Download citation
Download citation
link to html
The crystal structure of (2,2′-diazenediyldiphenolato-κ3O,N,O′)dimethyl­silicon, C14H14N2O2Si, determined at four temperatures, reveals a dynamic disorder as a result of a flipping of the orientation of the C—N=N—C unit. The population of the two conformers in the single crystal depends on the temperature and cooling rate. It is possible to minimize the disorder by cooling the crystal slowly.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108016193/ln3102sup1.cif
Contains datablocks II_298K, II_153K, II_93K_flash_cooled, II_93K_slow_cooled, glonal

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016193/ln3102II_298Ksup2.hkl
Contains datablock II_298K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016193/ln3102II_153Ksup3.hkl
Contains datablock II_153K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016193/ln3102II_93K_flash_cooledsup4.hkl
Contains datablock II_93K_flash_cooled

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108016193/ln3102II_93K_slow_cooledsup5.hkl
Contains datablock II_93K_slow_cooled

CCDC references: 697571; 697572; 697573; 697574

Comment top

The chemistry of hypercoordinate silicon complexes is currently one of the main research areas in silicon chemistry (Chuit et al., 1993; Corriu & Young, 1989; Holmes, 1996; Kost & Kalikhman, 1998, 2004; Pestunovich et al., 1998; Tacke et al., 1999). During our work on penta- and hexacoordinate silicon complexes with tridentate O,N,O-ligands (Böhme et al., 2006; Böhme & Günther, 2007; Böhme & Foehn, 2007), we used 2,2'-dihydroxyazobenzene, (I), as a potential ligand molecule. The reaction of (I) with dichlorodimethylsilane in the presence of triethylamine in tetrahydrofuran (THF) yields, after workup, a red crystalline product. The X-ray crystal structure analysis of a suitable crystal at room temperature verified the formation of the title pentacoordinate silicon complex, (II) (Fig. 1).

In (II), the Si atom is bound to the C atoms of the methyl groups (atoms C13 and C14) and to the two O atoms and one of the N atoms of the 2,2'-dioxoazobenzene moiety. There is disorder in the structure as a result of a flipping of the orientation of the C—NN—C unit. Essentially, the 2,2'-dioxoazobenzene moiety is superimposed on a mirror image of itself in the plane bisecting the C1···C7 line (Fig. 1). Thus, all atoms of the 2,2'-dioxoazobenzene moiety are expected to be disordered, but only the N and O atoms could be modelled successfully as disordered (see Experimental section). The occupancy of the minor conformation is 17.4 (3)%. An attempt was made to diminish the disorder by cooling the crystal to 153 K over a period of 1 h. After a fresh data collection, the proportion of disordered molecules in the crystal was estimated to be 4.1 (2)%. This result points to the presence of dynamic disorder. The crystal – having been warmed to room temperature – was then flash-cooled to 93 K. The subsequent X-ray structure analysis shows in this case that the disorder is nearly identical to that in the sample measured at room temperature [13.4 (3)%]. The possibility of observing unstable conformers in flash-cooled crystals has been demonstrated previously (Harada & Ogawa, 2004). The crystal was warmed again to room temperature and then cooled slowly within 2 h to 93 K. The fourth determination of the crystal structure shows that the disorder is reduced to a minimum proportion of 4.1 (2)%. All four crystal structure determinations were performed with the same crystal, and the crystal was warmed to room temperature between every measurement.

The best results were achieved with the structure determination at 153 K (Fig. 2) and some of the main geometric features of the structure at this temperature are as follows. The Si—O distances [Si1—O1A = 1.7136 (12) Å and Si1—O2A = 1.7014 (12) Å] are short but comparable to those of similar compounds (Böhme & Günther, 2007;). The Si—C distances are in the usual range [Si1—C13 = 1.8594 (15) Å and Si1—C14 = 1.8684 (15) Å]. The Si—N distances are longer than expected [Si1—N1A = 2.1666 (13) Å and Si1—N2B 2.172 (5) Å], which is easily explained by the coordinative character of this bond. One might think that 95.9 (5)% site occupation is not really distinguishable from 100%. However, if the structure of (II) at 153 K is refined without treatment of the disorder, the R value rises from 0.0384 to 0.0406 and the residual density map (Fig. 3) shows sharp peaks of residual electron density for the disordered nitrogen atoms and smaller peaks for the rest of the 2,2'-dioxoazobenzene unit.

Dynamic disorder has often been observed in azobenzene and stilbene derivatives (Bernstein, 1975; Borbulevych & Antipin, 2001; Harada et al., 1997; Harada & Ogawa, 2004). Surprisingly, it was now detected in the silicon complex (II). The mechanism of rearrangement in the solid state has been explained with a `pedal motion' (Harada et al., 1997). The energy necessary to perform such a "pedal motion", i.e. the rotation of the –NN– unit, for one single molecule of (II) in the gas phase has been calculated at the B3LYP/6–31G(d,p) level with a free enthalpy of 55.4 kJ mol-1. The geometry of the calculated transition state is shown in Fig. 4. Another mechanism of rearrangement would be the inversion of the SiMe2 group. This inversion has an activation energy of only 8.0 kJ mol-1 in free enthalpy [B3LYP/6–31G(d,p)], which is easily possible in solution but is unlikely to take place in the crystalline state.

To interpret the results of the crystal structure determinations one can say the following: if there is a crystalline sample that raises suspicion of dynamic disorder, it is useful to cool the sample slowly. Flash-cooling or quick-freezing, as is often practiced in routine crystallographic work, is not the best approach in every case. Of course we are aware that there is not always enough time to make a number of different structure determinations from a given crystal, but in some cases it might help to keep these conclusions in mind during daily crystallographic practice.

Related literature top

For related literature, see: Böhme & Foehn (2007); Böhme & Günther (2007); Böhme et al. (2006); Bernstein (1975); Borbulevych & Antipin (2001); Chuit et al. (1993); Corriu & Young (1989); Harada & Ogawa (2004); Harada et al. (1997); Holmes (1996); Kost & Kalikhman (1998, 2004); Pestunovich et al. (1998); Tacke et al. (1999).

Experimental top

The preparation of (II) was performed in Schlenk tubes under argon with dry and air-free solvents. Me2SiCl2 (0.84 g, 0.0065 mol) and triethyl amine (1.46 g, 0.0144 mol) were dissolved in THF (80 ml) and cooled to 273 K. 2,2'-Dihydroxyazobenzene (1.4 g, 0.0065 mol) was dissolved in THF (60 ml) and added dropwise to the stirred mixture of Me2SiCl2 and triethyl amine. A precipitate was formed immediately and the mixture became red. After removal of the cooling bath, the mixture was stirred at room temperature for 70 h. The suspension was filtered into a Schlenk tube and the remaining solid, which is NEt3HCl, was washed with small amounts of THF. The solvent was completely removed in vacuo and the red residue was recrystallized with 1,2-dimethoxyethane (yield 1.4 g, 79.7%; m.p. 388 K). Crystals suitable for X-ray structure analysis were obtained by recrystallization from diethyl ether. Analysis calculated for C14H14N2O2Si: C 62.20, H 5.22, N 10.36%; found: C 62.08, H 5.18, N 10.53%. 29Si NMR (CDCl3): δ -50.2; 1H NMR (CDCl3): δ 0.15 (s, Me, 6H), 7.0–7.5 (m, Ph, 8H); 13C NMR (CDCl3): δ 1.7 (Me), 120.5, 121.5, 123.3, 134.5, 138.2, 152.6 (6 signals for Ph) p.p.m.].

Refinement top

Evidence was found for disorder of the 2,2'-dioxoazobenzene unit, as discussed in the Comment section. It would be desirable to define two positions for all atoms of the 2,2'-dioxoazobenzene unit, since the benzene rings must have disordered orientations as well (cf. Fig. 3 and geometrical considerations). However, such a treatment of the structure model makes the refinement unstable. As a compromise, only the nitrogen and oxygen atoms were treated with a split atom model. This model reflects the major aspects of the disorder and allow the disorder to be treated in the same way in all four structure determinations. Adjacent disordered atoms have been restrained to have similar Uij components and the lengths of chemically equivalent bonds involving at least one disordered atom were also restrained to be similar. All H atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H = 0.93-0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

For all compounds, data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II) at room temperature (298 K), showing the 17.4 (5)% disorder (open bonds). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II) at 153 K. The disordered part [4.1 (5)%] has been excluded. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. A residual electron density map of (II) at 153 K in the O1A/N1A/N2A/O2A plane after refinement without disordered atoms. The first contour is at 0.6 e Å-3 and the contour levels are at 0.05 e Å-3.
[Figure 4] Fig. 4. The calculated geometry of the transition state for the `pedal motion' rearrangement of (II).
(II_298K) (2,2'-diazenediyldiphenolato-κ3O,N,O')dimethylsilicon top
Crystal data top
C14H14N2O2SiDx = 1.363 Mg m3
Mr = 270.36Melting point: 388 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8884 reflections
a = 10.2295 (2) Åθ = 2.4–32.8°
b = 8.0212 (1) ŵ = 0.18 mm1
c = 32.1141 (5) ÅT = 298 K
V = 2635.05 (7) Å3Prism, red
Z = 80.45 × 0.18 × 0.15 mm
F(000) = 1136
Data collection top
Bruker SMART CCD area-detector
diffractometer
3192 independent reflections
Radiation source: sealed tube2533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 28.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.921, Tmax = 0.978k = 1010
36746 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.1914P]
where P = (Fo2 + 2Fc2)/3
3192 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.41 e Å3
64 restraintsΔρmin = 0.26 e Å3
Crystal data top
C14H14N2O2SiV = 2635.05 (7) Å3
Mr = 270.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.2295 (2) ŵ = 0.18 mm1
b = 8.0212 (1) ÅT = 298 K
c = 32.1141 (5) Å0.45 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3192 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2533 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.978Rint = 0.032
36746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04664 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.11Δρmax = 0.41 e Å3
3192 reflectionsΔρmin = 0.26 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.05587 (5)0.49028 (7)0.611223 (16)0.03687 (17)
O1A0.01393 (19)0.4313 (4)0.56499 (6)0.0482 (8)0.826 (3)
O2A0.0759 (2)0.6800 (3)0.63398 (7)0.0475 (7)0.826 (3)
N1A0.15132 (19)0.5509 (2)0.62000 (6)0.0360 (5)0.826 (3)
N2A0.21100 (19)0.6315 (2)0.64777 (6)0.0389 (5)0.826 (3)
O1B0.0243 (8)0.4838 (19)0.5648 (2)0.051 (3)0.174 (3)
O2B0.0966 (6)0.6486 (12)0.6447 (3)0.052 (2)0.174 (3)
N1B0.2313 (7)0.5800 (10)0.6269 (2)0.0377 (15)0.174 (3)
N2B0.1166 (6)0.6057 (9)0.6404 (2)0.0353 (14)0.174 (3)
C10.2303 (2)0.4782 (2)0.58926 (6)0.0408 (4)
C20.14540 (19)0.4175 (3)0.55925 (6)0.0460 (5)
C30.1957 (2)0.3430 (3)0.52385 (7)0.0563 (6)
H30.14000.30280.50330.068*
C40.3286 (2)0.3291 (3)0.51951 (7)0.0561 (6)
H40.36250.27730.49590.067*
C50.4134 (2)0.3903 (3)0.54938 (7)0.0517 (5)
H50.50320.38010.54570.062*
C60.3648 (2)0.4661 (3)0.58447 (6)0.0449 (5)
H60.42100.50850.60460.054*
C70.1205 (2)0.7199 (3)0.67405 (6)0.0444 (5)
C80.0128 (2)0.7462 (3)0.66734 (6)0.0477 (5)
C90.0785 (2)0.8562 (3)0.69322 (8)0.0576 (6)
H90.16700.87640.68890.069*
C100.0148 (3)0.9360 (3)0.72523 (7)0.0572 (6)
H100.06041.00900.74240.069*
C110.1167 (2)0.9079 (3)0.73191 (7)0.0559 (6)
H110.15960.96130.75370.067*
C120.1835 (2)0.8013 (3)0.70645 (7)0.0515 (5)
H120.27220.78320.71090.062*
C130.0385 (2)0.3207 (3)0.65015 (6)0.0440 (5)
H13A0.04040.36730.67770.066*
H13B0.04310.26420.64590.066*
H13C0.10920.24300.64700.066*
C140.2242 (2)0.4840 (3)0.58876 (7)0.0478 (5)
H14A0.23560.57600.57000.072*
H14B0.28730.49140.61080.072*
H14C0.23630.38120.57390.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0305 (3)0.0405 (3)0.0396 (3)0.0028 (2)0.0039 (2)0.0015 (2)
O1A0.0339 (10)0.068 (2)0.0429 (10)0.0058 (10)0.0027 (8)0.0043 (9)
O2A0.0566 (12)0.0406 (11)0.0452 (13)0.0047 (9)0.0148 (9)0.0000 (10)
N1A0.0333 (10)0.0385 (10)0.0363 (10)0.0035 (8)0.0006 (8)0.0042 (8)
N2A0.0364 (10)0.0429 (10)0.0374 (10)0.0045 (8)0.0036 (8)0.0001 (8)
O1B0.036 (4)0.063 (6)0.055 (4)0.007 (4)0.011 (3)0.022 (4)
O2B0.080 (4)0.036 (4)0.041 (4)0.002 (4)0.024 (4)0.007 (4)
N1B0.040 (3)0.039 (3)0.033 (3)0.000 (3)0.000 (3)0.001 (3)
N2B0.036 (3)0.036 (3)0.034 (3)0.000 (3)0.002 (3)0.000 (2)
C10.0469 (11)0.0378 (9)0.0376 (9)0.0046 (8)0.0079 (8)0.0050 (8)
C20.0364 (10)0.0594 (13)0.0423 (10)0.0011 (9)0.0046 (8)0.0104 (9)
C30.0505 (13)0.0774 (16)0.0410 (11)0.0110 (12)0.0004 (9)0.0035 (11)
C40.0561 (13)0.0659 (14)0.0462 (12)0.0021 (11)0.0118 (10)0.0097 (10)
C50.0387 (11)0.0620 (14)0.0543 (12)0.0045 (10)0.0088 (9)0.0010 (11)
C60.0456 (11)0.0463 (11)0.0428 (10)0.0033 (9)0.0022 (9)0.0008 (8)
C70.0567 (12)0.0405 (10)0.0360 (9)0.0012 (9)0.0087 (9)0.0020 (8)
C80.0640 (13)0.0375 (10)0.0417 (11)0.0019 (9)0.0092 (10)0.0007 (8)
C90.0521 (13)0.0576 (13)0.0630 (14)0.0068 (11)0.0027 (11)0.0065 (11)
C100.0664 (15)0.0577 (13)0.0474 (12)0.0040 (12)0.0118 (11)0.0131 (10)
C110.0620 (15)0.0617 (14)0.0441 (11)0.0125 (11)0.0028 (11)0.0101 (10)
C120.0473 (12)0.0563 (12)0.0510 (12)0.0087 (10)0.0057 (10)0.0013 (10)
C130.0391 (10)0.0458 (11)0.0472 (11)0.0004 (8)0.0020 (9)0.0059 (9)
C140.0346 (10)0.0549 (12)0.0539 (12)0.0021 (9)0.0079 (9)0.0002 (10)
Geometric parameters (Å, º) top
Si1—O2A1.7006 (19)C3—H30.9300
Si1—O1B1.704 (4)C4—C51.384 (3)
Si1—O1A1.7142 (19)C4—H40.9300
Si1—O2B1.715 (4)C5—C61.373 (3)
Si1—C131.856 (2)C5—H50.9300
Si1—C141.868 (2)C6—H60.9300
Si1—N1A2.193 (2)C7—C121.388 (3)
Si1—N2B2.203 (5)C7—C81.396 (3)
O1A—C21.362 (3)C8—C91.386 (3)
O2A—C81.359 (3)C9—C101.375 (3)
N1A—N2A1.260 (3)C9—H90.9300
N1A—C11.402 (3)C10—C111.381 (4)
N2A—C71.440 (3)C10—H100.9300
O1B—C21.360 (4)C11—C121.366 (3)
O2B—C81.370 (4)C11—H110.9300
N1B—N2B1.269 (5)C12—H120.9300
N1B—C11.458 (5)C13—H13A0.9600
N2B—C71.416 (5)C13—H13B0.9600
N2B—C81.941 (7)C13—H13C0.9600
C1—C21.385 (3)C14—H14A0.9600
C1—C61.388 (3)C14—H14B0.9600
C2—C31.384 (3)C14—H14C0.9600
C3—C41.371 (3)
O2A—Si1—O1B117.5 (6)C4—C3—C2119.2 (2)
O2A—Si1—O1A132.03 (13)C4—C3—H3120.4
O1B—Si1—O2B133.5 (7)C2—C3—H3120.4
O1A—Si1—O2B148.0 (4)C3—C4—C5121.5 (2)
O2A—Si1—C13112.20 (11)C3—C4—H4119.3
O1B—Si1—C13121.4 (4)C5—C4—H4119.3
O1A—Si1—C13109.95 (12)C6—C5—C4119.9 (2)
O2B—Si1—C1398.3 (5)C6—C5—H5120.0
O2A—Si1—C1494.55 (10)C4—C5—H5120.0
O1B—Si1—C1496.0 (3)C5—C6—C1118.7 (2)
O1A—Si1—C1492.41 (10)C5—C6—H6120.6
O2B—Si1—C1492.2 (2)C1—C6—H6120.6
C13—Si1—C14109.18 (10)C12—C7—C8119.90 (19)
O2A—Si1—N1A82.11 (9)C12—C7—N2B152.7 (3)
O1B—Si1—N1A69.8 (4)C8—C7—N2B87.3 (3)
O1A—Si1—N1A76.70 (9)C12—C7—N2A111.86 (19)
O2B—Si1—N1A89.4 (2)C8—C7—N2A127.74 (18)
C13—Si1—N1A89.04 (8)O2A—C8—C9119.4 (2)
C14—Si1—N1A161.24 (9)O2B—C8—C9112.3 (3)
O2A—Si1—N2B62.43 (19)O2A—C8—C7121.8 (2)
O1B—Si1—N2B90.0 (5)O2B—C8—C7127.3 (3)
O1A—Si1—N2B98.70 (18)C9—C8—C7118.50 (19)
O2B—Si1—N2B67.4 (3)O2A—C8—N2B75.3 (2)
C13—Si1—N2B86.8 (2)O2B—C8—N2B81.9 (3)
C14—Si1—N2B156.1 (2)C9—C8—N2B165.3 (2)
C2—O1A—Si1123.43 (17)C7—C8—N2B46.78 (16)
C8—O2A—Si1129.15 (17)C10—C9—C8121.0 (2)
N2A—N1A—C1115.65 (19)C10—C9—H9119.5
N2A—N1A—Si1132.32 (16)C8—C9—H9119.5
C1—N1A—Si1111.97 (14)C9—C10—C11120.1 (2)
N1A—N2A—C7110.87 (18)C9—C10—H10119.9
C2—O1B—Si1124.4 (4)C11—C10—H10119.9
C8—O2B—Si1127.1 (5)C12—C11—C10119.8 (2)
N2B—N1B—C1111.6 (5)C12—C11—H11120.1
N1B—N2B—C7110.0 (4)C10—C11—H11120.1
N1B—N2B—C8151.4 (5)C11—C12—C7120.7 (2)
C7—N2B—C845.9 (2)C11—C12—H12119.6
N1B—N2B—Si1121.8 (4)C7—C12—H12119.6
C7—N2B—Si1128.2 (4)Si1—C13—H13A109.5
C8—N2B—Si183.5 (2)Si1—C13—H13B109.5
C2—C1—C6121.30 (18)H13A—C13—H13B109.5
C2—C1—N1A105.95 (18)Si1—C13—H13C109.5
C6—C1—N1A132.7 (2)H13A—C13—H13C109.5
C2—C1—N1B141.1 (3)H13B—C13—H13C109.5
C6—C1—N1B97.1 (3)Si1—C14—H14A109.5
O1B—C2—C3127.9 (5)Si1—C14—H14B109.5
O1A—C2—C3120.9 (2)H14A—C14—H14B109.5
O1B—C2—C1110.1 (6)Si1—C14—H14C109.5
O1A—C2—C1119.7 (2)H14A—C14—H14C109.5
C3—C2—C1119.38 (18)H14B—C14—H14C109.5
O2A—Si1—O1A—C278.9 (3)N2B—N1B—C1—N1A1.4 (5)
O1B—Si1—O1A—C272.5 (11)Si1—O1B—C2—O1A76.5 (10)
O2B—Si1—O1A—C279.2 (5)Si1—O1B—C2—C3150.2 (7)
C13—Si1—O1A—C271.4 (3)Si1—O1B—C2—C148.7 (14)
C14—Si1—O1A—C2177.2 (2)Si1—O1A—C2—O1B72.9 (10)
N1A—Si1—O1A—C212.7 (2)Si1—O1A—C2—C3169.0 (2)
N2B—Si1—O1A—C218.4 (3)Si1—O1A—C2—C110.8 (4)
O1B—Si1—O2A—C8105.4 (4)C6—C1—C2—O1B162.8 (6)
O1A—Si1—O2A—C8107.2 (3)N1A—C1—C2—O1B14.8 (6)
O2B—Si1—O2A—C873.4 (10)N1B—C1—C2—O1B6.4 (9)
C13—Si1—O2A—C842.6 (3)C6—C1—C2—O1A179.9 (2)
C14—Si1—O2A—C8155.4 (3)N1A—C1—C2—O1A2.4 (3)
N1A—Si1—O2A—C843.2 (3)N1B—C1—C2—O1A10.8 (7)
N2B—Si1—O2A—C831.1 (3)C6—C1—C2—C30.2 (3)
O2A—Si1—N1A—N2A33.2 (2)N1A—C1—C2—C3177.8 (2)
O1B—Si1—N1A—N2A156.4 (5)N1B—C1—C2—C3169.4 (6)
O1A—Si1—N1A—N2A169.8 (2)O1B—C2—C3—C4160.4 (8)
O2B—Si1—N1A—N2A18.9 (5)O1A—C2—C3—C4179.0 (2)
C13—Si1—N1A—N2A79.4 (2)C1—C2—C3—C40.8 (4)
C14—Si1—N1A—N2A114.0 (3)C2—C3—C4—C51.1 (4)
N2B—Si1—N1A—N2A4.6 (6)C3—C4—C5—C60.4 (4)
O2A—Si1—N1A—C1149.94 (16)C4—C5—C6—C10.6 (3)
O1B—Si1—N1A—C126.7 (5)C2—C1—C6—C50.8 (3)
O1A—Si1—N1A—C113.28 (16)N1A—C1—C6—C5177.8 (2)
O2B—Si1—N1A—C1164.2 (5)N1B—C1—C6—C5174.0 (4)
C13—Si1—N1A—C197.49 (15)N1B—N2B—C7—C1221.9 (14)
C14—Si1—N1A—C169.1 (3)C8—N2B—C7—C12176.5 (8)
N2B—Si1—N1A—C1178.5 (7)Si1—N2B—C7—C12160.8 (4)
C1—N1A—N2A—C7171.76 (17)N1B—N2B—C7—C8161.6 (7)
Si1—N1A—N2A—C711.4 (3)Si1—N2B—C7—C815.7 (6)
O2A—Si1—O1B—C2110.4 (12)N1B—N2B—C7—N2A5.7 (5)
O1A—Si1—O1B—C275.0 (10)C8—N2B—C7—N2A167.3 (5)
O2B—Si1—O1B—C2109.9 (11)Si1—N2B—C7—N2A177.0 (10)
C13—Si1—O1B—C234.4 (16)N1A—N2A—C7—C12176.29 (19)
C14—Si1—O1B—C2151.3 (12)N1A—N2A—C7—C812.0 (3)
N1A—Si1—O1B—C241.3 (11)N1A—N2A—C7—N2B4.2 (6)
N2B—Si1—O1B—C251.8 (13)Si1—O2A—C8—O2B74.5 (10)
O2A—Si1—O2B—C867.6 (9)Si1—O2A—C8—C9148.5 (2)
O1B—Si1—O2B—C866.1 (13)Si1—O2A—C8—C738.1 (4)
O1A—Si1—O2B—C868.4 (14)Si1—O2A—C8—N2B32.5 (3)
C13—Si1—O2B—C883.8 (11)Si1—O2B—C8—O2A68.4 (8)
C14—Si1—O2B—C8166.5 (10)Si1—O2B—C8—C9176.4 (8)
N1A—Si1—O2B—C85.2 (11)Si1—O2B—C8—C712.5 (14)
N2B—Si1—O2B—C80.7 (9)Si1—O2B—C8—N2B0.7 (10)
C1—N1B—N2B—C7173.5 (6)C12—C7—C8—O2A174.4 (2)
C1—N1B—N2B—C8145.1 (11)N2B—C7—C8—O2A7.4 (4)
C1—N1B—N2B—Si14.1 (11)N2A—C7—C8—O2A3.3 (3)
O2A—Si1—N2B—N1B149.3 (9)C12—C7—C8—O2B162.1 (7)
O1B—Si1—N2B—N1B27.9 (9)N2B—C7—C8—O2B16.1 (8)
O1A—Si1—N2B—N1B16.1 (8)N2A—C7—C8—O2B26.8 (8)
O2B—Si1—N2B—N1B166.1 (10)C12—C7—C8—C90.9 (3)
C13—Si1—N2B—N1B93.6 (8)N2B—C7—C8—C9179.1 (4)
C14—Si1—N2B—N1B133.0 (6)N2A—C7—C8—C9170.2 (2)
N1A—Si1—N2B—N1B1.6 (5)C12—C7—C8—N2B178.1 (4)
O2A—Si1—N2B—C727.7 (6)N2A—C7—C8—N2B10.7 (4)
O1B—Si1—N2B—C7149.1 (8)N1B—N2B—C8—O2A135.1 (15)
O1A—Si1—N2B—C7160.9 (6)C7—N2B—C8—O2A173.5 (4)
O2B—Si1—N2B—C710.9 (7)Si1—N2B—C8—O2A18.90 (19)
C13—Si1—N2B—C789.4 (7)N1B—N2B—C8—O2B154.5 (16)
C14—Si1—N2B—C744.1 (11)C7—N2B—C8—O2B167.2 (7)
N1A—Si1—N2B—C7175.5 (12)Si1—N2B—C8—O2B0.5 (6)
O2A—Si1—N2B—C816.41 (17)N1B—N2B—C8—C942 (2)
O1B—Si1—N2B—C8137.8 (5)C7—N2B—C8—C93.2 (14)
O1A—Si1—N2B—C8149.6 (2)Si1—N2B—C8—C9164.4 (11)
O2B—Si1—N2B—C80.4 (5)N1B—N2B—C8—C738.4 (13)
C13—Si1—N2B—C8100.7 (3)Si1—N2B—C8—C7167.6 (5)
C14—Si1—N2B—C832.8 (7)O2A—C8—C9—C10174.7 (2)
N1A—Si1—N2B—C8164.2 (8)O2B—C8—C9—C10164.5 (6)
N2A—N1A—C1—C2171.73 (19)C7—C8—C9—C101.0 (4)
Si1—N1A—C1—C210.81 (19)N2B—C8—C9—C101.6 (14)
N2A—N1A—C1—C65.6 (3)C8—C9—C10—C110.3 (4)
Si1—N1A—C1—C6171.91 (19)C9—C10—C11—C120.4 (4)
N2A—N1A—C1—N1B0.8 (6)C10—C11—C12—C70.5 (4)
Si1—N1A—C1—N1B178.2 (7)C8—C7—C12—C110.2 (3)
N2B—N1B—C1—C212.6 (12)N2B—C7—C12—C11176.2 (8)
N2B—N1B—C1—C6176.7 (7)N2A—C7—C12—C11172.3 (2)
(II_153K) (2,2'-diazenediyldiphenolato-κ3O,N,O')dimethylsilicon top
Crystal data top
C14H14N2O2SiDx = 1.414 Mg m3
Mr = 270.36Melting point: 388 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6360 reflections
a = 10.0440 (11) Åθ = 2.4–32.8°
b = 7.8990 (8) ŵ = 0.18 mm1
c = 32.011 (3) ÅT = 153 K
V = 2539.7 (4) Å3Prism, red
Z = 80.45 × 0.18 × 0.15 mm
F(000) = 1136
Data collection top
Bruker SMART CCD area-detector
diffractometer
3063 independent reflections
Radiation source: sealed tube2632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.921, Tmax = 0.978k = 109
16295 measured reflectionsl = 3342
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0492P)2 + 1.3714P]
where P = (Fo2 + 2Fc2)/3
3063 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.36 e Å3
64 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H14N2O2SiV = 2539.7 (4) Å3
Mr = 270.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0440 (11) ŵ = 0.18 mm1
b = 7.8990 (8) ÅT = 153 K
c = 32.011 (3) Å0.45 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3063 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2632 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.978Rint = 0.027
16295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03864 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
3063 reflectionsΔρmin = 0.35 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.05676 (4)0.50369 (5)0.610595 (12)0.01956 (12)
O1A0.00991 (11)0.44411 (18)0.56357 (4)0.0259 (4)0.959 (2)
O2A0.07468 (12)0.69447 (15)0.63462 (4)0.0240 (3)0.959 (2)
N1A0.15219 (12)0.56168 (16)0.61944 (4)0.0198 (3)0.959 (2)
N2A0.21294 (12)0.64156 (16)0.64783 (4)0.0213 (3)0.959 (2)
O1B0.0209 (19)0.494 (5)0.5632 (3)0.027 (3)0.041 (2)
O2B0.0921 (8)0.666 (3)0.6443 (10)0.025 (3)0.041 (2)
N1B0.2248 (12)0.582 (3)0.6252 (5)0.0208 (18)0.041 (2)
N2B0.1132 (8)0.622 (3)0.6408 (6)0.0200 (18)0.041 (2)
C10.22756 (14)0.48552 (18)0.58821 (4)0.0213 (3)
C20.14202 (13)0.4242 (2)0.55770 (5)0.0236 (3)
C30.19385 (15)0.3488 (2)0.52216 (5)0.0282 (3)
H30.13660.30720.50090.034*
C40.33054 (16)0.3350 (2)0.51826 (5)0.0284 (3)
H40.36690.28190.49420.034*
C50.41585 (14)0.3974 (2)0.54883 (5)0.0262 (3)
H50.50940.38660.54540.031*
C60.36544 (14)0.47450 (19)0.58393 (5)0.0231 (3)
H60.42310.51910.60470.028*
C70.12824 (14)0.73266 (18)0.67449 (4)0.0224 (3)
C80.00788 (14)0.76180 (19)0.66708 (4)0.0234 (3)
C90.07545 (15)0.8739 (2)0.69311 (5)0.0288 (3)
H90.16700.89680.68820.035*
C100.01127 (16)0.9521 (2)0.72596 (5)0.0289 (3)
H100.05901.02790.74350.035*
C110.12279 (16)0.9209 (2)0.73362 (5)0.0281 (3)
H110.16640.97380.75650.034*
C120.19143 (15)0.8130 (2)0.70788 (5)0.0256 (3)
H120.28330.79260.71280.031*
C130.04038 (14)0.3325 (2)0.65013 (5)0.0239 (3)
H13A0.03440.38250.67810.036*
H13B0.04030.26660.64450.036*
H13C0.11830.25810.64870.036*
C140.22992 (14)0.5036 (2)0.58927 (5)0.0257 (3)
H14A0.24380.60570.57240.039*
H14B0.29380.50190.61240.039*
H14C0.24290.40310.57180.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01493 (19)0.0221 (2)0.0216 (2)0.00128 (13)0.00120 (13)0.00041 (16)
O1A0.0162 (5)0.0379 (9)0.0236 (6)0.0021 (5)0.0010 (4)0.0008 (5)
O2A0.0229 (5)0.0228 (6)0.0263 (7)0.0024 (4)0.0050 (4)0.0011 (5)
N1A0.0165 (6)0.0211 (6)0.0217 (6)0.0018 (5)0.0008 (5)0.0021 (5)
N2A0.0201 (6)0.0222 (6)0.0217 (6)0.0017 (5)0.0013 (5)0.0013 (5)
O1B0.017 (5)0.038 (5)0.027 (5)0.003 (5)0.003 (5)0.006 (5)
O2B0.032 (5)0.020 (5)0.023 (5)0.001 (5)0.010 (5)0.002 (5)
N1B0.021 (3)0.022 (3)0.020 (3)0.001 (3)0.001 (3)0.001 (3)
N2B0.018 (3)0.022 (3)0.020 (3)0.001 (3)0.001 (3)0.001 (3)
C10.0232 (7)0.0200 (7)0.0206 (7)0.0014 (5)0.0025 (5)0.0028 (6)
C20.0175 (6)0.0289 (8)0.0243 (7)0.0010 (5)0.0013 (5)0.0050 (6)
C30.0245 (7)0.0373 (8)0.0228 (7)0.0044 (6)0.0004 (6)0.0026 (7)
C40.0268 (7)0.0333 (8)0.0251 (7)0.0011 (6)0.0053 (6)0.0032 (7)
C50.0195 (6)0.0296 (8)0.0296 (8)0.0021 (6)0.0028 (6)0.0021 (6)
C60.0212 (6)0.0229 (7)0.0252 (7)0.0006 (5)0.0018 (5)0.0015 (6)
C70.0254 (7)0.0194 (7)0.0222 (7)0.0013 (5)0.0029 (5)0.0019 (6)
C80.0267 (7)0.0202 (7)0.0234 (7)0.0015 (6)0.0008 (6)0.0024 (6)
C90.0261 (7)0.0301 (8)0.0303 (8)0.0034 (6)0.0008 (6)0.0003 (7)
C100.0320 (8)0.0291 (8)0.0256 (8)0.0024 (6)0.0062 (6)0.0047 (6)
C110.0320 (8)0.0290 (8)0.0233 (7)0.0068 (6)0.0008 (6)0.0027 (6)
C120.0232 (6)0.0271 (7)0.0264 (7)0.0044 (6)0.0016 (6)0.0023 (6)
C130.0214 (6)0.0249 (7)0.0253 (7)0.0008 (5)0.0007 (5)0.0014 (6)
C140.0175 (6)0.0308 (8)0.0288 (8)0.0018 (5)0.0026 (5)0.0002 (7)
Geometric parameters (Å, º) top
Si1—O2A1.7014 (12)C3—H30.9500
Si1—O1B1.707 (4)C4—C51.391 (2)
Si1—O2B1.710 (4)C4—H40.9500
Si1—O1A1.7136 (12)C5—C61.375 (2)
Si1—C131.8594 (15)C5—H50.9500
Si1—C141.8684 (15)C6—H60.9500
Si1—N1A2.1666 (13)C7—C121.395 (2)
Si1—N2B2.172 (5)C7—C81.407 (2)
O1A—C21.3493 (16)C8—C91.392 (2)
O2A—C81.3463 (17)C9—C101.379 (2)
N1A—N2A1.2635 (18)C9—H90.9500
N1A—C11.3910 (18)C10—C111.391 (2)
N2A—C71.4035 (19)C10—H100.9500
O1B—C21.348 (5)C11—C121.372 (2)
O2B—C81.351 (5)C11—H110.9500
N1B—N2B1.267 (5)C12—H120.9500
N1B—C11.409 (5)C13—H13A0.9800
N2B—C71.397 (5)C13—H13B0.9800
N2B—C81.846 (11)C13—H13C0.9800
C1—C21.388 (2)C14—H14A0.9800
C1—C61.394 (2)C14—H14B0.9800
C2—C31.386 (2)C14—H14C0.9800
C3—C41.383 (2)
O2A—Si1—O1B119.2 (14)C4—C3—C2118.74 (14)
O1B—Si1—O2B133.4 (19)C4—C3—H3120.6
O2A—Si1—O1A132.98 (6)C2—C3—H3120.6
O2B—Si1—O1A147.2 (13)C3—C4—C5121.36 (15)
O2A—Si1—C13110.23 (7)C3—C4—H4119.3
O1B—Si1—C13122.2 (9)C5—C4—H4119.3
O2B—Si1—C1397.7 (14)C6—C5—C4120.33 (13)
O1A—Si1—C13111.32 (7)C6—C5—H5119.8
O2A—Si1—C1493.85 (6)C4—C5—H5119.8
O1B—Si1—C1495.8 (7)C5—C6—C1118.28 (14)
O2B—Si1—C1492.1 (4)C5—C6—H6120.9
O1A—Si1—C1492.44 (6)C1—C6—H6120.9
C13—Si1—C14109.31 (7)C12—C7—N2B157.7 (6)
O2A—Si1—N1A81.73 (5)C12—C7—N2A115.03 (13)
O1B—Si1—N1A71.5 (10)C12—C7—C8119.79 (13)
O2B—Si1—N1A87.7 (3)N2B—C7—C882.3 (5)
O1A—Si1—N1A78.13 (5)N2A—C7—C8124.78 (13)
C13—Si1—N1A88.80 (6)O2A—C8—C9118.04 (13)
C14—Si1—N1A161.72 (6)O2B—C8—C9112.1 (3)
O2A—Si1—N2B60.1 (4)O2A—C8—C7123.37 (13)
O1B—Si1—N2B93.1 (13)O2B—C8—C7127.4 (5)
O2B—Si1—N2B64.0 (4)C9—C8—C7118.48 (14)
O1A—Si1—N2B101.6 (3)O2A—C8—N2B74.9 (3)
C13—Si1—N2B86.6 (8)O2B—C8—N2B80.2 (3)
C14—Si1—N2B153.4 (5)C9—C8—N2B167.0 (3)
C2—O1A—Si1122.59 (10)C7—C8—N2B48.6 (2)
C8—O2A—Si1130.24 (10)C10—C9—C8120.88 (14)
N2A—N1A—C1118.04 (12)C10—C9—H9119.6
N2A—N1A—Si1131.87 (10)C8—C9—H9119.6
C1—N1A—Si1109.99 (9)C9—C10—C11120.50 (15)
N1A—N2A—C7113.62 (12)C9—C10—H10119.7
C2—O1B—Si1123.1 (4)C11—C10—H10119.7
C8—O2B—Si1129.1 (5)C12—C11—C10119.39 (15)
N2B—N1B—C1118.9 (8)C12—C11—H11120.3
N1B—N2B—C7111.3 (4)C10—C11—H11120.3
N1B—N2B—C8155.7 (15)C11—C12—C7120.94 (14)
C7—N2B—C849.1 (3)C11—C12—H12119.5
N1B—N2B—Si1114.4 (6)C7—C12—H12119.5
C7—N2B—Si1134.2 (6)Si1—C13—H13A109.5
C8—N2B—Si186.7 (4)Si1—C13—H13B109.5
C2—C1—N1A108.65 (12)H13A—C13—H13B109.5
C2—C1—C6121.59 (13)Si1—C13—H13C109.5
N1A—C1—C6129.66 (14)H13A—C13—H13C109.5
C2—C1—N1B140.2 (5)H13B—C13—H13C109.5
C6—C1—N1B97.8 (5)Si1—C14—H14A109.5
O1B—C2—C3128.6 (9)Si1—C14—H14B109.5
O1A—C2—C3122.26 (13)H14A—C14—H14B109.5
O1B—C2—C1108.8 (14)Si1—C14—H14C109.5
O1A—C2—C1118.04 (13)H14A—C14—H14C109.5
C3—C2—C1119.68 (13)H14B—C14—H14C109.5
O2A—Si1—O1A—C280.95 (15)N2B—N1B—C1—C6180 (3)
O1B—Si1—O1A—C274.1 (18)Si1—O1B—C2—O1A77.0 (18)
O2B—Si1—O1A—C280.7 (10)Si1—O1B—C2—C3152.1 (17)
C13—Si1—O1A—C269.66 (14)Si1—O1B—C2—C148 (3)
C14—Si1—O1A—C2178.51 (14)Si1—O1A—C2—O1B74.7 (16)
N1A—Si1—O1A—C214.32 (13)Si1—O1A—C2—C3168.68 (13)
N2B—Si1—O1A—C221.2 (8)Si1—O1A—C2—C112.8 (2)
O1B—Si1—O2A—C8103.9 (6)N1A—C1—C2—O1B15.0 (14)
O2B—Si1—O2A—C874 (2)C6—C1—C2—O1B161.7 (14)
O1A—Si1—O2A—C8105.72 (15)N1B—C1—C2—O1B9 (2)
C13—Si1—O2A—C845.12 (16)N1A—C1—C2—O1A1.36 (19)
C14—Si1—O2A—C8157.33 (14)C6—C1—C2—O1A178.07 (14)
N1A—Si1—O2A—C840.52 (14)N1B—C1—C2—O1A7.3 (19)
N2B—Si1—O2A—C828.3 (8)N1A—C1—C2—C3177.24 (14)
O2A—Si1—N1A—N2A32.67 (14)C6—C1—C2—C30.5 (2)
O1B—Si1—N1A—N2A157.4 (12)N1B—C1—C2—C3171.3 (19)
O2B—Si1—N1A—N2A19.7 (14)O1B—C2—C3—C4159 (2)
O1A—Si1—N1A—N2A169.93 (15)O1A—C2—C3—C4179.18 (15)
C13—Si1—N1A—N2A77.98 (14)C1—C2—C3—C40.6 (2)
C14—Si1—N1A—N2A109.7 (2)C2—C3—C4—C50.9 (3)
N2B—Si1—N1A—N2A6.5 (19)C3—C4—C5—C60.1 (3)
O2A—Si1—N1A—C1151.17 (10)C4—C5—C6—C11.1 (2)
O1B—Si1—N1A—C126.5 (12)C2—C1—C6—C51.4 (2)
O2B—Si1—N1A—C1164.1 (14)N1A—C1—C6—C5177.35 (14)
O1A—Si1—N1A—C113.91 (10)N1B—C1—C6—C5175.5 (12)
C13—Si1—N1A—C198.18 (10)N1B—N2B—C7—C1223 (5)
C14—Si1—N1A—C174.1 (2)C8—N2B—C7—C12174 (3)
N2B—Si1—N1A—C1177.3 (19)Si1—N2B—C7—C12155.8 (6)
C1—N1A—N2A—C7171.79 (12)N1B—N2B—C7—N2A4.6 (16)
Si1—N1A—N2A—C712.29 (19)C8—N2B—C7—N2A167.7 (14)
O2A—Si1—O1B—C2110 (3)Si1—N2B—C7—N2A174 (4)
O2B—Si1—O1B—C2109 (3)N1B—N2B—C7—C8163 (3)
O1A—Si1—O1B—C275.6 (19)Si1—N2B—C7—C818 (2)
C13—Si1—O1B—C235 (4)N1A—N2A—C7—C12175.84 (13)
C14—Si1—O1B—C2152 (3)N1A—N2A—C7—N2B3.4 (17)
N1A—Si1—O1B—C241 (3)N1A—N2A—C7—C811.4 (2)
N2B—Si1—O1B—C253 (3)Si1—O2A—C8—O2B75 (2)
O2A—Si1—O2B—C870.3 (18)Si1—O2A—C8—C9149.68 (13)
O1B—Si1—O2B—C867 (4)Si1—O2A—C8—C734.3 (2)
O1A—Si1—O2B—C870 (4)Si1—O2A—C8—N2B30.1 (9)
C13—Si1—O2B—C883 (3)Si1—O2B—C8—O2A70.9 (16)
C14—Si1—O2B—C8168 (3)Si1—O2B—C8—C9176 (2)
N1A—Si1—O2B—C86 (3)Si1—O2B—C8—C713 (4)
N2B—Si1—O2B—C80 (3)Si1—O2B—C8—N2B0 (3)
C1—N1B—N2B—C7173.4 (19)C12—C7—C8—O2A177.31 (14)
C1—N1B—N2B—C8141 (4)N2B—C7—C8—O2A5.4 (12)
C1—N1B—N2B—Si17 (4)N2A—C7—C8—O2A4.9 (2)
O2A—Si1—N2B—N1B152 (3)C12—C7—C8—O2B161 (2)
O1B—Si1—N2B—N1B30 (3)N2B—C7—C8—O2B16 (2)
O2B—Si1—N2B—N1B168 (3)N2A—C7—C8—O2B26 (2)
O1A—Si1—N2B—N1B19 (2)C12—C7—C8—C91.3 (2)
C13—Si1—N2B—N1B92 (2)N2B—C7—C8—C9178.6 (12)
C14—Si1—N2B—N1B139.5 (17)N2A—C7—C8—C9171.13 (14)
N1A—Si1—N2B—N1B2.5 (15)C12—C7—C8—N2B177.3 (12)
O2A—Si1—N2B—C729 (2)N2A—C7—C8—N2B10.3 (12)
O1B—Si1—N2B—C7151 (3)N1B—N2B—C8—O2A134 (5)
O2B—Si1—N2B—C713 (3)C7—N2B—C8—O2A175.4 (10)
O1A—Si1—N2B—C7162 (2)Si1—N2B—C8—O2A17.5 (5)
C13—Si1—N2B—C787 (2)N1B—N2B—C8—O2B152 (6)
C14—Si1—N2B—C742 (4)C7—N2B—C8—O2B167 (2)
N1A—Si1—N2B—C7179 (4)Si1—N2B—C8—O2B0.2 (19)
O2A—Si1—N2B—C815.4 (5)N1B—N2B—C8—C947 (9)
O1B—Si1—N2B—C8137.6 (12)C7—N2B—C8—C96 (5)
O2B—Si1—N2B—C80.1 (16)Si1—N2B—C8—C9162 (3)
O1A—Si1—N2B—C8148.6 (7)N1B—N2B—C8—C741 (5)
C13—Si1—N2B—C8100.4 (8)Si1—N2B—C8—C7167.2 (15)
C14—Si1—N2B—C828 (2)O2A—C8—C9—C10177.53 (15)
N1A—Si1—N2B—C8165 (3)O2B—C8—C9—C10163.7 (19)
N2A—N1A—C1—C2172.43 (13)C7—C8—C9—C101.3 (2)
Si1—N1A—C1—C210.81 (14)N2B—C8—C9—C103 (4)
N2A—N1A—C1—C63.9 (2)C8—C9—C10—C110.2 (2)
Si1—N1A—C1—C6172.83 (13)C9—C10—C11—C120.8 (2)
N2A—N1A—C1—N1B0 (2)C10—C11—C12—C70.8 (2)
Si1—N1A—C1—N1B176 (2)N2B—C7—C12—C11173 (3)
N2B—N1B—C1—C28 (4)N2A—C7—C12—C11172.88 (14)
N2B—N1B—C1—N1A2.6 (15)C8—C7—C12—C110.2 (2)
(II_93K_flash_cooled) (2,2'-diazenediyldiphenolato-κ3O,N,O')dimethylsilicon top
Crystal data top
C14H14N2O2SiDx = 1.410 Mg m3
Mr = 270.36Melting point: 388 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6113 reflections
a = 10.0654 (5) Åθ = 2.4–32.5°
b = 7.9069 (4) ŵ = 0.18 mm1
c = 31.9971 (17) ÅT = 93 K
V = 2546.5 (2) Å3Prism, red
Z = 80.45 × 0.18 × 0.15 mm
F(000) = 1136
Data collection top
Bruker SMART CCD area-detector
diffractometer
2937 independent reflections
Radiation source: sealed tube2606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 28.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.921, Tmax = 0.978k = 910
13356 measured reflectionsl = 4226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 2.2636P]
where P = (Fo2 + 2Fc2)/3
2937 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.44 e Å3
64 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H14N2O2SiV = 2546.5 (2) Å3
Mr = 270.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0654 (5) ŵ = 0.18 mm1
b = 7.9069 (4) ÅT = 93 K
c = 31.9971 (17) Å0.45 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2606 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.978Rint = 0.022
13356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03864 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
2937 reflectionsΔρmin = 0.29 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.05829 (4)0.50647 (6)0.611185 (13)0.01408 (12)
O1A0.00893 (19)0.4462 (3)0.56353 (7)0.0172 (4)0.866 (3)
O2A0.07681 (17)0.6965 (2)0.63499 (5)0.0163 (4)0.866 (3)
N1A0.15084 (14)0.5667 (2)0.61963 (4)0.0133 (3)0.866 (3)
N2A0.21203 (14)0.64793 (19)0.64779 (5)0.0147 (3)0.866 (3)
O1B0.0257 (13)0.4959 (18)0.5682 (5)0.020 (2)0.134 (3)
O2B0.1198 (11)0.6789 (14)0.6440 (3)0.0144 (19)0.134 (3)
N1B0.2327 (7)0.5917 (11)0.6263 (2)0.0154 (15)0.134 (3)
N2B0.1160 (6)0.6243 (10)0.6401 (2)0.0139 (15)0.134 (3)
C10.22922 (16)0.4905 (2)0.58857 (5)0.0183 (3)
C20.14276 (15)0.4293 (2)0.55810 (5)0.0198 (3)
C30.19369 (16)0.3528 (2)0.52242 (5)0.0212 (3)
H30.13590.31170.50130.025*
C40.33026 (16)0.3377 (2)0.51824 (5)0.0196 (3)
H40.36570.28380.49420.023*
C50.41711 (15)0.4001 (2)0.54870 (5)0.0185 (3)
H50.51040.38850.54520.022*
C60.36714 (16)0.4788 (2)0.58400 (5)0.0182 (3)
H60.42510.52370.60460.022*
C70.12395 (17)0.7392 (2)0.67434 (5)0.0201 (3)
C80.01266 (17)0.7661 (2)0.66752 (5)0.0210 (3)
C90.08030 (17)0.8790 (2)0.69382 (5)0.0229 (4)
H90.17230.89970.68950.027*
C100.01415 (17)0.9606 (2)0.72602 (5)0.0205 (3)
H100.06111.03660.74370.025*
C110.12105 (16)0.9317 (2)0.73271 (5)0.0215 (3)
H110.16590.98750.75490.026*
C120.18902 (16)0.8222 (2)0.70701 (5)0.0213 (3)
H120.28110.80290.71150.026*
C130.03993 (14)0.3341 (2)0.65057 (4)0.0160 (3)
H13A0.03840.38310.67870.024*
H13B0.04320.27300.64550.024*
H13C0.11500.25570.64820.024*
C140.23075 (14)0.5034 (2)0.58920 (5)0.0184 (3)
H14A0.24490.60470.57210.028*
H14B0.29530.50160.61210.028*
H14C0.24230.40230.57180.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.01105 (19)0.0152 (2)0.0160 (2)0.00114 (14)0.00198 (14)0.00129 (16)
O1A0.0107 (7)0.0233 (12)0.0175 (7)0.0021 (7)0.0014 (6)0.0011 (7)
O2A0.0153 (8)0.0170 (8)0.0165 (8)0.0005 (6)0.0024 (6)0.0006 (6)
N1A0.0111 (7)0.0141 (8)0.0147 (7)0.0017 (5)0.0012 (5)0.0035 (6)
N2A0.0138 (7)0.0144 (8)0.0159 (7)0.0021 (5)0.0017 (5)0.0024 (6)
O1B0.011 (4)0.019 (5)0.030 (4)0.008 (4)0.002 (4)0.010 (4)
O2B0.019 (4)0.012 (4)0.012 (4)0.001 (4)0.001 (3)0.002 (3)
N1B0.019 (3)0.015 (3)0.012 (3)0.003 (3)0.004 (3)0.001 (3)
N2B0.016 (3)0.012 (3)0.013 (3)0.003 (2)0.004 (3)0.001 (2)
C10.0257 (8)0.0142 (8)0.0151 (6)0.0040 (6)0.0048 (6)0.0038 (6)
C20.0133 (7)0.0253 (9)0.0209 (7)0.0018 (6)0.0036 (6)0.0092 (7)
C30.0174 (7)0.0292 (9)0.0169 (7)0.0038 (6)0.0013 (6)0.0025 (7)
C40.0203 (7)0.0229 (9)0.0155 (7)0.0004 (6)0.0035 (6)0.0010 (6)
C50.0142 (6)0.0198 (8)0.0214 (7)0.0004 (6)0.0007 (6)0.0034 (6)
C60.0230 (8)0.0150 (8)0.0167 (7)0.0026 (6)0.0031 (6)0.0027 (6)
C70.0300 (8)0.0147 (8)0.0157 (7)0.0004 (6)0.0058 (6)0.0032 (6)
C80.0333 (9)0.0129 (8)0.0169 (7)0.0017 (6)0.0048 (6)0.0016 (6)
C90.0228 (8)0.0203 (9)0.0256 (8)0.0010 (6)0.0029 (6)0.0014 (7)
C100.0249 (8)0.0191 (8)0.0173 (7)0.0012 (6)0.0049 (6)0.0021 (6)
C110.0235 (8)0.0215 (9)0.0194 (7)0.0061 (6)0.0001 (6)0.0009 (6)
C120.0183 (7)0.0204 (8)0.0251 (8)0.0029 (6)0.0050 (6)0.0040 (7)
C130.0135 (6)0.0179 (8)0.0166 (7)0.0003 (5)0.0000 (5)0.0006 (6)
C140.0125 (7)0.0227 (9)0.0200 (7)0.0012 (6)0.0017 (5)0.0007 (6)
Geometric parameters (Å, º) top
Si1—O1B1.617 (12)C3—H30.9500
Si1—O2A1.6950 (18)C4—C51.399 (2)
Si1—O1A1.7349 (19)C4—H40.9500
Si1—O2B1.829 (10)C5—C61.384 (2)
Si1—C131.8653 (16)C5—H50.9500
Si1—C141.8731 (15)C6—H60.9500
Si1—N1A2.1750 (15)C7—C121.398 (2)
Si1—N2B2.191 (5)C7—C81.408 (2)
O1A—C21.365 (2)C8—C91.403 (2)
O2A—C81.343 (2)C9—C101.386 (2)
N1A—N2A1.266 (2)C9—H90.9500
N1A—C11.405 (2)C10—C111.396 (2)
N2A—C71.424 (2)C10—H100.9500
O1B—C21.330 (13)C11—C121.376 (2)
O2B—C81.485 (10)C11—H110.9500
N1B—N2B1.281 (5)C12—H120.9500
N1B—C11.449 (5)C13—H13A0.9800
N2B—C71.426 (5)C13—H13B0.9800
N2B—C81.925 (7)C13—H13C0.9800
C1—C21.394 (2)C14—H14A0.9800
C1—C61.399 (2)C14—H14B0.9800
C2—C31.390 (2)C14—H14C0.9800
C3—C41.386 (2)
O1B—Si1—O2A119.0 (5)C4—C3—C2118.85 (15)
O2A—Si1—O1A132.95 (9)C4—C3—H3120.6
O1B—Si1—O2B134.8 (6)C2—C3—H3120.6
O1A—Si1—O2B147.3 (4)C3—C4—C5121.46 (15)
O1B—Si1—C13119.0 (6)C3—C4—H4119.3
O2A—Si1—C13110.80 (8)C5—C4—H4119.3
O1A—Si1—C13110.76 (9)C6—C5—C4119.99 (14)
O2B—Si1—C13101.0 (4)C6—C5—H5120.0
O1B—Si1—C1499.4 (6)C4—C5—H5120.0
O2A—Si1—C1494.50 (8)C5—C6—C1118.40 (14)
O1A—Si1—C1491.59 (9)C5—C6—H6120.8
O2B—Si1—C1484.9 (3)C1—C6—H6120.8
C13—Si1—C14109.64 (7)C12—C7—C8120.17 (15)
O1B—Si1—N1A67.1 (5)C12—C7—N2A113.11 (14)
O2A—Si1—N1A81.75 (7)C8—C7—N2A126.29 (15)
O1A—Si1—N1A77.98 (8)C12—C7—N2B154.3 (3)
O2B—Si1—N1A95.4 (3)C8—C7—N2B85.5 (3)
C13—Si1—N1A88.86 (6)O2A—C8—C9119.49 (16)
C14—Si1—N1A161.15 (7)O2A—C8—C7121.85 (16)
O1B—Si1—N2B87.9 (6)C9—C8—C7118.48 (15)
O2A—Si1—N2B61.4 (2)C9—C8—O2B104.3 (4)
O1A—Si1—N2B100.11 (18)C7—C8—O2B135.9 (4)
O2B—Si1—N2B73.2 (4)O2A—C8—N2B74.41 (18)
C13—Si1—N2B86.9 (3)C9—C8—N2B166.1 (2)
C14—Si1—N2B155.0 (2)C7—C8—N2B47.61 (16)
C2—O1A—Si1121.59 (16)O2B—C8—N2B89.3 (4)
C8—O2A—Si1131.20 (14)C10—C9—C8120.59 (15)
N2A—N1A—C1116.60 (14)C10—C9—H9119.7
N2A—N1A—Si1132.07 (12)C8—C9—H9119.7
C1—N1A—Si1111.22 (11)C9—C10—C11120.41 (15)
N1A—N2A—C7112.25 (14)C9—C10—H10119.8
C2—O1B—Si1133.6 (12)C11—C10—H10119.8
C8—O2B—Si1113.0 (6)C12—C11—C10119.71 (15)
N2B—N1B—C1112.1 (5)C12—C11—H11120.1
N1B—N2B—C7109.9 (4)C10—C11—H11120.1
N1B—N2B—C8153.0 (5)C11—C12—C7120.63 (15)
C7—N2B—C846.8 (2)C11—C12—H12119.7
N1B—N2B—Si1120.2 (4)C7—C12—H12119.7
C7—N2B—Si1129.8 (4)Si1—C13—H13A109.5
C8—N2B—Si184.4 (2)Si1—C13—H13B109.5
C2—C1—C6121.57 (14)H13A—C13—H13B109.5
C2—C1—N1A107.05 (14)Si1—C13—H13C109.5
C6—C1—N1A131.27 (15)H13A—C13—H13C109.5
C2—C1—N1B142.2 (3)H13B—C13—H13C109.5
C6—C1—N1B95.7 (3)Si1—C14—H14A109.5
O1B—C2—C3134.3 (7)Si1—C14—H14B109.5
O1A—C2—C3120.75 (16)H14A—C14—H14B109.5
O1B—C2—C1104.2 (7)Si1—C14—H14C109.5
O1A—C2—C1119.55 (16)H14A—C14—H14C109.5
C3—C2—C1119.70 (14)H14B—C14—H14C109.5
O1B—Si1—O1A—C256 (2)N2B—N1B—C1—N1A1.9 (5)
O2A—Si1—O1A—C280.4 (2)Si1—O1B—C2—O1A95 (3)
O2B—Si1—O1A—C294.9 (6)Si1—O1B—C2—C3146.6 (9)
C13—Si1—O1A—C270.26 (19)Si1—O1B—C2—C149.4 (13)
C14—Si1—O1A—C2178.02 (18)Si1—O1A—C2—O1B52 (2)
N1A—Si1—O1A—C213.85 (17)Si1—O1A—C2—C3168.53 (15)
N2B—Si1—O1A—C220.3 (3)Si1—O1A—C2—C111.9 (3)
O1B—Si1—O2A—C899.6 (7)C6—C1—C2—O1B166.1 (7)
O1A—Si1—O2A—C8106.6 (2)N1A—C1—C2—O1B10.6 (7)
O2B—Si1—O2A—C8101.0 (14)N1B—C1—C2—O1B3.1 (10)
C13—Si1—O2A—C844.0 (2)C6—C1—C2—O1A178.82 (17)
C14—Si1—O2A—C8156.99 (18)N1A—C1—C2—O1A2.1 (2)
N1A—Si1—O2A—C841.60 (18)N1B—C1—C2—O1A9.6 (7)
N2B—Si1—O2A—C830.2 (3)C6—C1—C2—C30.7 (2)
O1B—Si1—N1A—N2A158.9 (6)N1A—C1—C2—C3177.44 (15)
O2A—Si1—N1A—N2A32.46 (16)N1B—C1—C2—C3169.9 (6)
O1A—Si1—N1A—N2A169.74 (18)O1B—C2—C3—C4162.7 (9)
O2B—Si1—N1A—N2A22.1 (4)O1A—C2—C3—C4179.77 (18)
C13—Si1—N1A—N2A78.75 (16)C1—C2—C3—C40.7 (2)
C14—Si1—N1A—N2A112.1 (2)C2—C3—C4—C51.1 (3)
N2B—Si1—N1A—N2A6.0 (6)C3—C4—C5—C60.1 (3)
O1B—Si1—N1A—C125.2 (6)C4—C5—C6—C11.3 (2)
O2A—Si1—N1A—C1151.62 (12)C2—C1—C6—C51.7 (2)
O1A—Si1—N1A—C114.34 (13)N1A—C1—C6—C5177.54 (16)
O2B—Si1—N1A—C1161.9 (4)N1B—C1—C6—C5175.1 (4)
C13—Si1—N1A—C197.17 (11)N1A—N2A—C7—C12176.69 (14)
C14—Si1—N1A—C172.0 (3)N1A—N2A—C7—C810.9 (2)
N2B—Si1—N1A—C1178.0 (7)N1A—N2A—C7—N2B3.5 (6)
C1—N1A—N2A—C7171.94 (14)N1B—N2B—C7—C1219.4 (15)
Si1—N1A—N2A—C712.3 (2)C8—N2B—C7—C12177.0 (8)
O2A—Si1—O1B—C2110.6 (12)Si1—N2B—C7—C12160.2 (3)
O1A—Si1—O1B—C290 (3)N1B—N2B—C7—C8163.6 (8)
O2B—Si1—O1B—C2118.9 (13)Si1—N2B—C7—C816.8 (6)
C13—Si1—O1B—C230.0 (15)N1B—N2B—C7—N2A4.8 (5)
C14—Si1—O1B—C2148.9 (12)C8—N2B—C7—N2A168.4 (5)
N1A—Si1—O1B—C244.9 (11)Si1—N2B—C7—N2A174.9 (11)
N2B—Si1—O1B—C255.2 (13)Si1—O2A—C8—C9149.21 (16)
O1B—Si1—O2B—C872.2 (12)Si1—O2A—C8—C735.7 (3)
O2A—Si1—O2B—C846.5 (9)Si1—O2A—C8—O2B101.6 (14)
O1A—Si1—O2B—C885.4 (9)Si1—O2A—C8—N2B31.4 (3)
C13—Si1—O2B—C880.5 (7)C12—C7—C8—O2A175.96 (16)
C14—Si1—O2B—C8170.4 (7)N2A—C7—C8—O2A4.1 (3)
N1A—Si1—O2B—C89.4 (7)N2B—C7—C8—O2A5.5 (4)
N2B—Si1—O2B—C82.9 (6)C12—C7—C8—C90.8 (2)
C1—N1B—N2B—C7173.5 (6)N2A—C7—C8—C9171.10 (16)
C1—N1B—N2B—C8146.5 (12)N2B—C7—C8—C9179.3 (4)
C1—N1B—N2B—Si16.8 (11)C12—C7—C8—O2B163.4 (7)
O1B—Si1—N2B—N1B27.8 (10)N2A—C7—C8—O2B24.7 (7)
O2A—Si1—N2B—N1B152.8 (9)N2B—C7—C8—O2B15.1 (8)
O1A—Si1—N2B—N1B19.1 (9)C12—C7—C8—N2B178.5 (4)
O2B—Si1—N2B—N1B166.2 (10)N2A—C7—C8—N2B9.6 (4)
C13—Si1—N2B—N1B91.4 (8)Si1—O2B—C8—O2A47.9 (9)
C14—Si1—N2B—N1B135.7 (6)Si1—O2B—C8—C9173.7 (5)
N1A—Si1—N2B—N1B2.9 (5)Si1—O2B—C8—C78.0 (11)
O1B—Si1—N2B—C7152.6 (9)Si1—O2B—C8—N2B3.1 (7)
O2A—Si1—N2B—C727.6 (6)N1B—N2B—C8—O2A139.3 (17)
O1A—Si1—N2B—C7161.3 (7)C7—N2B—C8—O2A175.1 (4)
O2B—Si1—N2B—C714.3 (7)Si1—N2B—C8—O2A17.76 (17)
C13—Si1—N2B—C788.1 (7)N1B—N2B—C8—C938 (3)
C14—Si1—N2B—C744.7 (11)C7—N2B—C8—C92.5 (15)
N1A—Si1—N2B—C7177.5 (13)Si1—N2B—C8—C9164.6 (11)
O1B—Si1—N2B—C8140.4 (6)N1B—N2B—C8—C735.8 (14)
O2A—Si1—N2B—C815.38 (16)Si1—N2B—C8—C7167.1 (5)
O1A—Si1—N2B—C8149.1 (2)N1B—N2B—C8—O2B154.7 (17)
O2B—Si1—N2B—C82.0 (4)C7—N2B—C8—O2B169.5 (6)
C13—Si1—N2B—C8100.4 (3)Si1—N2B—C8—O2B2.4 (5)
C14—Si1—N2B—C832.5 (7)O2A—C8—C9—C10175.94 (16)
N1A—Si1—N2B—C8165.3 (9)C7—C8—C9—C100.7 (2)
N2A—N1A—C1—C2171.89 (14)O2B—C8—C9—C10168.0 (5)
Si1—N1A—C1—C211.50 (15)N2B—C8—C9—C101.5 (13)
N2A—N1A—C1—C64.4 (3)C8—C9—C10—C110.1 (3)
Si1—N1A—C1—C6172.24 (15)C9—C10—C11—C120.3 (3)
N2A—N1A—C1—N1B0.2 (7)C10—C11—C12—C70.2 (2)
Si1—N1A—C1—N1B176.4 (7)C8—C7—C12—C110.4 (2)
N2B—N1B—C1—C210.5 (12)N2A—C7—C12—C11172.52 (15)
N2B—N1B—C1—C6178.8 (8)N2B—C7—C12—C11176.9 (9)
(II_93K_slow_cooled) (2,2'-diazenediyldiphenolato-κ3O,N,O')dimethylsilicon top
Crystal data top
C14H14N2O2SiDx = 1.412 Mg m3
Mr = 270.36Melting point: 388 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6404 reflections
a = 10.0248 (10) Åθ = 2.4–36.2°
b = 7.8879 (8) ŵ = 0.18 mm1
c = 32.162 (3) ÅT = 93 K
V = 2543.2 (4) Å3Prism, red
Z = 80.45 × 0.18 × 0.15 mm
F(000) = 1136
Data collection top
Bruker SMART CCD area-detector
diffractometer
2341 independent reflections
Radiation source: sealed tube2116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.921, Tmax = 0.978k = 99
11554 measured reflectionsl = 2539
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0388P)2 + 1.7649P]
where P = (Fo2 + 2Fc2)/3
2341 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.38 e Å3
64 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H14N2O2SiV = 2543.2 (4) Å3
Mr = 270.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.0248 (10) ŵ = 0.18 mm1
b = 7.8879 (8) ÅT = 93 K
c = 32.162 (3) Å0.45 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2341 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2116 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.978Rint = 0.022
11554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03264 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.10Δρmax = 0.38 e Å3
2341 reflectionsΔρmin = 0.29 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.05790 (4)0.51192 (5)0.610646 (12)0.01307 (13)
O1A0.00827 (11)0.45205 (19)0.56343 (3)0.0171 (4)0.959 (2)
O2A0.07556 (12)0.70328 (16)0.63493 (4)0.0168 (4)0.959 (2)
N1A0.15191 (12)0.56873 (18)0.61939 (4)0.0137 (3)0.959 (2)
N2A0.21377 (12)0.64832 (18)0.64778 (4)0.0147 (3)0.959 (2)
O1B0.022 (2)0.508 (5)0.5635 (3)0.019 (3)0.041 (2)
O2B0.0929 (9)0.677 (4)0.6439 (10)0.018 (3)0.041 (2)
N1B0.2247 (12)0.589 (3)0.6250 (6)0.0144 (18)0.041 (2)
N2B0.1128 (9)0.629 (3)0.6410 (6)0.0137 (18)0.041 (2)
C10.22742 (15)0.4920 (2)0.58806 (4)0.0154 (3)
C20.14120 (14)0.4314 (2)0.55746 (5)0.0161 (3)
C30.19253 (15)0.3552 (2)0.52181 (5)0.0190 (4)
H30.13480.31420.50070.023*
C40.32989 (15)0.3405 (2)0.51788 (5)0.0185 (3)
H40.36610.28740.49390.022*
C50.41641 (14)0.4024 (2)0.54858 (5)0.0172 (3)
H50.51010.39080.54520.021*
C60.36613 (15)0.4803 (2)0.58373 (5)0.0159 (3)
H60.42410.52470.60440.019*
C70.12905 (14)0.7402 (2)0.67459 (4)0.0160 (3)
C80.00802 (15)0.7704 (2)0.66733 (4)0.0165 (3)
C90.07507 (15)0.8833 (2)0.69342 (5)0.0199 (4)
H90.16670.90700.68860.024*
C100.01013 (16)0.9616 (2)0.72628 (5)0.0190 (3)
H100.05761.03750.74380.023*
C110.12494 (16)0.9292 (2)0.73374 (5)0.0194 (3)
H110.16920.98190.75650.023*
C120.19313 (15)0.8206 (2)0.70791 (5)0.0181 (3)
H120.28520.79980.71270.022*
C130.04153 (14)0.3399 (2)0.65008 (4)0.0160 (3)
H13A0.03620.38990.67790.024*
H13B0.03960.27430.64450.024*
H13C0.11940.26500.64850.024*
C140.23225 (14)0.5138 (2)0.58948 (5)0.0171 (3)
H14A0.24610.61710.57310.026*
H14B0.29610.51100.61260.026*
H14C0.24570.41430.57170.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0110 (2)0.0146 (3)0.0136 (2)0.00068 (14)0.00094 (15)0.00052 (16)
O1A0.0119 (5)0.0231 (9)0.0164 (6)0.0012 (5)0.0009 (4)0.0012 (5)
O2A0.0184 (5)0.0161 (7)0.0159 (7)0.0013 (5)0.0041 (4)0.0005 (6)
N1A0.0137 (6)0.0135 (8)0.0140 (6)0.0014 (5)0.0011 (5)0.0035 (5)
N2A0.0162 (6)0.0139 (8)0.0140 (6)0.0019 (5)0.0014 (5)0.0023 (5)
O1B0.012 (5)0.022 (5)0.023 (5)0.002 (5)0.003 (5)0.006 (5)
O2B0.027 (5)0.013 (5)0.014 (5)0.001 (5)0.009 (5)0.002 (5)
N1B0.017 (3)0.013 (3)0.013 (3)0.001 (3)0.000 (3)0.003 (3)
N2B0.015 (3)0.013 (3)0.013 (3)0.002 (3)0.001 (3)0.002 (3)
C10.0208 (8)0.0127 (9)0.0128 (7)0.0021 (6)0.0030 (6)0.0037 (6)
C20.0134 (7)0.0178 (9)0.0170 (7)0.0005 (6)0.0014 (6)0.0059 (6)
C30.0194 (7)0.0231 (10)0.0147 (7)0.0026 (6)0.0014 (6)0.0007 (6)
C40.0203 (7)0.0206 (10)0.0147 (7)0.0014 (6)0.0039 (6)0.0005 (6)
C50.0141 (7)0.0189 (9)0.0187 (7)0.0018 (6)0.0016 (6)0.0033 (6)
C60.0189 (7)0.0135 (9)0.0152 (7)0.0013 (6)0.0022 (6)0.0026 (6)
C70.0211 (7)0.0133 (9)0.0136 (7)0.0007 (6)0.0038 (6)0.0027 (6)
C80.0232 (8)0.0125 (9)0.0140 (7)0.0024 (6)0.0016 (6)0.0012 (6)
C90.0192 (7)0.0201 (10)0.0205 (8)0.0016 (6)0.0005 (6)0.0016 (7)
C100.0235 (8)0.0175 (9)0.0160 (7)0.0007 (6)0.0054 (6)0.0012 (6)
C110.0228 (8)0.0203 (10)0.0152 (7)0.0050 (6)0.0000 (6)0.0012 (6)
C120.0163 (7)0.0188 (9)0.0190 (7)0.0027 (6)0.0013 (6)0.0035 (6)
C130.0145 (7)0.0181 (9)0.0154 (7)0.0005 (6)0.0004 (5)0.0010 (6)
C140.0132 (7)0.0198 (9)0.0183 (7)0.0006 (6)0.0007 (6)0.0001 (6)
Geometric parameters (Å, º) top
Si1—O2A1.7087 (12)C3—H30.9500
Si1—O1B1.715 (4)C4—C51.402 (2)
Si1—O2B1.718 (5)C4—H40.9500
Si1—O1A1.7231 (11)C5—C61.381 (2)
Si1—C131.8647 (16)C5—H50.9500
Si1—C141.8757 (15)C6—H60.9500
Si1—N1A2.1688 (14)C7—C121.401 (2)
Si1—N2B2.174 (5)C7—C81.414 (2)
O1A—C21.3561 (17)C8—C91.396 (2)
O2A—C81.3508 (17)C9—C101.386 (2)
N1A—N2A1.2698 (18)C9—H90.9500
N1A—C11.3982 (19)C10—C111.399 (2)
N2A—C71.4107 (19)C10—H100.9500
O1B—C21.354 (5)C11—C121.375 (2)
O2B—C81.356 (5)C11—H110.9500
N1B—N2B1.272 (5)C12—H120.9500
N1B—C11.415 (5)C13—H13A0.9800
N2B—C71.403 (5)C13—H13B0.9800
N2B—C81.853 (12)C13—H13C0.9800
C1—C21.394 (2)C14—H14A0.9800
C1—C61.401 (2)C14—H14B0.9800
C2—C31.393 (2)C14—H14C0.9800
C3—C41.388 (2)
O2A—Si1—O1B118.1 (13)C4—C3—C2118.53 (14)
O1B—Si1—O2B131.4 (19)C4—C3—H3120.7
O2A—Si1—O1A133.22 (7)C2—C3—H3120.7
O2B—Si1—O1A146.5 (14)C3—C4—C5121.37 (14)
O2A—Si1—C13109.95 (7)C3—C4—H4119.3
O1B—Si1—C13123.1 (7)C5—C4—H4119.3
O2B—Si1—C1398.3 (15)C6—C5—C4120.35 (13)
O1A—Si1—C13111.47 (7)C6—C5—H5119.8
O2A—Si1—C1493.58 (7)C4—C5—H5119.8
O1B—Si1—C1496.5 (7)C5—C6—C1118.23 (14)
O2B—Si1—C1491.7 (4)C5—C6—H6120.9
O1A—Si1—C1492.35 (6)C1—C6—H6120.9
C13—Si1—C14109.54 (7)C12—C7—N2B157.9 (6)
O2A—Si1—N1A81.87 (6)C12—C7—N2A115.09 (13)
O1B—Si1—N1A70.6 (10)C12—C7—C8119.71 (14)
O2B—Si1—N1A87.8 (3)N2B—C7—C882.3 (5)
O1A—Si1—N1A78.32 (5)N2A—C7—C8124.79 (13)
C13—Si1—N1A88.67 (6)O2A—C8—C9118.19 (13)
C14—Si1—N1A161.64 (7)O2B—C8—C9112.4 (4)
O2A—Si1—N2B60.1 (5)O2A—C8—C7123.27 (14)
O1B—Si1—N2B92.3 (13)O2B—C8—C7127.5 (4)
O2B—Si1—N2B64.0 (4)C9—C8—C7118.42 (14)
O1A—Si1—N2B102.0 (3)O2A—C8—N2B74.8 (3)
C13—Si1—N2B86.2 (8)O2B—C8—N2B80.0 (3)
C14—Si1—N2B153.2 (6)C9—C8—N2B167.0 (3)
C2—O1A—Si1122.41 (10)C7—C8—N2B48.6 (2)
C8—O2A—Si1130.30 (11)C10—C9—C8121.07 (14)
N2A—N1A—C1117.90 (13)C10—C9—H9119.5
N2A—N1A—Si1131.99 (10)C8—C9—H9119.5
C1—N1A—Si1110.01 (10)C9—C10—C11120.30 (15)
N1A—N2A—C7113.55 (12)C9—C10—H10119.9
C2—O1B—Si1123.1 (4)C11—C10—H10119.9
C8—O2B—Si1129.1 (5)C12—C11—C10119.41 (15)
N2B—N1B—C1119.3 (9)C12—C11—H11120.3
N1B—N2B—C7111.2 (4)C10—C11—H11120.3
N1B—N2B—C8155.3 (16)C11—C12—C7121.07 (14)
C7—N2B—C849.1 (3)C11—C12—H12119.5
N1B—N2B—Si1114.1 (6)C7—C12—H12119.5
C7—N2B—Si1134.7 (6)Si1—C13—H13A109.5
C8—N2B—Si186.9 (4)Si1—C13—H13B109.5
C2—C1—N1A108.74 (13)H13A—C13—H13B109.5
C2—C1—C6121.51 (14)Si1—C13—H13C109.5
N1A—C1—C6129.63 (14)H13A—C13—H13C109.5
C2—C1—N1B140.1 (5)H13B—C13—H13C109.5
C6—C1—N1B98.0 (5)Si1—C14—H14A109.5
O1B—C2—C3129.5 (9)Si1—C14—H14B109.5
O1A—C2—C3122.09 (13)H14A—C14—H14B109.5
O1B—C2—C1107.2 (14)Si1—C14—H14C109.5
O1A—C2—C1117.92 (13)H14A—C14—H14C109.5
C3—C2—C1119.98 (13)H14B—C14—H14C109.5
O2A—Si1—O1A—C281.15 (16)N2B—N1B—C1—C6179 (3)
O1B—Si1—O1A—C272.2 (16)Si1—O1B—C2—O1A75.6 (17)
O2B—Si1—O1A—C281.6 (9)Si1—O1B—C2—C3150.3 (16)
C13—Si1—O1A—C269.62 (15)Si1—O1B—C2—C151 (3)
C14—Si1—O1A—C2178.30 (14)Si1—O1A—C2—O1B72.9 (15)
N1A—Si1—O1A—C214.25 (13)Si1—O1A—C2—C3168.57 (13)
N2B—Si1—O1A—C221.0 (8)Si1—O1A—C2—C112.5 (2)
O1B—Si1—O2A—C8103.1 (7)N1A—C1—C2—O1B16.1 (12)
O2B—Si1—O2A—C875 (2)C6—C1—C2—O1B160.4 (12)
O1A—Si1—O2A—C8105.81 (15)N1B—C1—C2—O1B10 (2)
C13—Si1—O2A—C845.28 (16)N1A—C1—C2—O1A1.6 (2)
C14—Si1—O2A—C8157.57 (15)C6—C1—C2—O1A178.07 (14)
N1A—Si1—O2A—C840.32 (14)N1B—C1—C2—O1A8 (2)
N2B—Si1—O2A—C827.9 (8)N1A—C1—C2—C3177.37 (14)
O2A—Si1—N1A—N2A32.55 (15)C6—C1—C2—C30.9 (2)
O1B—Si1—N1A—N2A156.2 (11)N1B—C1—C2—C3171 (2)
O2B—Si1—N1A—N2A20.6 (15)O1B—C2—C3—C4157 (2)
O1A—Si1—N1A—N2A169.93 (15)O1A—C2—C3—C4179.34 (15)
C13—Si1—N1A—N2A77.82 (15)C1—C2—C3—C40.4 (2)
C14—Si1—N1A—N2A109.3 (2)C2—C3—C4—C50.8 (2)
N2B—Si1—N1A—N2A6 (2)C3—C4—C5—C60.1 (2)
O2A—Si1—N1A—C1151.36 (11)C4—C5—C6—C11.3 (2)
O1B—Si1—N1A—C127.7 (11)C2—C1—C6—C51.7 (2)
O2B—Si1—N1A—C1163.3 (15)N1A—C1—C6—C5177.45 (15)
O1A—Si1—N1A—C113.98 (10)N1B—C1—C6—C5175.4 (13)
C13—Si1—N1A—C198.27 (11)N1B—N2B—C7—C1224 (5)
C14—Si1—N1A—C174.7 (2)C8—N2B—C7—C12173 (3)
N2B—Si1—N1A—C1178 (2)Si1—N2B—C7—C12155.9 (6)
C1—N1A—N2A—C7171.85 (13)N1B—N2B—C7—N2A5.0 (17)
Si1—N1A—N2A—C712.3 (2)C8—N2B—C7—N2A167.3 (15)
O2A—Si1—O1B—C2113 (3)Si1—N2B—C7—N2A175 (4)
O2B—Si1—O1B—C2113 (3)N1B—N2B—C7—C8162 (3)
O1A—Si1—O1B—C274.1 (18)Si1—N2B—C7—C817 (2)
C13—Si1—O1B—C231 (4)N1A—N2A—C7—C12176.02 (13)
C14—Si1—O1B—C2149 (3)N1A—N2A—C7—N2B4.0 (18)
N1A—Si1—O1B—C244 (3)N1A—N2A—C7—C811.4 (2)
N2B—Si1—O1B—C256 (3)Si1—O2A—C8—O2B76 (2)
O2A—Si1—O2B—C871.1 (18)Si1—O2A—C8—C9150.09 (13)
O1B—Si1—O2B—C869 (4)Si1—O2A—C8—C734.0 (2)
O1A—Si1—O2B—C873 (4)Si1—O2A—C8—N2B29.6 (9)
C13—Si1—O2B—C880 (4)Si1—O2B—C8—O2A71.7 (17)
C14—Si1—O2B—C8170 (4)Si1—O2B—C8—C9174 (3)
N1A—Si1—O2B—C88 (4)Si1—O2B—C8—C710 (5)
N2B—Si1—O2B—C81 (3)Si1—O2B—C8—N2B1 (3)
C1—N1B—N2B—C7173 (2)C12—C7—C8—O2A177.20 (15)
C1—N1B—N2B—C8140 (4)N2B—C7—C8—O2A5.7 (12)
C1—N1B—N2B—Si16 (4)N2A—C7—C8—O2A4.9 (3)
O2A—Si1—N2B—N1B152 (3)C12—C7—C8—O2B163 (2)
O1B—Si1—N2B—N1B30 (3)N2B—C7—C8—O2B14 (3)
O2B—Si1—N2B—N1B166 (3)N2A—C7—C8—O2B25 (2)
O1A—Si1—N2B—N1B18 (3)C12—C7—C8—C91.3 (2)
C13—Si1—N2B—N1B93 (2)N2B—C7—C8—C9178.4 (12)
C14—Si1—N2B—N1B139.4 (18)N2A—C7—C8—C9171.00 (15)
N1A—Si1—N2B—N1B2.2 (16)C12—C7—C8—N2B177.1 (12)
O2A—Si1—N2B—C728 (2)N2A—C7—C8—N2B10.6 (12)
O1B—Si1—N2B—C7149 (3)N1B—N2B—C8—O2A132 (6)
O2B—Si1—N2B—C714 (3)C7—N2B—C8—O2A175.1 (11)
O1A—Si1—N2B—C7161 (2)Si1—N2B—C8—O2A17.2 (5)
C13—Si1—N2B—C787 (3)N1B—N2B—C8—O2B149 (6)
C14—Si1—N2B—C740 (4)C7—N2B—C8—O2B168 (2)
N1A—Si1—N2B—C7177 (4)Si1—N2B—C8—O2B1 (2)
O2A—Si1—N2B—C815.1 (5)N1B—N2B—C8—C949 (9)
O1B—Si1—N2B—C8136.4 (12)C7—N2B—C8—C96 (5)
O2B—Si1—N2B—C80.7 (17)Si1—N2B—C8—C9161 (3)
O1A—Si1—N2B—C8148.3 (7)N1B—N2B—C8—C743 (5)
C13—Si1—N2B—C8100.5 (9)Si1—N2B—C8—C7167.7 (16)
C14—Si1—N2B—C827 (2)O2A—C8—C9—C10177.54 (15)
N1A—Si1—N2B—C8164 (3)O2B—C8—C9—C10165 (2)
N2A—N1A—C1—C2172.29 (13)C7—C8—C9—C101.4 (2)
Si1—N1A—C1—C210.99 (15)N2B—C8—C9—C104 (4)
N2A—N1A—C1—C63.8 (2)C8—C9—C10—C110.4 (2)
Si1—N1A—C1—C6172.88 (14)C9—C10—C11—C120.7 (2)
N2A—N1A—C1—N1B0 (3)C10—C11—C12—C70.8 (2)
Si1—N1A—C1—N1B177 (3)N2B—C7—C12—C11172 (3)
N2B—N1B—C1—C29 (4)N2A—C7—C12—C11172.84 (14)
N2B—N1B—C1—N1A2.1 (16)C8—C7—C12—C110.2 (2)

Experimental details

(II_298K)(II_153K)(II_93K_flash_cooled)(II_93K_slow_cooled)
Crystal data
Chemical formulaC14H14N2O2SiC14H14N2O2SiC14H14N2O2SiC14H14N2O2Si
Mr270.36270.36270.36270.36
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, PbcaOrthorhombic, Pbca
Temperature (K)2981539393
a, b, c (Å)10.2295 (2), 8.0212 (1), 32.1141 (5)10.0440 (11), 7.8990 (8), 32.011 (3)10.0654 (5), 7.9069 (4), 31.9971 (17)10.0248 (10), 7.8879 (8), 32.162 (3)
V3)2635.05 (7)2539.7 (4)2546.5 (2)2543.2 (4)
Z8888
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.180.180.180.18
Crystal size (mm)0.45 × 0.18 × 0.150.45 × 0.18 × 0.150.45 × 0.18 × 0.150.45 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.9780.921, 0.9780.921, 0.9780.921, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
36746, 3192, 2533 16295, 3063, 2632 13356, 2937, 2606 11554, 2341, 2116
Rint0.0320.0270.0220.022
(sin θ/λ)max1)0.6600.6610.6600.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.11 0.038, 0.103, 1.08 0.038, 0.094, 1.04 0.032, 0.085, 1.10
No. of reflections3192306329372341
No. of parameters211211211211
No. of restraints64646464
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.260.36, 0.350.44, 0.290.38, 0.29

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds