F2) = 0.111Δρmax = 1.49 e Å3
S = 1.34Δρmin = 0.76 e Å3
1534 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
101 parametersExtinction coefficient: 0.0060 (6)
Crystal data top
Sr(BF4)2V = 1235.0 (10) Å3
Mr = 261.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.602 (5) ŵ = 8.83 mm1
b = 9.259 (5) ÅT = 296 K
c = 13.890 (6) Å0.1 × 0.1 × 0.08 mm
Data collection top
Rigaku Mercury CCD (2×2 bin mode)
diffractometer
1534 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1348 reflections with I > 2σ(I)
Tmin = 0.427, Tmax = 0.504Rint = 0.055
9319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059101 parameters
wR(F2) = 0.1110 restraints
S = 1.34Δρmax = 1.49 e Å3
1534 reflectionsΔρmin = 0.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.53509 (5)0.78270 (6)0.39754 (4)0.0214 (2)
F20.2628 (4)0.7814 (5)0.6796 (3)0.0431 (10)
F30.6301 (4)0.4245 (4)0.6141 (2)0.0374 (9)
F40.4129 (5)0.9714 (4)0.6689 (3)0.0486 (11)
F50.4293 (4)0.7833 (5)0.5643 (3)0.0434 (10)
F60.7968 (4)0.6007 (5)0.6175 (3)0.0496 (11)
F70.8134 (4)0.4170 (5)0.5121 (3)0.0519 (11)
F80.6463 (4)0.5843 (4)0.4918 (3)0.0445 (10)
F90.4886 (4)0.7529 (4)0.7219 (3)0.0399 (9)
B100.3972 (7)0.8234 (8)0.6588 (5)0.0272 (15)
B110.7214 (7)0.5074 (7)0.5589 (5)0.0256 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0213 (3)0.0216 (3)0.0214 (4)0.0015 (2)0.0008 (2)0.0003 (2)
F20.0295 (19)0.060 (3)0.040 (2)0.0102 (18)0.0007 (17)0.0045 (19)
F30.043 (2)0.034 (2)0.035 (2)0.0143 (17)0.0036 (16)0.0031 (16)
F40.069 (3)0.031 (2)0.046 (2)0.010 (2)0.002 (2)0.0059 (18)
F50.043 (2)0.065 (3)0.022 (2)0.004 (2)0.0027 (16)0.0021 (18)
F60.045 (2)0.056 (3)0.047 (2)0.025 (2)0.0024 (19)0.008 (2)
F70.056 (2)0.051 (3)0.049 (2)0.022 (2)0.018 (2)0.001 (2)
F80.038 (2)0.042 (2)0.054 (2)0.0036 (18)0.0078 (18)0.0224 (19)
F90.043 (2)0.052 (2)0.025 (2)0.0079 (18)0.0078 (16)0.0040 (17)
B100.024 (3)0.037 (4)0.022 (4)0.002 (3)0.002 (3)0.009 (3)
B110.025 (3)0.027 (3)0.025 (4)0.002 (3)0.001 (3)0.001 (3)
Geometric parameters (Å, º) top
Sr1—F7i2.490 (4)F2—B101.378 (7)
Sr1—F3ii2.495 (4)F3—B111.395 (7)
Sr1—F82.496 (4)F4—B101.386 (8)
Sr1—F9iii2.502 (4)F5—B101.398 (8)
Sr1—F2iv2.506 (4)F6—B111.390 (8)
Sr1—F4v2.507 (4)F7—B111.379 (7)
Sr1—F52.529 (4)F8—B111.376 (7)
Sr1—F6vi2.538 (4)F9—B101.402 (7)
F7i—Sr1—F3ii142.89 (13)F9iii—Sr1—F6vi79.36 (13)
F7i—Sr1—F877.41 (14)F2iv—Sr1—F6vi148.44 (13)
F3ii—Sr1—F874.94 (13)F4v—Sr1—F6vi76.29 (16)
F7i—Sr1—F9iii142.51 (13)F5—Sr1—F6vi73.28 (13)
F3ii—Sr1—F9iii73.85 (12)B10—F2—Sr1vi142.6 (4)
F8—Sr1—F9iii119.39 (14)B11—F3—Sr1ii141.9 (4)
F7i—Sr1—F2iv83.19 (14)B10—F4—Sr1v151.9 (4)
F3ii—Sr1—F2iv110.18 (14)B10—F5—Sr1161.5 (4)
F8—Sr1—F2iv71.13 (13)B11—F6—Sr1iv133.3 (4)
F9iii—Sr1—F2iv73.00 (13)B11—F7—Sr1vii168.1 (4)
F7i—Sr1—F4v70.44 (14)B11—F8—Sr1163.7 (4)
F3ii—Sr1—F4v143.24 (14)B10—F9—Sr1viii141.6 (4)
F8—Sr1—F4v140.92 (14)F2—B10—F4111.1 (6)
F9iii—Sr1—F4v78.25 (13)F2—B10—F5109.2 (5)
F2iv—Sr1—F4v83.34 (14)F4—B10—F5109.5 (5)
F7i—Sr1—F569.41 (14)F2—B10—F9108.9 (5)
F3ii—Sr1—F578.79 (13)F4—B10—F9109.2 (5)
F8—Sr1—F572.12 (13)F5—B10—F9109.0 (5)
F9iii—Sr1—F5145.25 (13)F8—B11—F7109.3 (5)
F2iv—Sr1—F5137.93 (13)F8—B11—F6110.3 (5)
F4v—Sr1—F5114.53 (14)F7—B11—F6108.6 (5)
F7i—Sr1—F6vi111.52 (15)F8—B11—F3109.2 (5)
F3ii—Sr1—F6vi75.44 (15)F7—B11—F3109.1 (5)
F8—Sr1—F6vi137.88 (14)F6—B11—F3110.3 (5)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+1/2, y+3/2, z+1; (v) x+1, y+2, z+1; (vi) x1/2, y+3/2, z+1; (vii) x+3/2, y1/2, z; (viii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaSr(BF4)2
Mr261.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.602 (5), 9.259 (5), 13.890 (6)
V3)1235.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)8.83
Crystal size (mm)0.1 × 0.1 × 0.08
Data collection
DiffractometerRigaku Mercury CCD (2×2 bin mode)
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.427, 0.504
No. of measured, independent and
observed [I > 2σ(I)] reflections
9319, 1534, 1348
Rint0.055
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.111, 1.34
No. of reflections1534
No. of parameters101
Δρmax, Δρmin (e Å3)1.49, 0.76

Computer programs: CrystalClear (Rigaku, 1999), SIR92 (Altomare et al., 1993) and TEXSAN (Molecular Structure Corporation, 1999), SHELXL97 (Sheldrick, 2008), WinGX (Version 1.70; Farrugia, 1999) and enCIFer (Version 1.2; Allen et al., 2004).

 

Acknowledgements

The authors gratefully acknowledge Dr Stefan Adams (Department of Materials Science and Engineering, National University of Singapore), who first noted some discrepancies in the structure, erroneously entitled as strontium tetra­fluoro­borate, and to the Slovenian Research Agency (ARRS) for the financial support of the Research Program P1-0045 (Inorganic Chemistry and Technology).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBunič, T., Tavčar, G., Goreshnik, E. & Žemva, B. (2007). Acta Cryst. C63, i75–i76.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJordan, T. H., Dickens, B., Schroeder, L. W. & Brown, W. E. (1975). Acta Cryst. B31, 669–672.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMolecular Structure Corporation (1999). TEXSAN for Windows. Version 1.06. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTavčar, G. & Žemva, B. (2005). Inorg. Chem. 44, 1525–1529.  Web of Science PubMed Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds