Download citation
Download citation
link to html
In (2SR,4RS)-7-chloro-2-exo-(4-chloro­phenyl)-2,3,4,5-tetra­hy­dro-1H-1,4-epoxy-1-benzazepine, C16H13Cl2NO, (I), the mol­ecules are linked by a combination of C—H...O and C—H...N hydrogen bonds into a chain of edge-fused R33(12) rings. The isomeric compound (2S,4R)-7-chloro-2-exo-(2-chloro­phenyl)-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, (II), crystallizes as a single 2S,4R enantio­mer and the mol­ecules are linked into a three-dimensional framework structure by two C—H...O hydrogen bonds and one C—H...π(arene) hydrogen bond. The mol­ecules of (2S,4R)-7-chloro-2-exo-(1-naphthyl)-2,3,4,5-tetra­hydro-1H-1,4-epoxy-1-benzazepine, C20H16ClNO, (III), are also linked into a three-dimensional framework structure, here by one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds. The significance of this study lies in its observation of the variations in mol­ecular configuration and conformation, and in the variation in the patterns of supra­molecular aggregation, consequent upon modest changes in the peripheral substituents.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108025961/ln3112sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025961/ln3112Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025961/ln3112IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108025961/ln3112IIIsup4.hkl
Contains datablock III

CCDC references: 703740; 703741; 703742

Comment top

In a continuation of our structural study of 2-substituted 1,4-epoxy-tetrahydro-1-benzazepines (Acosta et al., 2008), itself part of a programme to identify structurally novel anti-parasitic compounds with new modes of action to combat both Trypanosoma cruzi and Leishmania chagasi parasites (Gómez et al., 2006; Yépez et al., 2006), we now report the structures of three aryl-substituted examples, compounds (I)–(III) (Figs. 1–3).

Compounds (I)–(III) were prepared by reaction of an appropriately substituted 2-allyl-N-benzylaniline or 2-allyl-N-(1-naphthylmethyl) aniline with an excess of hydrogen peroxide solution in the presence of catalytic amounts of sodium tungstate, with subsequent internal 1,3-dipolar cycloaddition of the resulting nitrones across the terminal CC bond of the pendant allylic fragment.

Compound (I) crystallizes as a racemic mixture in space group Pna21, while the positional isomers, (II) and (III), were both refined as single enantiomorphs with the R configuration at atom C4, as indicated by the Flack x parameters (Flack, 1983). Accordingly, the reference molecule for the racemic compound, (I), was selected to have the R configuration at C4. On this basis, the reference molecules in compounds (I)–(III) all have the S configuration at atom C2.

The shapes of the heterobicyclic ring systems in (I)–(III), as defined by the ring-puckering parameters (Cremer & Pople, 1975), are all very similar (Table 1). For the five-membered rings, those in (I) and (II) adopt half-chair conformations, for which the ideal puckering angle ϕ is (36k + 18)°, where k represents an integer. For the corresponding ring in (III), the conformation is intermediate between an envelope form, where the ideal value of ϕ is 36k°, and the half-chair form observed in the other examples. The conformations of the six-membered heterocyclic rings are intermediate between a half-chair form, where the idealized values of the ring-puckering angles are θ = 50.8° and ϕ = (60k + 30)°, and an envelope form, where the idealized values are θ = 54.7° and ϕ = 60k°. The values of the torsion angle N1—C2—C21—C22 in (I)–(III), which defines the orientation of the pendent aryl group [94.3 (3), -12.4 (7) and 5.9 (4)°, respectively], are almost certainly dominated by steric factors.

In compound (I), molecules related by the 21 screw axis along (1/2, 1/2, z) are linked by one each of C—H···O and C—H···N hydrogen bonds (Table 2). Acting individually, these hydrogen bonds both generate C(4) (Bernstein et al., 1995) chains and in combination they generate a chain of edge-fused R33(12) rings (Fig. 4). A C—H···π(arene) hydrogen bond is also present, but this lies within the chain and hence the dimensionality of the hydrogen-bonded structure is unaffected.

In compound (II), on the other hand, where there are again three hydrogen bonds present in the structure, now one of the C—H···O type and two of the C—H···π(arene) type, the hydrogen bonds give rise to a three-dimensional hydrogen-bonded framework. The formation of this framework is readily analysed in terms of three one-dimensional substructures, each constructed using just one hydrogen bond. The C—H···O hydrogen bond, acting alone, generates a C(6) chain running parallel to the [010] direction, linking molecules related by the 21 screw axis along (1/2, y, 1/4). The shorter of the two C—H···π(arene) hydrogen bonds, involving the fused aryl ring as acceptor, forms a chain running parallel to the [100] direction, which consists of molecules related by the 21 screw axis along (x, 1/4, 1/2). The longer of the C—H···π(arene) hydrogen bonds utilizes the pendent aryl ring as the acceptor, and it generates a chain running parallel to the [001] direction and consisting of molecules related by the 21 screw axis along (3/4, 1/2, z). The combination of the chains along [100], [010] and [001] suffices to generate a continuous three-dimensional framework structure. The crystal structure of compound (II) also contains a short intermolecular C—H···Cl contact (Table 2). However, this contact is not likely to be structurally significant, firstly because the C—H bond concerned is of low acidity, and secondly because Cl bonded to C is known to be an extremely poor acceptor of hydrogen bonds, even from O or N (Aakeröy et al., 1999; Brammer et al., 2001; Thallapally & Nangia, 2001).

As in compound (II), the structure of (III) contains one C—H···O hydrogen bond and two C—H···π(arene) hydrogen bonds and, again, these link the molecules into a three-dimensional framework. However, the detailed construction of this framework differs from that in (II), and there are two readily identified substructures in the structure of (III), one of which is one-dimensional and the other two-dimensional. The two-dimensional substructure is built from the two C—H···π(arene) interactions. The hydrogen bond in which the pendent naphthyl substituent is the acceptor generates a chain along (3/4, 1/2, z), while that having the fused aryl ring as acceptor forms a chain along (1/4, 1/2, z), and the combination of these two hydrogen bonds thus generates a sheet parallel to (010) (Fig. 5). Two sheets of this type, containing the 21 axes at y = 0 and y = 1/2, respectively, pass through each unit cell and they are linked by the one-dimensional substructure. This substructure is built using the C—H···O hydrogen bond, which links into a C(4) chain (Fig. 6) the molecules related by the 21 screw axis along (x, 3/4, 1/2). Atom C3 in the molecule at (x, y, z) acts as hydrogen-bond donor to atom O14 in the molecule at (1/2 + x, 3/2 - y, 1 - z). Since these two molecules are components of different (010) sheets, the effect of this C(4) chain is to link the sheets into a continuous three-dimensional framework structure.

Experimental top

For each of compounds (I)–(III), to a stirred solution of the appropriately substituted 2-allylaniline (0.10 mol) in methanol (40 ml) was added sodium tungstate dihydrate, Na2WO4.2H2O (5 mol%), followed by 30% aqueous hydrogen peroxide solution (0.30 mol). The resulting mixtures were then stirred at ambient temperature for periods ranging from 48 to 72 h. Each mixture was then filtered and the solvent was removed under reduced pressure. Toluene (50 ml) was added to the solid residue and the resulting solution was heated under reflux for periods ranging from 3 to 7 h. After cooling the solution to ambient temperature, the solvent was removed under reduced pressure, and the crude product was purified by chromatography on silica using heptane–ethyl acetate (compositions ranged from 10:1 to 60:1 v/v) as eluent. Crystallization from heptane gave crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction.

For (I): colourless crystals, yield 46%, m.p. 406–407 K; MS (70 eV) m/z (%): 305 (M+, 35Cl, 31), 288 (12), 276 (3), 262 (5), 164 (7), 138 (100), 125 (13), 111 (5). Analysis, found: C 63.0, H 4.5, N 4.7%; C16H13Cl2NO requires: C 62.8, H 4.3, N 4.6%.

For (II): colourless crystals, yield 50%, m.p. 440–442 K; MS (70 eV) m/z (%): 305 (M+, 35Cl, 21), 288 (7), 276 (1), 262 (1), 164 (6), 138 (100), 125 (13), 111 (4). Analysis, found: C 62.5, H 4.6, N 4.4%; C16H13Cl2NO requires: C 62.8, H 4.3, N, 4.6%.

For (III): colourless crystals, yield 60%, m.p. 469–470 K; MS (70 eV) m/z (%): 321 (M+, 35Cl, 20), 304 (10), 292 (6), 278 (6), 154 (100), 153 (75), 139 (33), 138 (35), 127 (20). Analysis, found: C 74.9, H 4.9, N 4.5%; C20H16ClNO requires: C 74.7, H 5.0, N 4.4%.

Refinement top

Unique assignments of space groups were made from the systematic absences for compounds (II) and (III), both P212121. For compound (I), the systematic absences permitted Pna21 or Pnam (= Pnma, No. 62) as possible space groups; Pna21 was selected, and confirmed by the structure analysis. All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic, heteroaromatic and alkene), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C). Compounds (II) and (III) were refined as single enantiomorphs, in each case having the R configuration at atom C4, as suggested by the values of the Flack x parameter (Flack, 1983; Flack & Bernardinelli, 1999). However, particularly for compound (II), the enantiomorph-discrimating power (Flack & Bernardinelli, 2000) is not high. The reference molecule in the racemic compound, (I), was chosen as that having the R configuration at atom C4; here the correct orientation of the structure with respect to the polar axis direction was established by means of the Flack x parameter. Compound (II) diffracted rather weakly, with only ca 49% of the reflections labelled `observed', even at 120 K.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of compound (III) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of R33(12) rings along [001]. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (III), showing the formation of a sheet parallel to (010) built from two C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (III), showing the formation of a C(4) chain along [100] built from C—H···O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted.
(I) (2SR,4RS)-7-chloro-2-exo-(4-chlorophenyl)-2,3,4,5-tetrahydro- 1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H13Cl2NOF(000) = 632
Mr = 306.17Dx = 1.487 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3116 reflections
a = 11.9348 (11) Åθ = 3.3–27.5°
b = 21.617 (2) ŵ = 0.47 mm1
c = 5.3024 (6) ÅT = 120 K
V = 1368.0 (2) Å3Plate, colourless
Z = 40.45 × 0.27 × 0.05 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3116 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 1315
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2821
Tmin = 0.817, Tmax = 0.977l = 66
12986 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.5401P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3116 reflectionsΔρmax = 0.30 e Å3
181 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), with 1380 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (9)
Crystal data top
C16H13Cl2NOV = 1368.0 (2) Å3
Mr = 306.17Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.9348 (11) ŵ = 0.47 mm1
b = 21.617 (2) ÅT = 120 K
c = 5.3024 (6) Å0.45 × 0.27 × 0.05 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2124 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.977Rint = 0.058
12986 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.30 e Å3
S = 1.05Δρmin = 0.30 e Å3
3116 reflectionsAbsolute structure: Flack (1983), with 1380 Friedel pairs
181 parametersAbsolute structure parameter: 0.09 (9)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.27978 (8)0.27881 (4)1.1092 (2)0.0470 (3)
Cl240.99300 (7)0.67574 (4)0.8265 (2)0.0371 (2)
O140.67229 (19)0.42691 (10)0.4982 (4)0.0282 (6)
N10.6336 (2)0.44608 (11)0.7431 (5)0.0251 (6)
C20.7363 (3)0.43863 (14)0.8972 (6)0.0249 (7)
C30.7892 (3)0.37935 (14)0.7898 (6)0.0272 (8)
C40.7265 (3)0.36889 (13)0.5454 (6)0.0269 (8)
C50.6345 (3)0.32047 (14)0.5617 (7)0.0304 (8)
C5a0.5464 (3)0.34263 (14)0.7425 (6)0.0266 (8)
C60.4627 (3)0.30475 (14)0.8304 (7)0.0302 (8)
C70.3858 (3)0.32706 (15)0.9998 (7)0.0305 (8)
C80.3887 (3)0.38686 (14)1.0844 (7)0.0321 (8)
C90.4708 (3)0.42498 (15)0.9935 (7)0.0299 (8)
C9a0.5490 (3)0.40341 (14)0.8243 (7)0.0255 (7)
C210.8054 (3)0.49636 (14)0.8811 (6)0.0258 (8)
C220.7931 (3)0.54124 (14)1.0647 (7)0.0282 (8)
C230.8500 (3)0.59673 (15)1.0509 (7)0.0313 (8)
C240.9209 (3)0.60655 (14)0.8503 (7)0.0282 (8)
C250.9356 (3)0.56266 (14)0.6660 (7)0.0300 (8)
C260.8784 (3)0.50758 (15)0.6819 (6)0.0280 (8)
H20.71460.43131.07700.030*
H3A0.87030.38520.75830.033*
H3B0.77890.34410.90650.033*
H40.77990.35870.40600.032*
H5A0.60110.31380.39300.036*
H5B0.66610.28070.62110.036*
H60.45800.26310.77390.036*
H80.33520.40151.20280.038*
H90.47380.46681.04780.036*
H220.74440.53371.20320.034*
H230.84040.62751.17710.038*
H250.98490.57030.52890.036*
H260.88880.47690.55560.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0446 (5)0.0307 (4)0.0658 (7)0.0058 (4)0.0225 (6)0.0055 (5)
Cl240.0320 (4)0.0306 (4)0.0486 (5)0.0033 (4)0.0055 (5)0.0011 (5)
O140.0335 (13)0.0321 (12)0.0189 (12)0.0047 (10)0.0024 (11)0.0014 (10)
N10.0312 (15)0.0267 (14)0.0174 (15)0.0026 (12)0.0025 (12)0.0021 (12)
C20.0305 (18)0.0258 (16)0.0184 (17)0.0041 (14)0.0013 (14)0.0021 (14)
C30.0336 (18)0.0227 (16)0.025 (2)0.0058 (14)0.0004 (16)0.0024 (14)
C40.0296 (17)0.0272 (17)0.024 (2)0.0055 (14)0.0040 (16)0.0043 (15)
C50.0325 (19)0.0289 (17)0.030 (2)0.0037 (15)0.0053 (16)0.0071 (16)
C5a0.0279 (18)0.0244 (16)0.0276 (19)0.0046 (14)0.0035 (15)0.0014 (14)
C60.0354 (18)0.0199 (15)0.035 (2)0.0016 (13)0.0037 (19)0.0054 (17)
C70.0323 (19)0.0255 (17)0.034 (2)0.0034 (15)0.0050 (17)0.0011 (16)
C80.0343 (19)0.0273 (17)0.035 (2)0.0074 (14)0.0090 (18)0.0000 (17)
C90.035 (2)0.0212 (17)0.033 (2)0.0045 (15)0.0028 (17)0.0009 (15)
C9a0.0269 (16)0.0234 (15)0.0261 (18)0.0033 (13)0.0029 (17)0.0009 (15)
C210.0327 (19)0.0229 (16)0.0216 (19)0.0053 (14)0.0016 (15)0.0039 (14)
C220.0318 (18)0.0320 (17)0.0206 (18)0.0034 (15)0.0025 (16)0.0008 (15)
C230.0349 (19)0.0313 (18)0.028 (2)0.0039 (15)0.0035 (17)0.0042 (15)
C240.0250 (17)0.0247 (16)0.035 (2)0.0044 (13)0.0093 (18)0.0020 (17)
C250.0337 (19)0.0277 (17)0.029 (2)0.0026 (15)0.0007 (16)0.0027 (15)
C260.0319 (19)0.0285 (17)0.0236 (19)0.0063 (15)0.0000 (16)0.0017 (15)
Geometric parameters (Å, º) top
Cl7—C71.740 (3)C5a—C9a1.384 (4)
Cl24—C241.730 (3)C6—C71.372 (5)
O14—C41.433 (4)C6—H60.95
O14—N11.439 (3)C7—C81.369 (4)
N1—C9a1.433 (4)C8—C91.368 (5)
N1—C21.482 (4)C8—H80.95
C2—C211.499 (4)C9—C9a1.377 (5)
C2—C31.538 (4)C9—H90.95
C2—H21.00C21—C221.383 (4)
C3—C41.513 (5)C21—C261.390 (5)
C3—H3A0.99C22—C231.380 (5)
C3—H3B0.99C22—H220.95
C4—C51.519 (4)C23—C241.376 (5)
C4—H41.00C23—H230.95
C5—C5a1.502 (5)C24—C251.373 (5)
C5—H5A0.99C25—C261.375 (4)
C5—H5B0.99C25—H250.95
C5a—C61.373 (4)C26—H260.95
C4—O14—N1103.8 (2)C7—C6—H6120.0
C9a—N1—O14108.2 (2)C5a—C6—H6120.0
C9a—N1—C2110.3 (2)C8—C7—C6122.0 (3)
O14—N1—C2101.6 (2)C8—C7—Cl7118.4 (3)
N1—C2—C21109.5 (2)C6—C7—Cl7119.6 (3)
N1—C2—C3103.1 (2)C9—C8—C7118.1 (3)
C21—C2—C3116.5 (3)C9—C8—H8120.9
N1—C2—H2109.2C7—C8—H8120.9
C21—C2—H2109.2C8—C9—C9a120.8 (3)
C3—C2—H2109.2C8—C9—H9119.6
C4—C3—C2103.8 (3)C9a—C9—H9119.6
C4—C3—H3A111.0C9—C9a—C5a120.7 (3)
C2—C3—H3A111.0C9—C9a—N1117.1 (3)
C4—C3—H3B111.0C5a—C9a—N1122.2 (3)
C2—C3—H3B111.0C22—C21—C26118.7 (3)
H3A—C3—H3B109.0C22—C21—C2119.0 (3)
O14—C4—C3104.0 (2)C26—C21—C2122.3 (3)
O14—C4—C5106.6 (3)C23—C22—C21121.3 (3)
C3—C4—C5114.3 (3)C23—C22—H22119.3
O14—C4—H4110.5C21—C22—H22119.3
C3—C4—H4110.5C24—C23—C22118.5 (3)
C5—C4—H4110.5C24—C23—H23120.7
C5a—C5—C4108.8 (3)C22—C23—H23120.7
C5a—C5—H5A109.9C25—C24—C23121.5 (3)
C4—C5—H5A109.9C25—C24—Cl24118.8 (3)
C5a—C5—H5B109.9C23—C24—Cl24119.7 (3)
C4—C5—H5B109.9C24—C25—C26119.4 (3)
H5A—C5—H5B108.3C24—C25—H25120.3
C6—C5a—C9a118.5 (3)C26—C25—H25120.3
C6—C5a—C5122.4 (3)C25—C26—C21120.6 (3)
C9a—C5a—C5119.1 (3)C25—C26—H26119.7
C7—C6—C5a119.9 (3)C21—C26—H26119.7
C4—O14—N1—C9a66.2 (3)C8—C9—C9a—N1178.6 (3)
C4—O14—N1—C249.9 (3)C6—C5a—C9a—C91.2 (5)
C9a—N1—C2—C21158.9 (3)C5—C5a—C9a—C9178.8 (3)
O14—N1—C2—C2186.6 (3)C6—C5a—C9a—N1179.7 (3)
C9a—N1—C2—C376.5 (3)C5—C5a—C9a—N10.3 (5)
O14—N1—C2—C338.1 (3)O14—N1—C9a—C9154.2 (3)
N1—C2—C3—C413.8 (3)C2—N1—C9a—C995.6 (3)
C21—C2—C3—C4106.1 (3)O14—N1—C9a—C5a27.2 (4)
N1—O14—C4—C340.7 (3)C2—N1—C9a—C5a83.0 (4)
N1—O14—C4—C580.5 (3)N1—C2—C21—C2294.3 (3)
C2—C3—C4—O1415.6 (3)C3—C2—C21—C22149.3 (3)
C2—C3—C4—C5100.3 (3)N1—C2—C21—C2683.0 (4)
O14—C4—C5—C5a50.5 (3)C3—C2—C21—C2633.4 (4)
C3—C4—C5—C5a63.8 (4)C26—C21—C22—C231.1 (5)
C4—C5—C5a—C6168.4 (3)C2—C21—C22—C23176.3 (3)
C4—C5—C5a—C9a11.6 (4)C21—C22—C23—C240.6 (5)
C9a—C5a—C6—C71.5 (5)C22—C23—C24—C250.1 (5)
C5—C5a—C6—C7178.5 (3)C22—C23—C24—Cl24179.7 (2)
C5a—C6—C7—C80.7 (6)C23—C24—C25—C260.0 (5)
C5a—C6—C7—Cl7179.8 (3)Cl24—C24—C25—C26179.7 (3)
C6—C7—C8—C90.5 (5)C24—C25—C26—C210.5 (5)
Cl7—C7—C8—C9178.6 (3)C22—C21—C26—C251.1 (5)
C7—C8—C9—C9a0.8 (5)C2—C21—C26—C25176.2 (3)
C8—C9—C9a—C5a0.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O14i1.002.293.287 (4)173
C9—H9···N1ii0.952.503.328 (4)145
C8—H8···Cg1ii0.952.723.615 (4)157
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1/2.
(II) (2S,4R)-7-chloro-2-exo-(2-chlorophenyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C16H13Cl2NOF(000) = 632
Mr = 306.17Dx = 1.482 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3131 reflections
a = 7.4328 (11) Åθ = 2.7–27.5°
b = 12.3746 (16) ŵ = 0.47 mm1
c = 14.9187 (19) ÅT = 120 K
V = 1372.2 (3) Å3Lath, colourless
Z = 40.27 × 0.10 × 0.07 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3131 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.147
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1614
Tmin = 0.926, Tmax = 0.968l = 1917
12048 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3131 reflectionsΔρmax = 0.38 e Å3
181 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1316 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (15)
Crystal data top
C16H13Cl2NOV = 1372.2 (3) Å3
Mr = 306.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4328 (11) ŵ = 0.47 mm1
b = 12.3746 (16) ÅT = 120 K
c = 14.9187 (19) Å0.27 × 0.10 × 0.07 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3131 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1541 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.968Rint = 0.147
12048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.153Δρmax = 0.38 e Å3
S = 1.05Δρmin = 0.48 e Å3
3131 reflectionsAbsolute structure: Flack (1983), with 1316 Friedel pairs
181 parametersAbsolute structure parameter: 0.01 (15)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.91147 (19)0.25680 (13)0.04857 (8)0.0380 (4)
Cl260.63144 (17)0.25582 (13)0.60354 (9)0.0357 (4)
O140.5843 (5)0.5547 (3)0.3685 (2)0.0350 (10)
N10.5225 (6)0.4453 (3)0.3547 (3)0.0286 (11)
C20.5803 (7)0.3925 (4)0.4394 (3)0.0271 (13)
C30.7614 (7)0.4474 (5)0.4614 (4)0.0351 (15)
C40.7677 (8)0.5423 (5)0.3987 (4)0.0359 (15)
C50.8810 (8)0.5241 (5)0.3167 (4)0.0391 (15)
C5a0.7934 (8)0.4375 (4)0.2601 (4)0.0292 (14)
C60.8795 (8)0.3929 (4)0.1873 (4)0.0297 (14)
C70.7959 (8)0.3148 (4)0.1384 (3)0.0298 (14)
C80.6297 (7)0.2757 (4)0.1590 (3)0.0278 (14)
C90.5405 (8)0.3220 (4)0.2312 (3)0.0263 (14)
C9a0.6214 (8)0.4020 (4)0.2804 (3)0.0256 (13)
C210.4438 (7)0.4070 (4)0.5123 (4)0.0254 (13)
C220.3029 (7)0.4784 (4)0.5061 (4)0.0294 (14)
C230.1792 (8)0.4895 (4)0.5747 (4)0.0317 (14)
C240.1922 (7)0.4259 (4)0.6492 (4)0.0310 (14)
C250.3322 (8)0.3542 (4)0.6575 (4)0.0287 (14)
C260.4547 (7)0.3460 (4)0.5903 (4)0.0282 (13)
H20.60030.31370.42850.032*
H3A0.76490.47150.52470.042*
H3B0.86330.39770.45030.042*
H40.80820.60860.43120.043*
H5A1.00350.50110.33440.047*
H5B0.89090.59200.28190.047*
H60.99670.41650.17130.036*
H80.57680.21890.12530.033*
H90.42290.29810.24650.032*
H220.29010.52110.45360.035*
H230.08540.54140.57000.038*
H240.10440.43130.69520.037*
H250.34330.31070.70970.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0468 (8)0.0406 (8)0.0264 (7)0.0092 (9)0.0072 (6)0.0012 (7)
Cl260.0329 (8)0.0372 (8)0.0369 (8)0.0074 (8)0.0008 (6)0.0033 (8)
O140.038 (2)0.027 (2)0.039 (2)0.0019 (19)0.008 (2)0.0034 (19)
N10.031 (3)0.024 (3)0.031 (3)0.004 (2)0.006 (2)0.001 (2)
C20.026 (3)0.030 (3)0.025 (3)0.001 (3)0.002 (3)0.000 (3)
C30.027 (3)0.049 (4)0.029 (3)0.004 (3)0.004 (3)0.008 (3)
C40.035 (4)0.027 (3)0.046 (4)0.010 (3)0.004 (3)0.009 (3)
C50.043 (4)0.037 (4)0.037 (3)0.002 (3)0.013 (3)0.008 (3)
C5a0.029 (4)0.028 (3)0.031 (3)0.004 (3)0.005 (3)0.000 (3)
C60.033 (3)0.029 (3)0.028 (3)0.001 (3)0.008 (3)0.003 (3)
C70.044 (4)0.028 (3)0.017 (3)0.006 (3)0.003 (3)0.002 (3)
C80.030 (3)0.029 (3)0.025 (3)0.000 (3)0.003 (2)0.000 (2)
C90.025 (3)0.034 (3)0.021 (3)0.001 (3)0.001 (3)0.007 (3)
C9a0.024 (3)0.029 (3)0.023 (3)0.008 (3)0.000 (3)0.001 (3)
C210.019 (3)0.026 (3)0.031 (3)0.003 (3)0.001 (3)0.005 (3)
C220.031 (3)0.026 (3)0.031 (3)0.003 (3)0.006 (3)0.002 (3)
C230.024 (3)0.032 (3)0.039 (3)0.004 (3)0.001 (3)0.005 (3)
C240.024 (3)0.036 (3)0.033 (3)0.006 (3)0.003 (3)0.003 (3)
C250.035 (4)0.027 (3)0.024 (3)0.003 (3)0.004 (3)0.002 (3)
C260.026 (3)0.026 (3)0.032 (3)0.003 (3)0.002 (3)0.002 (3)
Geometric parameters (Å, º) top
Cl7—C71.747 (6)C5a—C61.376 (7)
Cl26—C261.735 (5)C6—C71.361 (7)
O14—N11.444 (5)C6—H60.95
O14—C41.443 (7)C7—C81.362 (8)
N1—C9a1.434 (6)C8—C91.388 (7)
N1—C21.486 (7)C8—H80.95
C2—C211.498 (7)C9—C9a1.372 (7)
C2—C31.543 (7)C9—H90.95
C2—H21.00C21—C221.374 (7)
C3—C41.502 (8)C21—C261.389 (7)
C3—H3A0.99C22—C231.382 (7)
C3—H3B0.99C22—H220.95
C4—C51.502 (8)C23—C241.365 (8)
C4—H41.00C23—H230.95
C5—C5a1.511 (8)C24—C251.374 (8)
C5—H5A0.99C24—H240.95
C5—H5B0.99C25—C261.357 (8)
C5a—C9a1.385 (8)C25—H250.95
N1—O14—C4104.2 (4)C7—C6—H6120.1
C9a—N1—O14107.3 (4)C5a—C6—H6120.1
C9a—N1—C2110.2 (4)C6—C7—C8123.1 (5)
O14—N1—C2101.5 (4)C6—C7—Cl7118.6 (4)
N1—C2—C21111.7 (4)C8—C7—Cl7118.2 (4)
N1—C2—C3103.8 (4)C7—C8—C9117.5 (5)
C21—C2—C3112.6 (4)C7—C8—H8121.3
N1—C2—H2109.5C9—C8—H8121.3
C21—C2—H2109.5C8—C9—C9a120.2 (5)
C3—C2—H2109.5C8—C9—H9119.9
C4—C3—C2103.8 (5)C9a—C9—H9119.9
C4—C3—H3A111.0C5a—C9a—C9121.1 (5)
C2—C3—H3A111.0C5a—C9a—N1121.6 (5)
C4—C3—H3B111.0C9—C9a—N1117.3 (5)
C2—C3—H3B111.0C22—C21—C26116.8 (5)
H3A—C3—H3B109.0C22—C21—C2123.0 (5)
O14—C4—C3104.3 (4)C26—C21—C2120.3 (5)
O14—C4—C5107.0 (5)C21—C22—C23121.4 (5)
C3—C4—C5114.1 (5)C21—C22—H22119.3
O14—C4—H4110.4C23—C22—H22119.3
C3—C4—H4110.4C24—C23—C22119.9 (5)
C5—C4—H4110.4C24—C23—H23120.1
C4—C5—C5a108.6 (5)C22—C23—H23120.1
C4—C5—H5A110.0C23—C24—C25120.0 (5)
C5a—C5—H5A110.0C23—C24—H24120.0
C4—C5—H5B110.0C25—C24—H24120.0
C5a—C5—H5B110.0C26—C25—C24119.3 (5)
H5A—C5—H5B108.3C26—C25—H25120.3
C9a—C5a—C6118.3 (5)C24—C25—H25120.3
C9a—C5a—C5120.0 (5)C25—C26—C21122.6 (5)
C6—C5a—C5121.7 (5)C25—C26—Cl26118.1 (4)
C7—C6—C5a119.7 (5)C21—C26—Cl26119.3 (4)
C4—O14—N1—C9a67.4 (5)C5—C5a—C9a—C9178.7 (5)
C4—O14—N1—C248.2 (4)C6—C5a—C9a—N1179.4 (5)
C9a—N1—C2—C21161.2 (5)C5—C5a—C9a—N10.2 (8)
O14—N1—C2—C2185.4 (5)C8—C9—C9a—C5a0.7 (8)
C9a—N1—C2—C377.3 (5)C8—C9—C9a—N1179.3 (4)
O14—N1—C2—C336.2 (5)O14—N1—C9a—C5a28.4 (6)
N1—C2—C3—C412.2 (5)C2—N1—C9a—C5a81.2 (6)
C21—C2—C3—C4108.8 (5)O14—N1—C9a—C9153.0 (4)
N1—O14—C4—C340.5 (5)C2—N1—C9a—C997.3 (5)
N1—O14—C4—C580.7 (5)N1—C2—C21—C2212.4 (7)
C2—C3—C4—O1416.4 (5)C3—C2—C21—C22104.0 (6)
C2—C3—C4—C599.9 (5)N1—C2—C21—C26166.9 (5)
O14—C4—C5—C5a48.7 (6)C3—C2—C21—C2676.7 (7)
C3—C4—C5—C5a66.1 (6)C26—C21—C22—C230.6 (8)
C4—C5—C5a—C9a10.1 (7)C2—C21—C22—C23179.9 (5)
C4—C5—C5a—C6170.6 (5)C21—C22—C23—C242.4 (8)
C9a—C5a—C6—C71.0 (8)C22—C23—C24—C252.7 (8)
C5—C5a—C6—C7179.8 (5)C23—C24—C25—C261.3 (8)
C5a—C6—C7—C81.5 (8)C24—C25—C26—C210.5 (8)
C5a—C6—C7—Cl7178.0 (4)C24—C25—C26—Cl26179.2 (4)
C6—C7—C8—C92.9 (8)C22—C21—C26—C250.9 (8)
Cl7—C7—C8—C9179.4 (4)C2—C21—C26—C25178.5 (5)
C7—C8—C9—C9a1.7 (7)C22—C21—C26—Cl26178.9 (4)
C6—C5a—C9a—C92.0 (8)C2—C21—C26—Cl261.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O14i0.952.363.190 (6)146
C6—H6···Cg1ii0.952.823.619 (6)143
C25—H25···Cg2iii0.952.603.410 (6)143
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+1/2, z+1.
(III) (2S,4R)-7-chloro-2-exo- (1-naphthyl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C20H16ClNOF(000) = 672
Mr = 321.79Dx = 1.428 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab1Cell parameters from 3418 reflections
a = 9.6174 (18) Åθ = 2.8–27.5°
b = 11.558 (3) ŵ = 0.26 mm1
c = 13.465 (4) ÅT = 120 K
V = 1496.7 (7) Å3Needle, colourless
Z = 40.32 × 0.08 × 0.06 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3418 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.956, Tmax = 0.985l = 1617
16825 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.5441P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3418 reflectionsΔρmax = 0.30 e Å3
208 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), with 1446 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C20H16ClNOV = 1496.7 (7) Å3
Mr = 321.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.6174 (18) ŵ = 0.26 mm1
b = 11.558 (3) ÅT = 120 K
c = 13.465 (4) Å0.32 × 0.08 × 0.06 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3418 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2460 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.985Rint = 0.085
16825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.30 e Å3
S = 1.10Δρmin = 0.33 e Å3
3418 reflectionsAbsolute structure: Flack (1983), with 1446 Friedel pairs
208 parametersAbsolute structure parameter: 0.01 (9)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl70.77897 (9)0.56688 (7)0.16877 (6)0.0288 (2)
O140.3010 (2)0.69865 (19)0.49069 (17)0.0244 (5)
N10.4112 (3)0.6186 (2)0.51586 (19)0.0192 (6)
C20.4811 (3)0.6777 (3)0.5990 (2)0.0166 (7)
C30.4663 (3)0.8084 (3)0.5746 (2)0.0189 (7)
C40.3715 (3)0.8096 (3)0.4849 (2)0.0203 (7)
C50.4438 (3)0.8145 (3)0.3855 (3)0.0233 (8)
C5a0.5172 (3)0.7021 (3)0.3653 (2)0.0190 (7)
C60.6011 (3)0.6863 (3)0.2831 (2)0.0193 (7)
C70.6704 (3)0.5841 (3)0.2712 (2)0.0203 (7)
C80.6616 (3)0.4950 (3)0.3378 (2)0.0195 (7)
C90.5733 (3)0.5086 (3)0.4179 (2)0.0191 (7)
C9a0.5030 (3)0.6111 (3)0.4312 (2)0.0170 (7)
C210.4203 (3)0.6408 (3)0.6970 (2)0.0182 (7)
C220.3068 (3)0.5707 (3)0.7003 (2)0.0213 (7)
C230.2545 (4)0.5310 (3)0.7913 (3)0.0277 (8)
C240.3160 (3)0.5607 (3)0.8776 (3)0.0281 (8)
C250.4338 (3)0.6327 (3)0.8783 (2)0.0227 (8)
C260.5013 (4)0.6636 (3)0.9654 (3)0.0313 (9)
C270.6128 (4)0.7343 (3)0.9656 (3)0.0352 (10)
C280.6630 (4)0.7791 (3)0.8762 (3)0.0276 (8)
C290.6016 (3)0.7507 (3)0.7888 (3)0.0218 (7)
C300.4858 (3)0.6751 (3)0.7867 (2)0.0212 (7)
H20.58200.65680.59800.020*
H3A0.42420.85090.63090.023*
H3B0.55770.84310.55880.023*
H40.30270.87410.49060.024*
H5A0.37470.82950.33250.028*
H5B0.51200.87870.38530.028*
H60.61040.74620.23520.023*
H80.71440.42620.32930.023*
H90.56110.44700.46380.023*
H220.26250.54830.64030.026*
H230.17460.48260.79220.033*
H240.27940.53260.93850.034*
H260.46800.63401.02680.038*
H270.65710.75371.02640.042*
H280.74070.82990.87660.033*
H290.63660.78190.72850.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl70.0327 (4)0.0275 (4)0.0262 (4)0.0024 (4)0.0093 (4)0.0047 (4)
O140.0132 (11)0.0294 (12)0.0308 (13)0.0018 (10)0.0031 (10)0.0015 (10)
N10.0146 (13)0.0217 (14)0.0213 (14)0.0005 (11)0.0016 (12)0.0011 (11)
C20.0130 (15)0.0185 (17)0.0182 (16)0.0009 (13)0.0013 (13)0.0006 (13)
C30.0139 (15)0.0147 (15)0.0279 (18)0.0005 (13)0.0030 (13)0.0011 (14)
C40.0131 (15)0.0201 (16)0.0276 (19)0.0053 (13)0.0013 (13)0.0007 (14)
C50.0220 (17)0.0227 (18)0.0252 (18)0.0046 (15)0.0049 (15)0.0017 (14)
C5a0.0149 (15)0.0190 (16)0.0231 (18)0.0018 (13)0.0069 (13)0.0006 (13)
C60.0229 (16)0.0186 (15)0.0163 (16)0.0041 (14)0.0045 (14)0.0019 (13)
C70.0200 (16)0.0244 (18)0.0164 (15)0.0050 (14)0.0013 (13)0.0035 (14)
C80.0192 (15)0.0185 (15)0.0207 (16)0.0018 (13)0.0023 (15)0.0034 (14)
C90.0213 (17)0.0168 (16)0.0193 (17)0.0053 (13)0.0065 (14)0.0006 (13)
C9a0.0128 (15)0.0217 (17)0.0166 (16)0.0018 (13)0.0056 (13)0.0020 (12)
C210.0175 (16)0.0163 (15)0.0206 (17)0.0040 (13)0.0013 (14)0.0002 (13)
C220.0157 (16)0.0189 (14)0.0293 (17)0.0025 (14)0.0060 (13)0.0025 (14)
C230.0244 (19)0.0233 (17)0.035 (2)0.0020 (14)0.0132 (16)0.0044 (14)
C240.035 (2)0.0215 (17)0.0275 (18)0.0068 (17)0.0141 (16)0.0025 (16)
C250.0318 (19)0.0142 (16)0.0222 (17)0.0071 (15)0.0055 (16)0.0006 (14)
C260.046 (2)0.025 (2)0.0221 (19)0.0102 (18)0.0056 (18)0.0037 (15)
C270.051 (3)0.025 (2)0.029 (2)0.0088 (18)0.007 (2)0.0045 (16)
C280.0324 (19)0.0228 (18)0.0276 (19)0.0015 (15)0.0055 (17)0.0019 (15)
C290.0237 (18)0.0209 (16)0.0208 (18)0.0041 (14)0.0013 (16)0.0006 (14)
C300.0232 (16)0.0159 (16)0.0246 (18)0.0065 (14)0.0002 (15)0.0009 (14)
Geometric parameters (Å, º) top
Cl7—C71.742 (3)C8—H80.95
O14—N11.447 (3)C9—C9a1.376 (4)
O14—C41.453 (4)C9—H90.95
N1—C9a1.444 (4)C21—C221.360 (4)
N1—C21.473 (4)C21—C301.419 (5)
C2—C211.505 (4)C22—C231.401 (4)
C2—C31.552 (4)C22—H220.95
C2—H21.00C23—C241.348 (5)
C3—C41.513 (4)C23—H230.95
C3—H3A0.99C24—C251.405 (5)
C3—H3B0.99C24—H240.95
C4—C51.510 (5)C25—C261.388 (5)
C4—H41.00C25—C301.419 (4)
C5—C5a1.504 (5)C26—C271.348 (6)
C5—H5A0.99C26—H260.95
C5—H5B0.99C27—C281.396 (5)
C5a—C61.382 (5)C27—H270.95
C5a—C9a1.383 (4)C28—C291.357 (5)
C6—C71.366 (4)C28—H280.95
C6—H60.95C29—C301.416 (5)
C7—C81.368 (4)C29—H290.95
C8—C91.382 (4)
N1—O14—C4103.6 (2)C7—C8—H8121.2
C9a—N1—O14107.6 (2)C9—C8—H8121.2
C9a—N1—C2110.4 (2)C9a—C9—C8120.1 (3)
O14—N1—C2102.5 (2)C9a—C9—H9119.9
N1—C2—C21111.0 (2)C8—C9—H9119.9
N1—C2—C3104.4 (2)C9—C9a—C5a121.5 (3)
C21—C2—C3115.2 (3)C9—C9a—N1117.1 (3)
N1—C2—H2108.7C5a—C9a—N1121.4 (3)
C21—C2—H2108.7C22—C21—C30119.6 (3)
C3—C2—H2108.7C22—C21—C2120.7 (3)
C4—C3—C2103.5 (3)C30—C21—C2119.6 (3)
C4—C3—H3A111.1C21—C22—C23120.8 (3)
C2—C3—H3A111.1C21—C22—H22119.6
C4—C3—H3B111.1C23—C22—H22119.6
C2—C3—H3B111.1C24—C23—C22120.8 (3)
H3A—C3—H3B109.0C24—C23—H23119.6
O14—C4—C5107.2 (3)C22—C23—H23119.6
O14—C4—C3103.3 (2)C23—C24—C25120.7 (3)
C5—C4—C3115.5 (2)C23—C24—H24119.6
O14—C4—H4110.2C25—C24—H24119.6
C5—C4—H4110.2C26—C25—C24122.4 (3)
C3—C4—H4110.2C26—C25—C30118.8 (3)
C5a—C5—C4110.1 (3)C24—C25—C30118.9 (3)
C5a—C5—H5A109.6C27—C26—C25122.0 (4)
C4—C5—H5A109.6C27—C26—H26119.0
C5a—C5—H5B109.6C25—C26—H26119.0
C4—C5—H5B109.6C26—C27—C28119.9 (4)
H5A—C5—H5B108.2C26—C27—H27120.1
C6—C5a—C9a118.1 (3)C28—C27—H27120.1
C6—C5a—C5122.2 (3)C29—C28—C27120.5 (3)
C9a—C5a—C5119.7 (3)C29—C28—H28119.8
C7—C6—C5a119.5 (3)C27—C28—H28119.8
C7—C6—H6120.3C28—C29—C30120.6 (3)
C5a—C6—H6120.3C28—C29—H29119.7
C6—C7—C8123.0 (3)C30—C29—H29119.7
C6—C7—Cl7119.0 (2)C29—C30—C25118.2 (3)
C8—C7—Cl7118.0 (2)C29—C30—C21122.6 (3)
C7—C8—C9117.6 (3)C25—C30—C21119.1 (3)
C4—O14—N1—C9a68.2 (3)O14—N1—C9a—C9151.0 (3)
C4—O14—N1—C248.3 (3)C2—N1—C9a—C997.9 (3)
C9a—N1—C2—C21154.1 (3)O14—N1—C9a—C5a27.7 (4)
O14—N1—C2—C2191.5 (3)C2—N1—C9a—C5a83.4 (3)
C9a—N1—C2—C381.2 (3)N1—C2—C21—C225.9 (4)
O14—N1—C2—C333.1 (3)C3—C2—C21—C22112.4 (3)
N1—C2—C3—C47.1 (3)N1—C2—C21—C30171.1 (3)
C21—C2—C3—C4114.8 (3)C3—C2—C21—C3070.6 (4)
N1—O14—C4—C579.1 (3)C30—C21—C22—C230.5 (4)
N1—O14—C4—C343.3 (3)C2—C21—C22—C23176.5 (3)
C2—C3—C4—O1421.4 (3)C21—C22—C23—C240.5 (5)
C2—C3—C4—C595.4 (3)C22—C23—C24—C250.4 (5)
O14—C4—C5—C5a44.9 (3)C23—C24—C25—C26178.9 (3)
C3—C4—C5—C5a69.6 (4)C23—C24—C25—C300.8 (5)
C4—C5—C5a—C6174.7 (3)C24—C25—C26—C27178.8 (3)
C4—C5—C5a—C9a4.4 (4)C30—C25—C26—C271.4 (5)
C9a—C5a—C6—C72.2 (4)C25—C26—C27—C280.3 (5)
C5—C5a—C6—C7176.9 (3)C26—C27—C28—C290.9 (5)
C5a—C6—C7—C80.3 (5)C27—C28—C29—C300.1 (5)
C5a—C6—C7—Cl7178.4 (2)C28—C29—C30—C251.7 (5)
C6—C7—C8—C93.0 (5)C28—C29—C30—C21178.5 (3)
Cl7—C7—C8—C9178.9 (2)C26—C25—C30—C292.4 (5)
C7—C8—C9—C9a3.1 (4)C24—C25—C30—C29177.9 (3)
C8—C9—C9a—C5a0.6 (5)C26—C25—C30—C21177.9 (3)
C8—C9—C9a—N1179.3 (3)C24—C25—C30—C211.9 (4)
C6—C5a—C9a—C92.1 (4)C22—C21—C30—C29178.0 (3)
C5—C5a—C9a—C9177.0 (3)C2—C21—C30—C295.0 (4)
C6—C5a—C9a—N1176.5 (3)C22—C21—C30—C251.7 (4)
C5—C5a—C9a—N14.4 (4)C2—C21—C30—C25175.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O14i0.992.483.338 (4)145
C8—H8···Cg3ii0.952.813.658 (4)149
C23—H23···Cg2iii0.952.803.702 (4)158
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+3/2, y+1, z1/2; (iii) x+1/2, y+1, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC16H13Cl2NOC16H13Cl2NOC20H16ClNO
Mr306.17306.17321.79
Crystal system, space groupOrthorhombic, Pna21Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)120120120
a, b, c (Å)11.9348 (11), 21.617 (2), 5.3024 (6)7.4328 (11), 12.3746 (16), 14.9187 (19)9.6174 (18), 11.558 (3), 13.465 (4)
V3)1368.0 (2)1372.2 (3)1496.7 (7)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.470.470.26
Crystal size (mm)0.45 × 0.27 × 0.050.27 × 0.10 × 0.070.32 × 0.08 × 0.06
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.817, 0.9770.926, 0.9680.956, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
12986, 3116, 2124 12048, 3131, 1541 16825, 3418, 2460
Rint0.0580.1470.085
(sin θ/λ)max1)0.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.104, 1.05 0.061, 0.153, 1.05 0.054, 0.114, 1.10
No. of reflections311631313418
No. of parameters181181208
No. of restraints100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.300.38, 0.480.30, 0.33
Absolute structureFlack (1983), with 1380 Friedel pairsFlack (1983), with 1316 Friedel pairsFlack (1983), with 1446 Friedel pairs
Absolute structure parameter0.09 (9)0.01 (15)0.01 (9)

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Ring-puckering parameters (Å, °) for compounds (I)–(III) top
CompoundFive-membered ringSix-membered ring
Q2ϕ2Qθϕ
(I)0.447 (3)197.4 (4)0.618 (3)51.0 (3)341.9 (4)
(II)0.436 (6)195.7 (8)0.620 (5)51.3 (5)344.5 (7)
(III)0.440 (3)188.7 (4)0.630 (3)54.7 (3)347.5 (4)
Puckering parameters for five-membered rings are defined for the atom sequence O14/N1/C2/C3/C4. Puckering parameters for six-membered rings are defined for the atom sequence O14/N1/C9a/C5a/C5/C4.
Parameters (Å, °) for hydrogen bonds and short intermolecular contacts in compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C2—H2···O14i1.002.293.287 (4)173
C9—H9···N1ii0.952.503.328 (4)145
C8—H8···Cg1ii0.952.723.615 (4)157
(II)C8—H8···O14iii0.952.363.190 (6)146
C6—H6···Cg1iv0.952.823.619 (6)143
C25—H25···Cg2v0.952.603.410 (6)143
C4—H4···Cl7vi1.002.793.654 (6)145
(III)C3—H3B···O14vii0.992.483.338 (4)145
C8—H8···Cg3iv0.952.813.658 (4)149
C23—H23···Cg2viii0.952.803.702 (4)158
Cg1, Cg2 and Cg3 represent the centroids of the rings C21–C26, C5a/C6–C9/C9a and C25–C30.

Symmetry codes: (i) x, y, 1 + z; (ii) 1 - x, 1 - y, 1/2 + z; (iii) 1 - x, -1/2 + y, 1/2 - z; (iv) 3/2 - x, 1 - y, -1/2 + z; (v) -1/2 + x, 1/2 - y, 1 - z; (vi) 2 - x, 1/2 + y, 1/2 - z; (vii) 1/2 + x, 3/2 - y, 1 - z; (viii) 1/2 - x, 1 - y, 1/2 + z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds