Download citation
Download citation
link to html
In the title compound, [Hg(NO3)(C6H6N2O)2]NO3, the HgII atom is five-coordinate. The distorted square-pyramidal mercury(II) coordination environment is achieved by two N,O-bidentate picolinamide ligands, with one O-monodentate nitrate ion in the apical position. A seven-coordinate extended coordination environment is completed by two additional weak Hg...O inter­actions, one from the coordinated nitrate ion and one from the other nitrate ion, to give seven-coordination. The mol­ecules are linked into a two-dimensional network by N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107051566/ln3068sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107051566/ln3068Isup2.hkl
Contains datablock I

CCDC reference: 672397

Comment top

It is well known that the interaction of metal ions with bioactive ligands can improve their bioactivity profiles and, moreover, the inactive free ligands may acquire pharmacological properties (Krogsgaard-Larsen et al., 2004). In this context, metal complexes are of central importance to many aspects of the structure and function of biologically active or potentially active ligands, and metal coordination is one of the most efficient strategies for designing repository, slow-release or long-acting drugs (Bharti et al., 2000). We report here the preparation and structure analysis of the title compound, (I), as part of our systematic study of group 12 metal complexes with biologically important molecules (Popović, Pavlović, Vinković et al., 2006; Popović, Matković-Čalogović et al., 2007; Pavlović, Soldin et al., 2007; Kukovec et al., 2007). In addition to numerous mercury halide and pseudohalide complexes or adducts (Dean, 1978; Graddon, 1982; Holloway & Melnik, 1994; House et al., 1994; Popović, Pavlović & Soldin, 2006), there are several papers dealing with mercury(II) nitrate complexes (Bullock & Tuck, 1965; Kamenar et al., 1976; Grdenić et al., 1978a,b, 1979; Buergi et al., 1982; Müller et al., 2005).

Compound (I) consists of [Hg(NO3)(pia)2]+ complex cations (pia is picolinamide), with pia in its usual N,O-chelating function, and nitrate anions (Fig. 1). The coordination polyhedron around the HgII ion in the complex cation can be described as a deformed square pyramid achieved through a [2 N + 3O] donor set of atoms. The two N and two O atoms in the coordination environment originate from two pia ligands, while the third O atom, O3, comes from a nitrate anion, with the Hg1—O3 bond length (Table 1) being 0.29 Å longer than the sum of the covalent radii of the atoms involved (1.57 + 0.66 = 2.23 Å; Reference?). The lengths of the Hg—N and Hg—O bonds (Table 1) involving the pia ligands differ slightly from each other, by 10.6σ and 17.0σ, respectively. The steric demand of the nitrate O atom covalently bound to the HgII ion is probably responsible for these bond-length differences. To the best of our knowledge, the only other report of a mercury(II) complex with a pia ligand is that of [Hg(SCN)2(pia)]2 (Đaković et al., 2007), in which the Hg—N bond length of 2.239 (3) Å is slightly longer than those in (I) (by 5σ and 16σ) as a consequence of the three S atoms coordinated to Hg. Further elongation of Hg—N bonds was observed in the structure of [HgI(pic)2] (pic is picolinic acid; Popović, Pavlović & Soldin, 2006), where Hg—N = 2.298 (3) Å, which is longer than those in (I) by 21σ and 30σ, due to the presence of the even larger iodide ligand. In (I), there are two additional weak Hg—O interactions. One is from atom O4 of the strongly coordinated nitrate ion [Hg1···O4 = 2.860 (2) Å] and the other is from the other symmetry-independent nitrate ion [Hg1···O6 = 2.813 (2) Å] (Fig. 1). These distances are within the sum of the van der Waals radii of these atoms (2.9–3.05 Å; Matković-Čalogović, 1994). Considering these interactions, the effective coordination polyhedron (Grdenić, 1965) around the HgII atom can be described as a distorted capped octahedron.

An interesting feature of the structure of (I) is the mutual spatial orientation of the chelate ligands: the planes defined by atoms Hg1/N1/C1/C6/O1 and atoms Hg1/N3/C7/C12/O2 intersect at an angle of 37.94 (1)°. This value is close to the corresponding dihedral angle of 40.5° in the similar heptacoordinated mercury compound, [Hg(bypy)2](NO3)2·2H2O (Grdenić et al., 1979). Although both pia ligands in (I) are nearly planar, the conformations of the chelate rings differ significantly. The r.m.s. deviations of the chelate ring atoms N1/C1/C6/O1 and N2/C7/C12/O2 from their mean planes are 0.008 and 0.006 Å, respectively. Atom Hg1 deviates from these planes by 0.427 (4) and 0.006 (4) Å, respectively, and the chelate ring puckering of the former ring can best be described as an envelope on Hg1. The dihedral angles between the pyridine rings containing atoms N1 and N3 and their corresponding amide groups are 3.0 (1) and 2.1 (2)°, respectively, while the dihedral angles between these pyridine rings and their corresponding chelate rings are 3.1 (1) and 0.5 (1)°, respectively, which are in accordance with those found in similar Hg compounds, namely 2.2 (2) and 8.3 (2)° in [Hg(SCN)2(pia)]2, and 7.5 (2) and 1.7 (2)° in [HgI(pic)2].

The crystal structure of (I) is predominantly determined by N—H···O hydrogen bonding. The cation possesses two hydrogen-bond donors, amide atoms N2 and N4, and both participate in intermolecular interactions. The combination of these interactions links the molecules into extended sheets which lie parallel to the (100) plane (Fig. 2). Hydrogen bonding within the sheets consists of a combination of reasonably short strong and, on average, more linear interactions with longer weaker and more bent interactions (Table 2). In the former group of interactions, two types of centrosymmetric ring motifs can be discerned. The `standard' amide hydrogen-bond motif of R22(8) (Bernstein et al., 1995) involves N4—H15···O2iv, while two centrosymmetric R22(16) motifs, involving O atoms from the weakly coordinating nitrate anion, O7 and O8 (N2—H12···O8i and N4—H14···O7iii), are established (symmetry codes as in Table 2). The weaker interactions involve O atoms from the strongly coordinated nitrate ion. Atom O4, which already participates in coordination with atom Hg1, and atom O5 act as acceptors in bifurcated N2—H13···O4ii and N2—H13···O5ii hydrogen bonds, thereby forming an R21(4) graph-set motif.

Related literature top

For related literature, see: Bernstein et al. (1995); Bharti et al. (2000); Buergi et al. (1982); Bullock & Tuck (1965); Dean (1978); Graddon (1982); Grdenić (1965); Grdenić et al. (1978a, 1978b, 1979); Holloway & Melnik (1994); House et al. (1994); Kamenar et al. (1976); Krogsgaard-Larsen, Liljefors & Madsen (2004); Kukovec et al. (2007); Müller et al. (2005); Matković-Čalogović (1994); Pavlović et al. (2007); Popović et al. (2007); Popović, Pavlović & Soldin (2006); Popović, Pavlović, Vinković, Vikić-Topić & Rajić-Linarić (2006); Đaković et al. (2007).

Experimental top

To an aqueous solution (10 ml) of mercury(II) nitrate monohydrate (0.34 g, 0.1 mmol) containing a few drops of nitric acid (20% by weight), an aqueous solution (30 ml) of picolinamide (0.24 g, 0.2 mmol) was added. In few hours, colourless crystals of (I) suitable for X-ray analysis were obtained. The crystals were filtered off, washed with water and dried in air (yield 0.52 g, 91.4%). Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3556 (w-m), 3406 (s), 3291 (s), 2395 (w), 2360 (w), 2343 (w), 1762 (w), 1680 (s), 1611 (w-m), 1590 (s), 1570 (s), 1473 (w-m), 1448 (s), 1431 (s), 1385 (vs), 1292 (m-s), 1255 (m), 1169 (w), 1118 (w), 1097 (w-m), 1045 (w), 1036 (w), 1024 (vw), 1013 (w), 999 (m), 825 (m), 766 (w), 746 (m), 715 (vw), 680 (w), 668 (w-m), 658 (w), 634 (w), 618 (m), 582 (w-m), 504 (w). The crystals decompose prior to melting.

Refinement top

The aromatic H atoms were fixed in geometrically calculated positions and refined using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atoms on the carboxamide N atom were found in a difference Fourier map at the final stage of refinement and refined freely. The largest peak of residual electron density lies 1.67 Å from atom Hg1 and 1.10 Å from atom N1.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A drawing of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A perspective view of the packing of the title compound, showing the hydrogen bonds as dashed lines. Aromatic H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, 2 - y, 2 - z; (ii) x, y + 1, z; (iii) 1 - x, 2 - y, 1 - z; (iv) 2 - x, 2 - y, 1 - z].
(Nitrato-κO)bis(pyridine-2-carboxamide-κ2N,O)mercury(II) nitrate top
Crystal data top
[Hg(NO3)(C6H6N2O)2](NO3)Z = 2
Mr = 568.87F(000) = 540
Triclinic, P1Dx = 2.337 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6594 (1) ÅCell parameters from 26731 reflections
b = 9.5373 (2) Åθ = 2.4–32.7°
c = 13.6949 (3) ŵ = 9.58 mm1
α = 73.832 (2)°T = 183 K
β = 86.714 (2)°Needle, colourless
γ = 75.399 (2)°0.31 × 0.08 × 0.04 mm
V = 808.34 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Rubby detector
4719 independent reflections
Radiation source: Enhance (Mo) X-ray Source4201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.4498 pixels mm-1θmax = 30.0°, θmin = 2.4°
CCD scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.187, Tmax = 0.682l = 1919
38635 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0202P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
4719 reflectionsΔρmax = 1.47 e Å3
261 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00078 (19)
Crystal data top
[Hg(NO3)(C6H6N2O)2](NO3)γ = 75.399 (2)°
Mr = 568.87V = 808.34 (3) Å3
Triclinic, P1Z = 2
a = 6.6594 (1) ÅMo Kα radiation
b = 9.5373 (2) ŵ = 9.58 mm1
c = 13.6949 (3) ÅT = 183 K
α = 73.832 (2)°0.31 × 0.08 × 0.04 mm
β = 86.714 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Rubby detector
4719 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
4201 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.682Rint = 0.039
38635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.035H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.47 e Å3
4719 reflectionsΔρmin = 0.75 e Å3
261 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.71467 (1)0.75520 (1)0.72387 (1)0.0206 (1)
O10.8031 (3)0.97264 (18)0.75525 (11)0.0269 (5)
O20.8655 (2)0.88083 (18)0.57222 (11)0.0252 (5)
O31.0069 (3)0.53968 (18)0.70390 (15)0.0342 (5)
O40.7536 (3)0.4384 (2)0.76648 (14)0.0340 (5)
O51.0217 (3)0.3080 (2)0.70925 (18)0.0498 (7)
N10.7445 (3)0.71803 (19)0.88817 (13)0.0182 (5)
N20.7879 (3)1.0922 (2)0.87640 (16)0.0267 (6)
N30.5572 (3)0.73977 (19)0.58996 (13)0.0183 (5)
N40.8512 (3)0.9483 (2)0.40222 (14)0.0233 (5)
N50.9284 (3)0.4281 (2)0.72568 (15)0.0255 (5)
C10.7532 (3)0.8347 (2)0.92454 (15)0.0180 (5)
C20.7394 (3)0.8221 (3)1.02776 (16)0.0237 (6)
C30.7185 (3)0.6877 (3)1.09423 (16)0.0263 (7)
C40.7172 (4)0.5675 (3)1.05706 (18)0.0275 (7)
C50.7296 (3)0.5872 (2)0.95289 (17)0.0235 (6)
C60.7823 (3)0.9735 (2)0.84509 (16)0.0201 (6)
C70.6180 (3)0.8016 (2)0.49570 (15)0.0170 (5)
C80.5261 (3)0.7928 (3)0.41059 (17)0.0244 (6)
C90.3663 (3)0.7199 (3)0.42304 (18)0.0288 (7)
C100.3060 (3)0.6571 (3)0.51954 (18)0.0252 (6)
C110.4046 (3)0.6685 (2)0.60195 (17)0.0235 (6)
C120.7895 (3)0.8808 (2)0.49143 (16)0.0181 (5)
O60.3058 (3)0.76721 (19)0.79217 (13)0.0326 (5)
O70.3160 (3)0.98290 (18)0.80947 (12)0.0299 (5)
O80.2311 (3)0.8164 (2)0.93675 (12)0.0312 (5)
N60.2831 (3)0.8559 (2)0.84669 (13)0.0206 (5)
H20.744300.904701.052700.0280*
H30.705000.678401.165100.0320*
H40.708000.473301.101800.0330*
H50.727300.505300.926700.0280*
H80.571300.835900.344500.0290*
H90.299500.713600.365500.0350*
H100.197700.606300.529500.0300*
H110.363000.624800.668700.0280*
H120.777 (4)1.090 (3)0.939 (2)0.031 (7)*
H130.800 (4)1.170 (3)0.829 (2)0.037 (8)*
H140.796 (4)0.950 (3)0.348 (2)0.026 (7)*
H150.940 (4)0.995 (3)0.4032 (19)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0276 (1)0.0232 (1)0.0141 (1)0.0111 (1)0.0025 (1)0.0063 (1)
O10.0408 (9)0.0270 (8)0.0172 (7)0.0170 (7)0.0036 (6)0.0059 (6)
O20.0325 (8)0.0346 (9)0.0144 (7)0.0205 (7)0.0022 (6)0.0056 (6)
O30.0303 (8)0.0260 (9)0.0465 (11)0.0116 (7)0.0063 (8)0.0073 (8)
O40.0388 (9)0.0368 (10)0.0310 (9)0.0205 (8)0.0076 (7)0.0079 (8)
O50.0422 (10)0.0344 (10)0.0801 (16)0.0007 (8)0.0118 (10)0.0340 (11)
N10.0199 (8)0.0223 (9)0.0140 (8)0.0075 (7)0.0030 (6)0.0060 (7)
N20.0398 (11)0.0240 (10)0.0200 (10)0.0146 (8)0.0030 (8)0.0066 (8)
N30.0229 (8)0.0211 (9)0.0154 (8)0.0095 (7)0.0022 (6)0.0088 (7)
N40.0287 (9)0.0306 (10)0.0150 (9)0.0175 (8)0.0001 (7)0.0043 (8)
N50.0296 (9)0.0218 (9)0.0260 (10)0.0056 (7)0.0066 (8)0.0074 (8)
C10.0156 (8)0.0211 (10)0.0182 (9)0.0051 (7)0.0003 (7)0.0064 (8)
C20.0275 (10)0.0267 (11)0.0192 (10)0.0081 (9)0.0011 (8)0.0083 (9)
C30.0279 (11)0.0347 (13)0.0152 (10)0.0090 (9)0.0013 (8)0.0034 (9)
C40.0305 (11)0.0261 (12)0.0217 (11)0.0081 (9)0.0030 (9)0.0017 (9)
C50.0291 (11)0.0204 (10)0.0210 (10)0.0086 (8)0.0014 (8)0.0032 (8)
C60.0180 (9)0.0233 (10)0.0197 (10)0.0072 (8)0.0000 (7)0.0053 (8)
C70.0187 (9)0.0150 (9)0.0173 (9)0.0037 (7)0.0001 (7)0.0048 (8)
C80.0277 (11)0.0289 (11)0.0176 (10)0.0121 (9)0.0011 (8)0.0031 (9)
C90.0303 (11)0.0343 (13)0.0248 (11)0.0135 (10)0.0078 (9)0.0065 (10)
C100.0226 (10)0.0253 (11)0.0313 (12)0.0106 (8)0.0003 (9)0.0094 (9)
C110.0263 (10)0.0249 (11)0.0236 (11)0.0130 (9)0.0062 (8)0.0087 (9)
C120.0192 (9)0.0183 (10)0.0178 (9)0.0045 (7)0.0011 (7)0.0068 (8)
O60.0478 (10)0.0297 (9)0.0250 (8)0.0113 (8)0.0031 (7)0.0138 (7)
O70.0411 (9)0.0276 (9)0.0238 (8)0.0165 (7)0.0004 (7)0.0044 (7)
O80.0406 (9)0.0366 (9)0.0174 (8)0.0139 (8)0.0089 (7)0.0069 (7)
N60.0198 (8)0.0248 (9)0.0168 (8)0.0051 (7)0.0003 (6)0.0051 (7)
Geometric parameters (Å, º) top
Hg1—O12.444 (2)N2—H130.86 (3)
Hg1—O22.396 (2)N4—H140.84 (3)
Hg1—O32.515 (2)N4—H150.83 (3)
Hg1—O42.860 (2)C1—C21.385 (3)
Hg1—O62.813 (2)C1—C61.509 (3)
Hg1—N12.191 (2)C2—C31.384 (4)
Hg1—N32.221 (2)C3—C41.380 (4)
O1—C61.232 (3)C4—C51.387 (3)
O2—C121.243 (3)C7—C81.379 (3)
O3—N51.257 (3)C7—C121.510 (3)
O4—N51.255 (3)C8—C91.390 (3)
O5—N51.232 (3)C9—C101.373 (3)
O6—N61.253 (3)C10—C111.381 (3)
O7—N61.246 (3)C2—H20.9500
O8—N61.241 (2)C3—H30.9500
N1—C11.354 (3)C4—H40.9500
N1—C51.338 (3)C5—H50.9500
N2—C61.327 (3)C8—H80.9500
N3—C71.347 (3)C9—H90.9500
N3—C111.337 (3)C10—H100.9500
N4—C121.309 (3)C11—H110.9500
N2—H120.85 (3)
O1—Hg1—O272.25 (5)H14—N4—H15123 (3)
O1—Hg1—O3118.02 (6)O6—N6—O7119.01 (18)
O1—Hg1—O4152.06 (5)O7—N6—O8120.82 (19)
O1—Hg1—O6105.63 (5)O6—N6—O8120.17 (19)
O1—Hg1—N171.06 (6)N1—C1—C6115.02 (17)
O1—Hg1—N3129.40 (6)N1—C1—C2120.8 (2)
O2—Hg1—O380.66 (6)C2—C1—C6124.14 (19)
O2—Hg1—O4118.92 (5)C1—C2—C3119.2 (2)
O2—Hg1—O6134.34 (5)C2—C3—C4119.7 (2)
O2—Hg1—N1137.45 (6)C3—C4—C5118.5 (2)
O2—Hg1—N371.17 (6)N1—C5—C4122.0 (2)
O3—Hg1—O447.08 (5)O1—C6—N2122.6 (2)
O3—Hg1—O6131.86 (5)O1—C6—C1119.91 (18)
O3—Hg1—N198.25 (7)N2—C6—C1117.50 (19)
O3—Hg1—N388.90 (7)N3—C7—C8121.3 (2)
O4—Hg1—O684.80 (5)C8—C7—C12123.61 (19)
O4—Hg1—N186.79 (6)N3—C7—C12115.11 (18)
O4—Hg1—N377.74 (6)C7—C8—C9118.9 (2)
O6—Hg1—N176.77 (5)C8—C9—C10119.2 (2)
O6—Hg1—N377.74 (5)C9—C10—C11119.3 (2)
N1—Hg1—N3151.19 (7)N3—C11—C10121.5 (2)
Hg1—O1—C6112.3 (1)N4—C12—C7118.45 (19)
Hg1—O2—C12115.1 (1)O2—C12—N4122.43 (19)
Hg1—O3—N5104.5 (1)O2—C12—C7119.12 (18)
Hg1—O4—N587.85 (12)C1—C2—H2120.00
Hg1—O6—N6102.15 (12)C3—C2—H2120.00
Hg1—N1—C1119.2 (1)C4—C3—H3120.00
Hg1—N1—C5120.6 (1)C2—C3—H3120.00
C1—N1—C5119.7 (2)C5—C4—H4121.00
Hg1—N3—C7119.5 (2)C3—C4—H4121.00
Hg1—N3—C11120.8 (1)N1—C5—H5119.00
C7—N3—C11119.77 (19)C4—C5—H5119.00
O3—N5—O4119.5 (2)C7—C8—H8121.00
O3—N5—O5121.1 (2)C9—C8—H8121.00
O4—N5—O5119.4 (2)C10—C9—H9120.00
H12—N2—H13124 (3)C8—C9—H9120.00
C6—N2—H12121.4 (19)C9—C10—H10120.00
C6—N2—H13114.9 (18)C11—C10—H10120.00
C12—N4—H14121.7 (19)N3—C11—H11119.00
C12—N4—H15115.4 (17)C10—C11—H11119.00
O2—Hg1—O1—C6171.48 (17)Hg1—O3—N5—O412.0 (2)
O3—Hg1—O1—C6102.79 (16)Hg1—O3—N5—O5169.27 (19)
N1—Hg1—O1—C613.41 (15)Hg1—N1—C1—C2169.84 (16)
N3—Hg1—O1—C6143.07 (15)Hg1—N1—C1—C611.2 (2)
O1—Hg1—O2—C12144.05 (16)C5—N1—C1—C22.3 (3)
O3—Hg1—O2—C1292.40 (15)C5—N1—C1—C6176.62 (19)
N1—Hg1—O2—C12175.55 (14)Hg1—N1—C5—C4170.35 (18)
N3—Hg1—O2—C120.37 (14)C1—N1—C5—C41.7 (3)
O1—Hg1—O3—N5156.87 (13)Hg1—N3—C7—C8179.15 (17)
O2—Hg1—O3—N5139.08 (15)Hg1—N3—C7—C121.5 (2)
N1—Hg1—O3—N583.99 (15)C11—N3—C7—C80.1 (3)
N3—Hg1—O3—N567.99 (15)C11—N3—C7—C12179.25 (18)
O1—Hg1—N1—C112.64 (16)Hg1—N3—C11—C10179.60 (17)
O1—Hg1—N1—C5175.26 (19)C7—N3—C11—C100.3 (3)
O2—Hg1—N1—C144.4 (2)N1—C1—C2—C30.6 (3)
O2—Hg1—N1—C5143.52 (15)C6—C1—C2—C3178.2 (2)
O3—Hg1—N1—C1129.53 (16)N1—C1—C6—O12.4 (3)
O3—Hg1—N1—C558.38 (18)N1—C1—C6—N2178.75 (19)
N3—Hg1—N1—C1127.58 (17)C2—C1—C6—O1176.5 (2)
N3—Hg1—N1—C544.5 (2)C2—C1—C6—N22.4 (3)
O1—Hg1—N3—C746.48 (19)C1—C2—C3—C41.7 (3)
O1—Hg1—N3—C11134.25 (15)C2—C3—C4—C52.3 (4)
O2—Hg1—N3—C70.67 (15)C3—C4—C5—N10.6 (4)
O2—Hg1—N3—C11179.94 (18)N3—C7—C8—C90.7 (4)
O3—Hg1—N3—C779.84 (16)C12—C7—C8—C9178.6 (2)
O3—Hg1—N3—C1199.43 (16)N3—C7—C12—O21.8 (3)
N1—Hg1—N3—C7174.93 (14)N3—C7—C12—N4177.53 (19)
N1—Hg1—N3—C115.8 (3)C8—C7—C12—O2178.8 (2)
Hg1—O1—C6—N2168.52 (17)C8—C7—C12—N41.8 (3)
Hg1—O1—C6—C112.7 (2)C7—C8—C9—C100.8 (4)
Hg1—O2—C12—N4178.09 (16)C8—C9—C10—C110.4 (4)
Hg1—O2—C12—C71.3 (2)C9—C10—C11—N30.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···O8i0.85 (3)2.12 (3)2.911 (3)154 (3)
N2—H13···O4ii0.86 (3)2.41 (3)3.180 (3)150 (2)
N2—H13···O5ii0.86 (3)2.47 (3)3.238 (3)150 (2)
N4—H14···O7iii0.84 (3)2.19 (3)3.003 (2)163 (3)
N4—H15···O2iv0.83 (3)2.06 (3)2.878 (3)170 (2)
C2—H2···O7i0.952.393.230 (3)148
C4—H4···O6v0.952.373.319 (3)177
C5—H5···O40.952.443.227 (3)141
C8—H8···O7iii0.952.543.456 (3)163
C9—H9···O5vi0.952.503.344 (3)148
C11—H11···O60.952.412.994 (3)120
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1; (v) x+1, y+1, z+2; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Hg(NO3)(C6H6N2O)2](NO3)
Mr568.87
Crystal system, space groupTriclinic, P1
Temperature (K)183
a, b, c (Å)6.6594 (1), 9.5373 (2), 13.6949 (3)
α, β, γ (°)73.832 (2), 86.714 (2), 75.399 (2)
V3)808.34 (3)
Z2
Radiation typeMo Kα
µ (mm1)9.58
Crystal size (mm)0.31 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Rubby detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.187, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
38635, 4719, 4201
Rint0.039
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.035, 1.02
No. of reflections4719
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.47, 0.75

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Hg1—O12.444 (2)Hg1—N12.191 (2)
Hg1—O22.396 (2)Hg1—N32.221 (2)
Hg1—O32.515 (2)
O1—Hg1—O272.25 (5)O2—Hg1—N1137.45 (6)
O1—Hg1—O3118.02 (6)O2—Hg1—N371.17 (6)
O1—Hg1—N171.06 (6)O3—Hg1—N198.25 (7)
O1—Hg1—N3129.40 (6)O3—Hg1—N388.90 (7)
O2—Hg1—O380.66 (6)N1—Hg1—N3151.19 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···O8i0.85 (3)2.12 (3)2.911 (3)154 (3)
N2—H13···O4ii0.86 (3)2.41 (3)3.180 (3)150 (2)
N2—H13···O5ii0.86 (3)2.47 (3)3.238 (3)150 (2)
N4—H14···O7iii0.84 (3)2.19 (3)3.003 (2)163 (3)
N4—H15···O2iv0.83 (3)2.06 (3)2.878 (3)170 (2)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds