Download citation
Download citation
link to html
cis-1,2-Dimethyl­cyclo­butane-1,2-diol, C6H12O2, crystallizes with five mol­ecules in the asymmetric unit. Of these, two mol­ecules are the building blocks of columns with a complex hydrogen-bonding pattern in their hydro­philic core. The walls of the columns are formed by the lipophilic parts of the mol­ecules. The remaining three mol­ecules of the asymmetric unit build columns with a less complex hydrogen-bonding system. In terms of co-operativity, the most significant feature is the formation of homodromic rings of six hydroxy functions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010800053X/ln3079sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010800053X/ln3079Isup2.hkl
Contains datablock I

CCDC reference: 682807

Comment top

On crystallization, the polar (hydrophilic) and the apolar (lipophilic) parts of amphiphilic molecules usually segregate into polar and apolar building blocks of the crystal structure, respectively. If the polar and the apolar parts occupy volume fractions of different sizes, only the larger part normally establishes intermolecular contacts in all three dimensions, whereas the smaller part may be restricted to intermolecular contacts in zero (pairs of molecules, clusters) or one dimension (chains, columns).

The diols are a particularly widespread class of compounds which illustrate this principle since, owing to the variety of residues that may be attached to the diol function, the size ratios between the polar and the apolar parts may span an extended range. Moreover, the diols have attracted our interest as they are the parent acids of potentially chelating ligands. Examples of structurally characterized diols which are representative examples in terms of the size ratio between the polar and apolar molecular parts include 1,2-dicyclopentylethane-1,2-diol (Betz et al., 2007) and bi-1,1'-cycloheptyl-1,1'-diol (Betz & Klüfers, 2007), in both of which the diol functions are assembled in hydrogen-bonded chains, and cis- and rac-trans-cyclohexane-1,2-diol (Sillanpää et al., 1984) which exhibit hydrogen-bonded layers. Finite hydrogen-bonding patterns have been found with pinacol, for example, namely eight-membered homodromic rings in tetramers of the diol (Jeffrey & Robbins, 1978).

In the title compound, (I), the apolar part fills, to a similar extent as in pinacol, the major part of the crystal's volume and restricts the polar part to the core of columns with an apolar shell. What makes (I) remarkable is the complexity with which the molecules assemble into the crystal structure; no less than five molecules are found in the asymmetric unit, one of them exhibiting disorder in the apolar part. Fig. 1 shows two of the five independent molecules, while Fig. 2 shows the remaining three molecules. A common feature of all the molecules is the slightly twisted cyclobutane ring, which, together with the methyl substituents, imparts a certain degree of rigidity to the molecules such that the diol torsion angles of all five molecules are within 4° of 30°. One molecule exhibits disorder of the ethylene unit of the cyclobutane ring and of the two methyl substituents (Fig. 3). It should be noted that the two disordered forms are connected by a 180° rotation, which leaves the orientation of the diol function unaltered, so that both disordered forms are compatible with the hydrogen-bonding pattern.

The dimer and the trimer of diols depicted in Figs. 1 and 2 are the building blocks of two different kinds of hydrogen-bonded columns, termed d2 and d3, respectively. Although built by the more complex asymmetric building block, the core of the d3 column has a simpler construction principle in terms of cooperativity; isolated homodromic rings made up of six symmetry-independent hydroxy functions are linked by a diol dimer (Fig. 4). Hence, although the core of a column provides an infinite stack of approximately equidistant hydroxy groups, their O—H vectors do not combine to form an infinite cooperative hydrogen-bonded system. Specifically, infinite cooperativity via intra-diol hydrogen bonding, as found in the related bicycloheptyldiol structure (Betz & Klüfers, 2007), is only weakly, if at all, exhibited both in the d3 as well as in the d2 strands (cf. the last three entries in Table 1).

The core of the d2 columns shows a closely related, but more complex, hydrogen-bonding pattern (Fig. 5). Similar homodromic rings of another six hydroxy functions are again aligned by diol links, but two more hydroxy donors, which bind to two acceptor sites at opposite ring positions, complete the pattern.

For the hydrogen bonds observed in the two different columns, graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) was applied. Each column was analyzed separately because the d2 and d3 columns have no linking hydrogen bonds.

The hydrogen bonds in the more basic d3 column are not crystallographically equivalent, so on the unitary graph level the pattern should be assigned a DDDDDD descriptor. As depicted in Fig. 4, on the binary graph level the descriptor converts to two C22(7) chains connected by an R22(10) ring. Finally, an R66(12) [R33(9) R33(9)] six-level graph set (N6) [on the ternary level two R33(9) rings are found] fits the homodromic rings mentioned above made up of six hydroxy functions. In conclusion, the most important description seems to be that of the second-level graph set, as the unitary graph set provides only finite motifs and the higher levels can be assembled by the patterns of the second level.

The graph-set analysis of the d2 column results in an R22(10)DDD descriptor on the unitary graph level. On the binary graph level the pattern can be depicted by two C22(7) chains with opposite cooperativity connected by an R42(14) ring (Fig. 5). Finally, on the ternary graph level the homodromic rings mentioned above are found, to which the R66(12) descriptor can be assigned.

The entire crystal structure is assembled by a pseudohexagonal stacking of both the d2– and the d3-type [100] columns in the bc plane (Fig. 6).

Related literature top

For related literature, see: Bernstein et al. (1995); Betz & Klüfers (2007); Betz, Herdlicka & Klüfers (2007); Corey et al. (1976); Etter et al. (1990); Jeffrey & Robbins (1978); Sillanpää et al. (1984).

Experimental top

The title compound was prepared according to a published procedure (Corey et al., 1976) upon pinacolic coupling of hexane-2,5-dione by means of amalgamated magnesium fillings and titanium tetrachloride in tetrahydrofuran. After an aqueous alkaline workup, extraction with diethyl ether and subsequent distillation yielded the desired product, which had already crystallized in the cooler of the distillation head (m.p. 290 K). Crystals suitable for X-ray analysis were obtained directly from the crystallized reaction product.

Refinement top

The C-bonded H atoms were refined as riding on their parent atoms, with C—H distances of 0.98 (methyl) or 0.99 Å (methylene) and with Uiso(H) values of 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the methylene groups. The O-bonded H atoms were located in a difference map, and then their positions were optimized geometrically and refined as riding on their parent atoms by using the electron-density-related AFIX 147 instruction of SHELXL97 (Sheldrick, 2008) [O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O)]. The population parameter of the major disordered component in one of the five molecules refined to 0.639 (5), where the sum of the population parameters of the major and minor disordered components was constrained to unity. The C—C distances of the minor disordered component were tied to the corresponding values of the major form by a similarity restraint (the SADI instruction of SHELXL97 with sigma = 0.01).

Computing details top

Data collection: Collect (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Two of the five symmetry-independent molecules of (I). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The three remaining independent molecules of (I). Displacement ellipsoids are drawn at the 40% probability level. Only the major component of the disordered molecule 4 (atomic labels X4n) is shown.
[Figure 3] Fig. 3. The disordered molecule 4 (30% ellipsoid probability). Occupancies: diol function fully occupied; major disordered component (dark grey part) 0.639 (5); the minor part is drawn in buff (light grey).
[Figure 4] Fig. 4. Hydrogen bonding in the d3 columns. Vertical axis: [100]; atoms that are not part of a diol function have been omitted. Note the homodromic rings made up of six symmetry-independent hydroxy functions. For graph-set notation, see text. [Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z.]
[Figure 5] Fig. 5. Hydrogen bonding in the d2 columns. Vertical axis: [100]; atoms that are not part of a diol function have been omitted. Centrosymmetric homodromic rings made up of three symmetry-independent hydroxy functions are supplemented by O11-hydroxy functions. For graph-set notation, see text. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z; (iii) -x + 2, -y, -z + 1; (iv) x + 2, y, z; (v) -x + 3, -y, -z + 1.]
[Figure 6] Fig. 6. The pseudohexagonal packing of d2– and d3-type comlumns viewed along [100].
cis-1,2-dimethylcyclobutane-1,2-diol top
Crystal data top
C6H12O2Z = 10
Mr = 116.16F(000) = 640
Triclinic, P1Dx = 1.125 Mg m3
Hall symbol: -P 1Melting point: 290 K
a = 6.9715 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5549 (3) ÅCell parameters from 19010 reflections
c = 24.8914 (8) Åθ = 3.1–26.0°
α = 79.614 (2)°µ = 0.08 mm1
β = 88.741 (2)°T = 200 K
γ = 72.225 (2)°Needle, colourless
V = 1714.63 (9) Å30.24 × 0.07 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
4077 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.039
MONTEL, graded multilayered X-ray optics monochromatorθmax = 26.1°, θmin = 3.2°
phi/ω–scanh = 88
12129 measured reflectionsk = 1313
6647 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2235P]
where P = (Fo2 + 2Fc2)/3
6647 reflections(Δ/σ)max < 0.001
420 parametersΔρmax = 0.22 e Å3
5 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H12O2γ = 72.225 (2)°
Mr = 116.16V = 1714.63 (9) Å3
Triclinic, P1Z = 10
a = 6.9715 (2) ÅMo Kα radiation
b = 10.5549 (3) ŵ = 0.08 mm1
c = 24.8914 (8) ÅT = 200 K
α = 79.614 (2)°0.24 × 0.07 × 0.06 mm
β = 88.741 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4077 reflections with I > 2σ(I)
12129 measured reflectionsRint = 0.039
6647 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0515 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
6647 reflectionsΔρmin = 0.20 e Å3
420 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.0498 (2)0.08109 (15)0.39561 (6)0.0567 (4)
H110.03920.07500.41900.085*
O120.1074 (2)0.18891 (15)0.44390 (5)0.0454 (4)
H120.00710.15170.46110.068*
C110.0328 (3)0.0089 (2)0.35894 (8)0.0437 (5)
C120.0573 (3)0.1566 (2)0.38672 (8)0.0399 (5)
C130.1617 (3)0.1346 (2)0.36860 (9)0.0529 (6)
H1310.18070.20990.35290.063*
H1320.26100.10950.39690.063*
C140.1472 (3)0.0138 (2)0.32562 (9)0.0551 (6)
H1410.26630.06770.32340.066*
H1420.11240.03610.28890.066*
C150.2083 (4)0.0240 (3)0.32985 (10)0.0658 (7)
H1510.16780.12010.31310.099*
H1520.25050.03100.30140.099*
H1530.32080.00440.35610.099*
C160.2091 (4)0.2626 (2)0.36124 (10)0.0626 (6)
H1610.34530.26080.36900.094*
H1620.18310.24380.32160.094*
H1630.19740.35210.37660.094*
O210.54292 (19)0.14266 (12)0.52163 (5)0.0407 (3)
H210.64880.15340.53270.061*
O220.20134 (17)0.11827 (12)0.48033 (5)0.0359 (3)
H220.30130.04810.48600.054*
C210.4220 (3)0.26654 (18)0.48928 (7)0.0352 (4)
C220.2656 (3)0.23127 (18)0.45597 (7)0.0348 (4)
C230.4162 (3)0.2125 (2)0.41002 (8)0.0445 (5)
H2310.35530.25470.37300.053*
H2320.50000.11750.41110.053*
C240.5224 (3)0.2979 (2)0.43491 (8)0.0449 (5)
H2410.67120.26040.43690.054*
H2420.47870.39490.41780.054*
C250.3533 (3)0.3752 (2)0.52369 (9)0.0497 (5)
H2510.26830.34810.55260.075*
H2520.27580.46030.50060.075*
H2530.47110.38760.54020.075*
C260.0747 (3)0.3471 (2)0.43970 (9)0.0494 (5)
H2610.00450.32390.41310.074*
H2620.10930.42860.42330.074*
H2630.00450.36390.47210.074*
O310.45414 (19)0.62316 (14)0.22100 (5)0.0462 (4)
H310.50140.68080.20250.069*
O320.8316 (2)0.58909 (14)0.19051 (6)0.0499 (4)
H320.95100.57470.18050.075*
C310.6081 (3)0.5269 (2)0.25657 (8)0.0418 (5)
C320.8196 (3)0.4794 (2)0.23214 (8)0.0428 (5)
C330.9104 (3)0.4872 (3)0.28663 (10)0.0649 (7)
H3311.01710.53180.28250.078*
H3320.95580.39930.31210.078*
C340.7035 (3)0.5796 (3)0.29950 (9)0.0611 (6)
H3410.66150.55540.33720.073*
H3420.68890.67730.29010.073*
C350.5247 (4)0.4145 (3)0.28091 (10)0.0660 (7)
H3510.40200.45130.30020.099*
H3520.62500.34670.30660.099*
H3530.49280.37220.25170.099*
C360.8875 (4)0.3493 (2)0.21075 (10)0.0641 (7)
H3610.80600.35740.17800.096*
H3620.87100.27550.23880.096*
H3631.02970.32980.20150.096*
O410.2140 (2)0.54607 (15)0.15396 (5)0.0493 (4)
H410.29000.57520.17070.074*
O420.1483 (2)0.81383 (16)0.10175 (6)0.0543 (4)
H420.05460.81570.12370.081*
C410.2488 (3)0.5696 (2)0.09704 (8)0.0447 (5)
C420.1537 (3)0.7186 (2)0.06757 (8)0.0475 (5)
C43A0.3563 (6)0.6948 (4)0.03588 (15)0.0599 (12)0.639 (5)
H4310.34490.67280.00070.072*0.639 (5)
H4320.41500.77000.03340.072*0.639 (5)
C44A0.4657 (9)0.5686 (6)0.0798 (4)0.0542 (16)0.639 (5)
H4410.54290.48820.06470.065*0.639 (5)
H4420.54630.58750.10790.065*0.639 (5)
C45A0.1810 (8)0.4649 (5)0.0738 (2)0.0640 (13)0.639 (5)
H4510.03910.47590.08180.096*0.639 (5)
H4520.26370.37370.09050.096*0.639 (5)
H4530.19660.47810.03410.096*0.639 (5)
C46A0.0382 (8)0.7598 (6)0.0368 (2)0.0751 (15)0.639 (5)
H4610.06880.85430.01840.113*0.639 (5)
H4620.14550.75050.06180.113*0.639 (5)
H4630.02890.70210.00940.113*0.639 (5)
C43B0.0852 (11)0.5353 (8)0.0658 (3)0.059 (2)0.361 (5)
H4330.02370.47210.08880.071*0.361 (5)
H4340.13200.50340.03140.071*0.361 (5)
C44B0.0501 (11)0.6859 (7)0.0571 (3)0.057 (2)0.361 (5)
H4430.15170.70680.08520.068*0.361 (5)
H4440.11050.72260.01970.068*0.361 (5)
C45B0.2329 (13)0.7741 (8)0.0149 (3)0.064 (2)0.361 (5)
H4540.13850.86230.00100.096*0.361 (5)
H4550.24750.71160.01070.096*0.361 (5)
H4560.36440.78460.02200.096*0.361 (5)
C46B0.4607 (16)0.5151 (12)0.0878 (8)0.064 (3)0.361 (5)
H4640.48400.53410.04860.096*0.361 (5)
H4650.50480.41710.10090.096*0.361 (5)
H4660.53740.55720.10760.096*0.361 (5)
O510.4861 (2)0.84202 (14)0.14104 (7)0.0570 (4)
H510.37890.83690.12810.085*
O520.8345 (2)0.86116 (14)0.17234 (7)0.0553 (4)
H520.79130.79410.17990.083*
C510.4823 (3)0.9802 (2)0.13230 (8)0.0453 (5)
C520.6697 (3)0.9818 (2)0.16397 (10)0.0533 (6)
C530.5341 (4)1.0101 (3)0.21275 (11)0.0803 (9)
H5310.54260.92840.24050.096*
H5320.55091.08380.22990.096*
C540.3493 (3)1.0539 (3)0.17356 (10)0.0708 (8)
H5410.24111.01500.18710.085*
H5420.29501.15300.16120.085*
C550.4477 (4)1.0401 (2)0.07239 (9)0.0652 (7)
H5510.56030.99230.05200.098*
H5520.43831.13610.06680.098*
H5530.32201.03070.05930.098*
C560.7544 (4)1.0941 (2)0.14105 (15)0.0899 (10)
H5610.85851.09600.16640.135*
H5620.64641.18070.13590.135*
H5630.81361.07910.10580.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0527 (9)0.0470 (9)0.0675 (10)0.0027 (7)0.0114 (8)0.0236 (8)
O120.0414 (8)0.0544 (9)0.0371 (7)0.0106 (7)0.0046 (6)0.0076 (6)
C110.0481 (12)0.0428 (12)0.0399 (11)0.0122 (10)0.0002 (9)0.0094 (9)
C120.0419 (11)0.0421 (11)0.0363 (11)0.0115 (9)0.0026 (8)0.0118 (9)
C130.0520 (13)0.0637 (15)0.0521 (13)0.0256 (12)0.0007 (10)0.0194 (11)
C140.0542 (13)0.0633 (15)0.0466 (12)0.0134 (12)0.0089 (10)0.0132 (11)
C150.0700 (16)0.0666 (16)0.0618 (15)0.0326 (14)0.0030 (12)0.0059 (12)
C160.0739 (16)0.0512 (14)0.0579 (14)0.0064 (13)0.0092 (12)0.0213 (12)
O210.0389 (8)0.0300 (7)0.0509 (8)0.0080 (6)0.0042 (6)0.0051 (6)
O220.0326 (7)0.0277 (7)0.0455 (8)0.0089 (6)0.0043 (6)0.0027 (6)
C210.0333 (10)0.0265 (10)0.0431 (11)0.0067 (8)0.0061 (8)0.0048 (8)
C220.0344 (10)0.0269 (10)0.0410 (11)0.0088 (8)0.0050 (8)0.0019 (8)
C230.0474 (12)0.0434 (12)0.0433 (11)0.0158 (10)0.0096 (9)0.0073 (9)
C240.0404 (11)0.0407 (12)0.0545 (13)0.0160 (10)0.0113 (9)0.0059 (10)
C250.0582 (13)0.0330 (11)0.0593 (13)0.0125 (10)0.0086 (11)0.0152 (10)
C260.0400 (11)0.0353 (11)0.0656 (14)0.0073 (9)0.0006 (10)0.0020 (10)
O310.0381 (8)0.0493 (9)0.0477 (8)0.0156 (7)0.0038 (6)0.0050 (7)
O320.0416 (8)0.0400 (8)0.0642 (10)0.0118 (7)0.0132 (7)0.0022 (7)
C310.0383 (11)0.0451 (12)0.0378 (11)0.0102 (9)0.0016 (9)0.0008 (9)
C320.0436 (11)0.0397 (11)0.0424 (11)0.0106 (9)0.0035 (9)0.0048 (9)
C330.0463 (13)0.0780 (18)0.0635 (15)0.0056 (13)0.0116 (11)0.0174 (13)
C340.0562 (14)0.0754 (17)0.0476 (13)0.0078 (13)0.0048 (11)0.0218 (12)
C350.0606 (15)0.0663 (16)0.0625 (15)0.0227 (13)0.0047 (12)0.0152 (12)
C360.0813 (18)0.0411 (13)0.0632 (15)0.0108 (12)0.0159 (13)0.0082 (11)
O410.0481 (9)0.0624 (10)0.0428 (8)0.0255 (8)0.0043 (7)0.0084 (7)
O420.0637 (10)0.0589 (10)0.0538 (9)0.0336 (8)0.0116 (7)0.0197 (8)
C410.0464 (12)0.0507 (13)0.0391 (11)0.0158 (10)0.0038 (9)0.0122 (9)
C420.0561 (13)0.0511 (13)0.0394 (11)0.0197 (11)0.0027 (10)0.0120 (10)
C43A0.078 (3)0.060 (3)0.047 (2)0.026 (2)0.013 (2)0.016 (2)
C44A0.046 (3)0.065 (4)0.056 (4)0.018 (3)0.019 (2)0.023 (4)
C45A0.076 (4)0.055 (3)0.066 (3)0.022 (2)0.003 (3)0.020 (3)
C46A0.080 (3)0.069 (4)0.072 (3)0.013 (3)0.030 (3)0.016 (3)
C43B0.072 (6)0.064 (6)0.050 (4)0.028 (5)0.003 (4)0.018 (4)
C44B0.054 (4)0.072 (6)0.047 (4)0.024 (5)0.011 (3)0.009 (4)
C45B0.074 (5)0.071 (5)0.046 (4)0.022 (4)0.013 (4)0.008 (4)
C46B0.073 (6)0.069 (8)0.055 (7)0.025 (6)0.014 (4)0.020 (7)
O510.0533 (9)0.0500 (9)0.0676 (10)0.0262 (8)0.0127 (8)0.0092 (8)
O520.0365 (8)0.0398 (8)0.0887 (11)0.0104 (7)0.0044 (7)0.0117 (8)
C510.0453 (12)0.0446 (12)0.0447 (12)0.0121 (10)0.0014 (9)0.0080 (9)
C520.0373 (11)0.0432 (12)0.0781 (16)0.0058 (10)0.0037 (11)0.0187 (11)
C530.0617 (16)0.104 (2)0.0656 (16)0.0055 (15)0.0090 (13)0.0439 (16)
C540.0469 (14)0.093 (2)0.0598 (15)0.0033 (14)0.0007 (11)0.0236 (14)
C550.0912 (19)0.0518 (14)0.0507 (14)0.0261 (14)0.0050 (13)0.0037 (11)
C560.0672 (17)0.0422 (15)0.163 (3)0.0189 (14)0.0203 (18)0.0203 (17)
Geometric parameters (Å, º) top
O11—C111.422 (2)C36—H3620.9800
O11—H110.8400C36—H3630.9800
O12—C121.428 (2)O41—C411.422 (2)
O12—H120.8400O41—H410.8400
C11—C151.507 (3)O42—C421.421 (2)
C11—C141.538 (3)O42—H420.8400
C11—C121.547 (3)C41—C46B1.443 (10)
C12—C161.509 (3)C41—C45A1.531 (4)
C12—C131.538 (3)C41—C421.556 (3)
C13—C141.538 (3)C41—C43B1.559 (6)
C13—H1310.9900C41—C44A1.560 (6)
C13—H1320.9900C42—C46A1.462 (5)
C14—H1410.9900C42—C45B1.502 (6)
C14—H1420.9900C42—C43A1.577 (4)
C15—H1510.9800C42—C44B1.598 (7)
C15—H1520.9800C43A—C44A1.564 (7)
C15—H1530.9800C43A—H4310.9900
C16—H1610.9800C43A—H4320.9900
C16—H1620.9800C44A—H4410.9900
C16—H1630.9800C44A—H4420.9900
O21—C211.430 (2)C45A—H4510.9800
O21—H210.8400C45A—H4520.9800
O22—C221.430 (2)C45A—H4530.9800
O22—H220.8400C46A—H4610.9800
C21—C251.509 (3)C46A—H4620.9800
C21—C241.539 (3)C46A—H4630.9800
C21—C221.554 (3)C43B—C44B1.560 (9)
C22—C261.510 (3)C43B—H4330.9900
C22—C231.534 (3)C43B—H4340.9900
C23—C241.541 (3)C44B—H4430.9900
C23—H2310.9900C44B—H4440.9900
C23—H2320.9900C45B—H4540.9800
C24—H2410.9900C45B—H4550.9800
C24—H2420.9900C45B—H4560.9800
C25—H2510.9800C46B—H4640.9800
C25—H2520.9800C46B—H4650.9800
C25—H2530.9800C46B—H4660.9800
C26—H2610.9800O51—C511.427 (2)
C26—H2620.9800O51—H510.8400
C26—H2630.9800O52—C521.416 (2)
O31—C311.421 (2)O52—H520.8400
O31—H310.8400C51—C551.505 (3)
O32—C321.430 (2)C51—C541.525 (3)
O32—H320.8400C51—C521.547 (3)
C31—C351.502 (3)C52—C561.500 (3)
C31—C341.538 (3)C52—C531.538 (3)
C31—C321.554 (3)C53—C541.534 (3)
C32—C361.500 (3)C53—H5310.9900
C32—C331.535 (3)C53—H5320.9900
C33—C341.539 (3)C54—H5410.9900
C33—H3310.9900C54—H5420.9900
C33—H3320.9900C55—H5510.9800
C34—H3410.9900C55—H5520.9800
C34—H3420.9900C55—H5530.9800
C35—H3510.9800C56—H5610.9800
C35—H3520.9800C56—H5620.9800
C35—H3530.9800C56—H5630.9800
C36—H3610.9800
C11—O11—H11109.5C32—C36—H362109.5
C12—O12—H12109.5H361—C36—H362109.5
O11—C11—C15111.20 (18)C32—C36—H363109.5
O11—C11—C14106.02 (17)H361—C36—H363109.5
C15—C11—C14119.82 (18)H362—C36—H363109.5
O11—C11—C12110.43 (16)C41—O41—H41109.5
C15—C11—C12119.13 (18)C42—O42—H42109.5
C14—C11—C1287.77 (15)O41—C41—C46B110.0 (8)
O12—C12—C16106.17 (16)O41—C41—C45A105.5 (2)
O12—C12—C13118.13 (16)O41—C41—C42114.50 (16)
C16—C12—C13113.28 (17)C46B—C41—C42113.6 (6)
O12—C12—C11115.76 (15)C45A—C41—C42115.0 (2)
C16—C12—C11114.75 (17)O41—C41—C43B108.7 (4)
C13—C12—C1188.46 (15)C46B—C41—C43B121.8 (8)
C14—C13—C1288.11 (15)C42—C41—C43B86.7 (3)
C14—C13—H131114.0O41—C41—C44A117.3 (4)
C12—C13—H131114.0C45A—C41—C44A111.9 (4)
C14—C13—H132114.0C42—C41—C44A92.7 (2)
C12—C13—H132114.0O42—C42—C46A109.0 (3)
H131—C13—H132111.2O42—C42—C45B104.2 (3)
C13—C14—C1188.77 (15)O42—C42—C41112.80 (15)
C13—C14—H141113.9C46A—C42—C41120.7 (3)
C11—C14—H141113.9C45B—C42—C41121.6 (4)
C13—C14—H142113.9O42—C42—C43A108.1 (2)
C11—C14—H142113.9C46A—C42—C43A119.4 (3)
H141—C14—H142111.1C41—C42—C43A84.7 (2)
C11—C15—H151109.5O42—C42—C44B118.2 (3)
C11—C15—H152109.5C45B—C42—C44B111.1 (4)
H151—C15—H152109.5C41—C42—C44B89.5 (3)
C11—C15—H153109.5C44A—C43A—C4291.8 (3)
H151—C15—H153109.5C44A—C43A—H431113.3
H152—C15—H153109.5C42—C43A—H431113.3
C12—C16—H161109.5C44A—C43A—H432113.3
C12—C16—H162109.5C42—C43A—H432113.3
H161—C16—H162109.5H431—C43A—H432110.7
C12—C16—H163109.5C41—C44A—C43A85.0 (3)
H161—C16—H163109.5C41—C44A—H441114.5
H162—C16—H163109.5C43A—C44A—H441114.5
C21—O21—H21109.5C41—C44A—H442114.5
C22—O22—H22109.5C43A—C44A—H442114.5
O21—C21—C25110.46 (16)H441—C44A—H442111.6
O21—C21—C24110.53 (15)C41—C45A—H451109.5
C25—C21—C24118.80 (16)C41—C45A—H452109.5
O21—C21—C22107.13 (14)C41—C45A—H453109.5
C25—C21—C22120.28 (16)C42—C46A—H461109.5
C24—C21—C2287.44 (14)C42—C46A—H462109.5
O22—C22—C26105.67 (15)C42—C46A—H463109.5
O22—C22—C23118.11 (15)C41—C43B—C44B90.8 (4)
C26—C22—C23113.35 (16)C41—C43B—H433113.5
O22—C22—C21117.01 (14)C44B—C43B—H433113.5
C26—C22—C21114.00 (16)C41—C43B—H434113.5
C23—C22—C2188.51 (14)C44B—C43B—H434113.5
C22—C23—C2488.11 (14)H433—C43B—H434110.8
C22—C23—H231114.0C43B—C44B—C4285.2 (4)
C24—C23—H231114.0C43B—C44B—H443114.4
C22—C23—H232114.0C42—C44B—H443114.4
C24—C23—H232114.0C43B—C44B—H444114.4
H231—C23—H232111.2C42—C44B—H444114.4
C21—C24—C2388.79 (14)H443—C44B—H444111.6
C21—C24—H241113.9C42—C45B—H454109.5
C23—C24—H241113.9C42—C45B—H455109.5
C21—C24—H242113.9H454—C45B—H455109.5
C23—C24—H242113.9C42—C45B—H456109.5
H241—C24—H242111.1H454—C45B—H456109.5
C21—C25—H251109.5H455—C45B—H456109.5
C21—C25—H252109.5C41—C46B—H464109.5
H251—C25—H252109.5C41—C46B—H465109.5
C21—C25—H253109.5H464—C46B—H465109.5
H251—C25—H253109.5C41—C46B—H466109.5
H252—C25—H253109.5H464—C46B—H466109.5
C22—C26—H261109.5H465—C46B—H466109.5
C22—C26—H262109.5C51—O51—H51109.5
H261—C26—H262109.5C52—O52—H52109.5
C22—C26—H263109.5O51—C51—C55109.74 (18)
H261—C26—H263109.5O51—C51—C54110.45 (19)
H262—C26—H263109.5C55—C51—C54119.2 (2)
C31—O31—H31109.5O51—C51—C52105.75 (16)
C32—O32—H32109.5C55—C51—C52120.77 (19)
O31—C31—C35106.68 (16)C54—C51—C5288.92 (16)
O31—C31—C34117.26 (18)O52—C52—C56106.39 (18)
C35—C31—C34113.20 (18)O52—C52—C53116.8 (2)
O31—C31—C32116.27 (16)C56—C52—C53113.7 (2)
C35—C31—C32114.66 (18)O52—C52—C51116.81 (17)
C34—C31—C3288.32 (15)C56—C52—C51114.9 (2)
O32—C32—C36109.99 (17)C53—C52—C5187.74 (17)
O32—C32—C33110.72 (18)C54—C53—C5288.91 (18)
C36—C32—C33119.27 (19)C54—C53—H531113.8
O32—C32—C31106.05 (15)C52—C53—H531113.8
C36—C32—C31120.78 (19)C54—C53—H532113.8
C33—C32—C3187.89 (15)C52—C53—H532113.8
C32—C33—C3488.99 (16)H531—C53—H532111.1
C32—C33—H331113.8C51—C54—C5388.66 (17)
C34—C33—H331113.8C51—C54—H541113.9
C32—C33—H332113.8C53—C54—H541113.9
C34—C33—H332113.8C51—C54—H542113.9
H331—C33—H332111.0C53—C54—H542113.9
C31—C34—C3388.32 (16)H541—C54—H542111.1
C31—C34—H341113.9C51—C55—H551109.5
C33—C34—H341113.9C51—C55—H552109.5
C31—C34—H342113.9H551—C55—H552109.5
C33—C34—H342113.9C51—C55—H553109.5
H341—C34—H342111.1H551—C55—H553109.5
C31—C35—H351109.5H552—C55—H553109.5
C31—C35—H352109.5C52—C56—H561109.5
H351—C35—H352109.5C52—C56—H562109.5
C31—C35—H353109.5H561—C56—H562109.5
H351—C35—H353109.5C52—C56—H563109.5
H352—C35—H353109.5H561—C56—H563109.5
C32—C36—H361109.5H562—C56—H563109.5
O11—C11—C12—O1234.1 (2)O41—C41—C42—O4232.4 (2)
C15—C11—C12—O1296.4 (2)C46B—C41—C42—O4295.1 (8)
C14—C11—C12—O12140.33 (17)C45A—C41—C42—O42154.8 (3)
O11—C11—C12—C16158.32 (17)C43B—C41—C42—O42141.5 (4)
C15—C11—C12—C1627.8 (3)C44A—C41—C42—O4289.4 (4)
C14—C11—C12—C1695.41 (19)O41—C41—C42—C46A98.9 (3)
O11—C11—C12—C1386.65 (17)C45A—C41—C42—C46A23.5 (4)
C15—C11—C12—C13142.85 (19)C44A—C41—C42—C46A139.3 (5)
C14—C11—C12—C1319.62 (16)O41—C41—C42—C45B157.2 (4)
O12—C12—C13—C14138.22 (18)C46B—C41—C42—C45B29.7 (9)
C16—C12—C13—C1496.8 (2)C43B—C41—C42—C45B93.8 (5)
C11—C12—C13—C1419.62 (15)O41—C41—C42—C43A139.8 (2)
C12—C13—C14—C1119.73 (16)C45A—C41—C42—C43A97.7 (3)
O11—C11—C14—C1391.00 (18)C44A—C41—C42—C43A18.0 (4)
C15—C11—C14—C13142.3 (2)O41—C41—C42—C44B88.2 (3)
C12—C11—C14—C1319.62 (16)C46B—C41—C42—C44B144.3 (9)
O21—C21—C22—O2230.4 (2)C43B—C41—C42—C44B20.9 (5)
C25—C21—C22—O2296.8 (2)O42—C42—C43A—C44A94.3 (4)
C24—C21—C22—O22141.07 (16)C46A—C42—C43A—C44A140.4 (5)
O21—C21—C22—C26154.34 (16)C41—C42—C43A—C44A18.0 (4)
C25—C21—C22—C2627.2 (2)C44B—C42—C43A—C44A102.5 (6)
C24—C21—C22—C2694.95 (18)O41—C41—C44A—C43A137.6 (3)
O21—C21—C22—C2390.68 (15)C45A—C41—C44A—C43A100.2 (4)
C25—C21—C22—C23142.20 (18)C42—C41—C44A—C43A18.2 (4)
C24—C21—C22—C2320.03 (14)C42—C43A—C44A—C4117.9 (4)
O22—C22—C23—C24140.08 (16)O41—C41—C43B—C44B93.4 (5)
C26—C22—C23—C2495.59 (18)C46B—C41—C43B—C44B137.3 (8)
C21—C22—C23—C2420.01 (14)C42—C41—C43B—C44B21.4 (5)
O21—C21—C24—C2387.40 (16)C41—C43B—C44B—C4220.8 (4)
C25—C21—C24—C23143.41 (18)O42—C42—C44B—C43B136.6 (4)
C22—C21—C24—C2319.94 (14)C45B—C42—C44B—C43B103.1 (5)
C22—C23—C24—C2120.20 (14)C41—C42—C44B—C43B20.9 (4)
O31—C31—C32—O3227.9 (2)O51—C51—C52—O5226.1 (3)
C35—C31—C32—O32153.24 (17)C55—C51—C52—O5299.1 (2)
C34—C31—C32—O3291.91 (17)C54—C51—C52—O52137.1 (2)
O31—C31—C32—C3698.0 (2)O51—C51—C52—C56151.8 (2)
C35—C31—C32—C3627.4 (3)C55—C51—C52—C5626.7 (3)
C34—C31—C32—C36142.3 (2)C54—C51—C52—C5697.2 (2)
O31—C31—C32—C33138.83 (19)O51—C51—C52—C5393.0 (2)
C35—C31—C32—C3395.8 (2)C55—C51—C52—C53141.9 (2)
C34—C31—C32—C3319.05 (18)C54—C51—C52—C5318.0 (2)
O32—C32—C33—C3487.3 (2)O52—C52—C53—C54137.0 (2)
C36—C32—C33—C34143.5 (2)C56—C52—C53—C5498.4 (2)
C31—C32—C33—C3419.04 (18)C51—C52—C53—C5417.9 (2)
O31—C31—C34—C33137.88 (19)O51—C51—C54—C5388.4 (2)
C35—C31—C34—C3397.2 (2)C55—C51—C54—C53143.2 (2)
C32—C31—C34—C3318.99 (17)C52—C51—C54—C5318.0 (2)
C32—C33—C34—C3119.24 (18)C52—C53—C54—C5118.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O220.842.112.924 (2)162
O12—H12···O22i0.842.032.845 (2)162
O21—H21···O12ii0.841.972.808 (2)177
O22—H22···O21ii0.842.012.795 (2)154
O31—H31···O510.842.052.826 (2)153
O32—H32···O41iii0.841.892.729 (2)177
O41—H41···O310.841.942.774 (2)170
O42—H42···O52iv0.841.932.758 (2)168
O51—H51···O420.841.852.687 (2)176
O52—H52···O320.842.062.832 (2)152
O22—H22···O210.842.462.715 (2)99
O31—H31···O320.842.242.658 (2)111
O52—H52···O510.842.232.644 (2)110
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H12O2
Mr116.16
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.9715 (2), 10.5549 (3), 24.8914 (8)
α, β, γ (°)79.614 (2), 88.741 (2), 72.225 (2)
V3)1714.63 (9)
Z10
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.07 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12129, 6647, 4077
Rint0.039
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.03
No. of reflections6647
No. of parameters420
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: Collect (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O220.842.112.924 (2)162
O12—H12···O22i0.842.032.845 (2)162
O21—H21···O12ii0.841.972.808 (2)177
O22—H22···O21ii0.842.012.795 (2)154
O31—H31···O510.842.052.826 (2)153
O32—H32···O41iii0.841.892.729 (2)177
O41—H41···O310.841.942.774 (2)170
O42—H42···O52iv0.841.932.758 (2)168
O51—H51···O420.841.852.687 (2)176
O52—H52···O320.842.062.832 (2)152
O22—H22···O210.842.462.715 (2)99
O31—H31···O320.842.242.658 (2)111
O52—H52···O510.842.232.644 (2)110
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds