Download citation
Download citation
link to html
In the title compound, [V4O8(SeO3)2(C10H8N2)4], there are two distinct vanadium coordination environments. Alternating corner-shared VO4N2 octa­hedra and SeO3 pyramids result in eight-membered centrosymmetric V2Se2O4 rings. In addition, pairs of V centres form centrosymmetric V2O6N4 clusters via edge-sharing. These two kinds of secondary building units are linked in an ABABAB fashion to give an infinite chain whose nature is unprecedented in Se–V–O systems.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107047683/ln3059sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107047683/ln3059Isup2.hkl
Contains datablock I

CCDC reference: 669165

Comment top

A number of vanadates and vanadium phosphates have been explored extensively as a result of their catalytic properties in organic oxidations and their intercalation properties (Centi, 1993; Cheetham et al., 1999; Chirayil et al., 1997; Ouellette et al., 2006; Sananes et al., 1995; Shan et al., 1999; Shi et al., 2000). In contrast, the known chemistry of vanadium selenites is very limited (Harrison et al., 1995; Halasyamini & O'Hare, 1997; Kim et al., 2001; Kim, Kwon & Lee, 1996; Kim, Lee et al., 1996; Kwon et al., 1996; Lee & Kwon, 1996; Lee et al., 1995; Vaughey et al., 1994). Recently, many planned attempts have been made to modify structurally and to design hybrid vanadium selenites through the introduction of organic species as templates, charge-compensating cations or space-filling agents (Choudhury et al., 2002; Dai, Chen et al., 2003; Dai et al., 2004, 2005; Dai, Shi, Li, Chen et al., 2003; Dai, Shi, Li, Zhang et al., 2003; De et al., 2003; Harrison et al., 2000; Pasha et al., 2003; Shi et al., 2002). This strategy appears to afford primitive control over the dimensionality of the solid through manipulation of the steric requirements and denticity of the ligand, and enjoys considerable success. In our previous work, we have successfully obtained a novel vanadyl selenite templated by an organic salt, [(VO)(H2O)2(SeO3)]2[(H2piperazidine)SO4] (Lian et al., 2004). As an extension of our work, we report here the synthesis and crystal structure of the title compound, (I), which exhibits an infinite chain motif whose nature is unprecedented in Se–V–O–L systems, where L is an organic ligand.

In the asymmetric unit of (I), there are two crystallographically independent V atoms and one distinct Se atom (Fig. 1). Each V centre has a distorted octahedral coordination environment defined by four O atoms and two cis-positioned N donors of the 2,2'-bipyridine ligand. Within the V[O4N2] environment of atom V1, atoms O1 and O2 occur as terminal VO. The remaining O atoms are from two centrosymmetrically related SeO3 groups, thus forming two V—O—Se linkages with one short and one long V—O bond (Table 1). In the case of atom V2, two centrosymmetrically related V2 atoms are asymmetrically bridged via two symmetry-related µ2-O6 atoms to form a dimeric [V2O6N4] unit, similar to that in (1,10-phenanthroline)2V2SeO7 and [VO2(2,2'-bipy)]2(tp) (tp is terephthalate) (Dai, Shi, Li, Zhang et al., 2003; Yuan et al., 2003). Atom O7 is coordinated to atom V2 as terminal VO. One O-atom donor from an SeO3 group is coordinated to atom V2 to make a V—O—Se linkage.

The V—N bond lengths are in the range 2.142 (2)–2.289 (2) Å (Table 1), which is similar to those observed in similar compounds documented elsewhere (Dai, Shi, Li, Zhang et al., 2003., Yuan et al., 2003). The V—O bond lengths vary from 1.6084 (2) to 2.3511 (2) Å and are grouped into four types. The shortest bond lengths are around 1.62 Å and correspond to terminal V O. In the V—O—V linkages, the bridging O atoms are conected to two symmetry-related V atoms, with one short V—O bond corresponding with one long V—O bond. In the case of the V—O—Se linkages, similar patterns are observed, and longer V—O bonds correspond with shorter Se—O bonds. Given that the longest bridging V—O bond [V1—O4i; symmetry code: (i) 1 − x, 1 − y, 1 − z] is trans to a terminal Vl O bond, it is hypothesized that the trans effect plays an appreciable role in governing the V—O bond lengths in compound (I).

The [VO4N2] geometry for atom V1 is similar to those in (2,2'-bipyridine)VSeO4 and [(VO)(H2O)2(SeO3)]2[(H2piperazidine)SO4] (Dai, Shi, Li, Zhang et al., 2003; Lian et al., 2004). In these two compounds, there are one VO bond and three V—O bonds forming three V—O—Se linkages. The Se atom in (I) is tricoordinated by O atoms and exhibits pseudo-tetrahedral geometry, with the lone pair of electrons occupying the apical site. All of the O atoms around atom Se1 form Se—O—V linkages, with an average Se—O bond length of 1.704 (3) Å and an average O—Se—O bond angle 100.6 (2)°. Bond-valence sum calculations (Brown & Altermatt, 1985; Brown & Shannon, 1973; Brese & O'Keeffe, 1991) give values of 4.7, 4.8 and 4.2 for atoms V1, V2 and Se1, respectively, showing that the V1 and V2 sites are in the +5 oxidation state and the Se site is in the +4 oxidation state. In [(VO)(H2O)2(SeO3)]2[(H2piperazidine)SO4], the V centres are in the +4 oxidation state.

The coordination patterns described above result in the structure of the title compound consisting of infinite chains constructed from SeO3 pyramids, V[O4N2] octahedra and [V2O6N4] clusters (Fig. 2). Two of the O atoms from the SeO3 pyramids are corner-shared by two symmetrically equivalent V1[O4N2] octahedra to form cyclic centrosymmetric eight-membered [V2Se2O4] rings. Such rings can often be connected into an infinite chain via edge-shared or corner-shared bridges. The former type is well documented elsewhere (Pasha et al., 2003; Dai, Shi, Li, Zhang et al., 2003; Dai, Shi, Li, Chen et al., 2003; Dai et al., 2005), while the latter is only exemplified by K(VO)(SeO3)2H (Kim, Lee et al., 1996). These chains can be further developed into one-, two- and three-dimensional structures, similar to those in open-framework metal phosphates. In (I), the exocyclic non-terminal O atoms on each side of the [V2O6N4] clusters are bonded to Se atoms. This connection results in the secondary units of [V2Se2O10N4] and [V2O6N4] being linked in an ABABAB fashion into infinite chains. Here, the [V4Se2O15N8] unit can be viewed as the principal building block of the chain. To our knowledge, this type of chain has not previously been reported in Se–V–O systems.

In the case of the complex-linked vanadates, vanadium–oxygen polyhedra are assembled via corner-sharing or edge-sharing into building blocks. The metal complexes link these building blocks to result in zero-, one-, two- and three-dimensional frameworks (Debord et al., 1996; Zhang et al., 1997; Hagrman & Zubieta, 2001; Hui et al., 2004), where metal complex fragments act either as a bridge between the vanadium–oxygen polyhedra or as a capping motif. In comparison with these compounds, the overall structure of (I) may be best depicted as `isolated' V[O4N2] octahedra and [V2O6N4] clusters bridged by SeO3 in the µ3 mode to form infinite chains.

In the packing arrangement of (I), the 2,2'-bipyridine ligands are arranged in a wave-like fashion. C20—H···π interactions with a C20···π distance of 3.59 Å occur within the infinite chains, while the chains are cross-linked by aromatic interactions between adjacent 2,2'-bipyridine rings with an interplanar spacing of 3.31 Å, and by C8—H···π interactions with a C8···π distance of 3.66 Å (Fig. 3).

Experimental top

A mixture of V2O5 (0.036 g, 0.2 mmol), SeO2 (0.060 g, 0.4 mmol), 2,2'-bipyridine (0.032 g 0.2 mmol) and H2O (5 ml) was stirred for about 30 min, and then sealed in a Teflon-lined stainless steel autoclave and heated to 393 K for 4 d. The container was cooled to ambient temperature spontaneously. An essentially quantitative yield (about 75%, based on V) of red block-shaped single crystals of (I) was recovered by vacuum filtration and drying in air.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: TEXSAN (Molecular Structure Corporation, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) −x, −y + 1, −z + 2; (B) −x + 1, −y + 1, −z + 1.]
[Figure 2] Fig. 2. The chain structure of (I), viewed down [101].
[Figure 3] Fig. 3. A view of the packing of the chains in (I) in the ac plane.
catena-Poly[[(2,2'-bipyridyl)oxidovanadium]-di-µ2-oxido-[(2,2'- bipyridyl)oxidovanadium]-µ3-selenito-bis[(2,2'-bipyridyl)dioxidovanadium]- µ3-selenito] top
Crystal data top
[V4O8(SeO3)2(C10H8N2)4]Z = 2
Mr = 605.21F(000) = 600
Triclinic, P1Dx = 1.957 Mg m3
a = 9.816 (2) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.026 (3) ÅCell parameters from 3588 reflections
c = 11.090 (2) Åθ = 12–18°
α = 87.53 (3)°µ = 2.74 mm1
β = 75.49 (2)°T = 298 K
γ = 76.41 (3)°Block, red
V = 1027.0 (4) Å30.46 × 0.43 × 0.39 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3588 independent reflections
Radiation source: rotor target3458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
RAXISCS3 scannerθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(TEXSAN; Molecular Structure Corporation, 2001)
h = 1111
Tmin = 0.302, Tmax = 0.361k = 110
3588 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.4497P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3588 reflectionsΔρmax = 0.89 e Å3
308 parametersΔρmin = 0.57 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (3)
Crystal data top
[V4O8(SeO3)2(C10H8N2)4]γ = 76.41 (3)°
Mr = 605.21V = 1027.0 (4) Å3
Triclinic, P1Z = 2
a = 9.816 (2) ÅMo Kα radiation
b = 10.026 (3) ŵ = 2.74 mm1
c = 11.090 (2) ÅT = 298 K
α = 87.53 (3)°0.46 × 0.43 × 0.39 mm
β = 75.49 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3588 independent reflections
Absorption correction: multi-scan
(TEXSAN; Molecular Structure Corporation, 2001)
3458 reflections with I > 2σ(I)
Tmin = 0.302, Tmax = 0.361Rint = 0.040
3588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.89 e Å3
3588 reflectionsΔρmin = 0.57 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.34836 (2)0.48783 (2)0.639577 (19)0.01603 (13)
V10.59671 (4)0.22075 (4)0.52822 (4)0.01738 (14)
V20.12052 (4)0.52532 (4)0.91059 (3)0.01637 (14)
O10.6138 (2)0.11717 (18)0.64349 (17)0.0288 (4)
O20.45288 (18)0.20010 (18)0.49037 (16)0.0260 (4)
O30.52610 (17)0.39875 (17)0.61313 (15)0.0201 (3)
O40.36319 (18)0.64661 (16)0.65168 (15)0.0219 (4)
O50.29475 (17)0.43883 (17)0.79379 (15)0.0219 (4)
O60.01439 (17)0.40655 (16)0.92701 (15)0.0197 (3)
O70.06057 (18)0.64205 (19)0.82039 (16)0.0265 (4)
N10.8212 (2)0.2563 (2)0.5106 (2)0.0216 (4)
N20.7443 (2)0.0766 (2)0.39155 (18)0.0209 (4)
N30.2467 (2)0.3988 (2)1.04116 (18)0.0197 (4)
N40.2426 (2)0.6546 (2)0.97566 (18)0.0197 (4)
C10.8514 (3)0.3473 (3)0.5790 (3)0.0279 (5)
H10.77500.40780.63130.033*
C20.9910 (3)0.3552 (3)0.5751 (3)0.0349 (7)
H21.00830.42050.62300.042*
C31.1040 (3)0.2645 (3)0.4990 (3)0.0378 (7)
H31.19910.26700.49530.045*
C41.0746 (3)0.1695 (3)0.4281 (3)0.0327 (6)
H41.14970.10690.37670.039*
C50.9314 (3)0.1688 (2)0.4347 (2)0.0226 (5)
C60.8878 (3)0.0716 (2)0.3638 (2)0.0225 (5)
C70.9847 (3)0.0211 (3)0.2757 (3)0.0359 (7)
H71.08260.02160.25530.043*
C80.9346 (4)0.1130 (3)0.2183 (3)0.0403 (7)
H80.99850.17620.15940.048*
C90.7897 (3)0.1097 (3)0.2494 (3)0.0346 (6)
H90.75430.17190.21310.042*
C100.6965 (3)0.0125 (2)0.3355 (2)0.0260 (5)
H100.59790.00910.35500.031*
C110.2456 (3)0.2680 (3)1.0684 (2)0.0248 (5)
H110.19600.22331.02830.030*
C120.3147 (3)0.1965 (3)1.1531 (3)0.0310 (6)
H120.31240.10521.16930.037*
C130.3876 (3)0.2626 (3)1.2139 (3)0.0323 (6)
H130.43390.21701.27270.039*
C140.3906 (3)0.3976 (3)1.1859 (2)0.0280 (6)
H140.44010.44401.22460.034*
C150.3186 (2)0.4630 (2)1.0992 (2)0.0204 (5)
C160.3146 (2)0.6075 (2)1.0632 (2)0.0207 (5)
C170.3818 (3)0.6896 (3)1.1156 (2)0.0269 (5)
H170.43180.65491.17540.032*
C180.3728 (3)0.8238 (3)1.0769 (3)0.0315 (6)
H180.41540.88111.11150.038*
C190.2998 (3)0.8718 (3)0.9864 (3)0.0325 (6)
H190.29310.96150.95880.039*
C200.2369 (3)0.7840 (3)0.9376 (2)0.0265 (5)
H200.18880.81600.87600.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01344 (17)0.01957 (17)0.01359 (17)0.00168 (10)0.00234 (10)0.00132 (10)
V10.0143 (2)0.0189 (2)0.0170 (2)0.00199 (16)0.00152 (16)0.00260 (16)
V20.0131 (2)0.0216 (2)0.0134 (2)0.00353 (16)0.00177 (16)0.00085 (15)
O10.0320 (10)0.0280 (9)0.0238 (10)0.0033 (8)0.0061 (8)0.0015 (7)
O20.0203 (9)0.0328 (10)0.0260 (9)0.0081 (7)0.0058 (7)0.0001 (7)
O30.0147 (8)0.0231 (8)0.0186 (8)0.0013 (6)0.0013 (6)0.0052 (6)
O40.0243 (9)0.0193 (8)0.0190 (8)0.0031 (7)0.0013 (7)0.0004 (6)
O50.0198 (8)0.0247 (8)0.0158 (8)0.0019 (7)0.0022 (6)0.0011 (6)
O60.0173 (8)0.0234 (8)0.0177 (8)0.0057 (6)0.0011 (6)0.0055 (6)
O70.0207 (9)0.0352 (10)0.0211 (9)0.0034 (7)0.0046 (7)0.0065 (7)
N10.0176 (10)0.0225 (10)0.0231 (11)0.0004 (8)0.0059 (8)0.0002 (8)
N20.0242 (10)0.0189 (9)0.0169 (10)0.0021 (8)0.0029 (8)0.0004 (7)
N30.0157 (9)0.0242 (10)0.0173 (10)0.0027 (8)0.0025 (8)0.0007 (8)
N40.0156 (9)0.0251 (10)0.0163 (10)0.0028 (8)0.0017 (8)0.0021 (8)
C10.0269 (13)0.0280 (13)0.0305 (14)0.0055 (10)0.0107 (11)0.0022 (10)
C20.0335 (15)0.0371 (16)0.0417 (17)0.0147 (13)0.0180 (13)0.0051 (13)
C30.0239 (14)0.0485 (17)0.0455 (18)0.0135 (13)0.0145 (13)0.0146 (14)
C40.0177 (12)0.0398 (15)0.0343 (16)0.0015 (11)0.0007 (11)0.0064 (12)
C50.0199 (12)0.0241 (12)0.0206 (12)0.0016 (9)0.0032 (10)0.0044 (9)
C60.0209 (12)0.0206 (11)0.0201 (12)0.0010 (9)0.0001 (10)0.0020 (9)
C70.0324 (15)0.0308 (14)0.0334 (16)0.0004 (12)0.0058 (12)0.0043 (12)
C80.0506 (18)0.0287 (14)0.0287 (15)0.0019 (13)0.0049 (13)0.0088 (11)
C90.0542 (18)0.0248 (13)0.0230 (14)0.0075 (12)0.0069 (13)0.0040 (10)
C100.0340 (14)0.0216 (12)0.0225 (12)0.0054 (10)0.0082 (10)0.0000 (9)
C110.0234 (12)0.0256 (12)0.0233 (13)0.0039 (10)0.0026 (10)0.0034 (10)
C120.0319 (14)0.0258 (13)0.0285 (14)0.0004 (11)0.0023 (11)0.0039 (10)
C130.0358 (15)0.0329 (14)0.0229 (13)0.0054 (12)0.0104 (11)0.0029 (11)
C140.0271 (13)0.0333 (14)0.0232 (13)0.0010 (11)0.0106 (10)0.0040 (11)
C150.0170 (11)0.0252 (12)0.0168 (11)0.0020 (9)0.0018 (9)0.0040 (9)
C160.0168 (11)0.0247 (12)0.0185 (12)0.0027 (9)0.0020 (9)0.0031 (9)
C170.0282 (13)0.0329 (14)0.0216 (13)0.0065 (11)0.0099 (11)0.0035 (10)
C180.0359 (15)0.0310 (14)0.0300 (15)0.0128 (12)0.0064 (12)0.0072 (11)
C190.0389 (15)0.0243 (13)0.0338 (15)0.0086 (11)0.0062 (12)0.0020 (11)
C200.0277 (13)0.0268 (13)0.0235 (13)0.0045 (10)0.0055 (10)0.0021 (10)
Geometric parameters (Å, º) top
Se1—O41.6464 (16)C3—C41.384 (4)
Se1—O31.7210 (17)C3—H30.9300
Se1—O51.7439 (17)C4—C51.391 (4)
V1—O11.6285 (19)C4—H40.9300
V1—O21.6292 (17)C5—C61.477 (4)
V1—O31.9466 (18)C6—C71.386 (4)
V1—N22.142 (2)C7—C81.384 (4)
V1—N12.274 (2)C7—H70.9300
V1—O4i2.3511 (18)C8—C91.370 (5)
V2—O71.6084 (18)C8—H80.9300
V2—O61.7337 (16)C9—C101.387 (4)
V2—O51.9093 (18)C9—H90.9300
V2—O6ii1.9876 (18)C10—H100.9300
V2—N42.210 (2)C11—C121.374 (4)
V2—N32.289 (2)C11—H110.9300
V2—V2ii2.8135 (12)C12—C131.382 (4)
O4—V1i2.3511 (18)C12—H120.9300
O6—V2ii1.9876 (18)C13—C141.381 (4)
N1—C11.339 (3)C13—H130.9300
N1—C51.345 (3)C14—C151.386 (4)
N2—C101.341 (3)C14—H140.9300
N2—C61.354 (3)C15—C161.481 (3)
N3—C111.334 (3)C16—C171.392 (3)
N3—C151.344 (3)C17—C181.384 (4)
N4—C201.339 (3)C17—H170.9300
N4—C161.346 (3)C18—C191.382 (4)
C1—C21.382 (4)C18—H180.9300
C1—H10.9300C19—C201.383 (4)
C2—C31.376 (5)C19—H190.9300
C2—H20.9300C20—H200.9300
O4—Se1—O3101.45 (8)C3—C2—C1118.5 (3)
O4—Se1—O5103.77 (9)C3—C2—H2120.7
O3—Se1—O596.61 (8)C1—C2—H2120.7
O1—V1—O2104.96 (10)C2—C3—C4119.3 (3)
O1—V1—O3101.88 (8)C2—C3—H3120.3
O2—V1—O3101.74 (8)C4—C3—H3120.3
O1—V1—N293.55 (9)C3—C4—C5119.2 (3)
O2—V1—N294.56 (9)C3—C4—H4120.4
O3—V1—N2153.69 (8)C5—C4—H4120.4
O1—V1—N190.74 (9)N1—C5—C4121.3 (2)
O2—V1—N1160.71 (9)N1—C5—C6114.9 (2)
O3—V1—N185.54 (8)C4—C5—C6123.7 (2)
N2—V1—N172.96 (8)N2—C6—C7120.9 (2)
O1—V1—O4i165.34 (8)N2—C6—C5115.4 (2)
O2—V1—O4i86.95 (8)C7—C6—C5123.6 (2)
O3—V1—O4i83.60 (7)C8—C7—C6119.5 (3)
N2—V1—O4i76.74 (7)C8—C7—H7120.2
N1—V1—O4i76.03 (7)C6—C7—H7120.2
O7—V2—O6106.45 (9)C9—C8—C7119.2 (3)
O7—V2—O597.50 (9)C9—C8—H8120.4
O6—V2—O5103.55 (8)C7—C8—H8120.4
O7—V2—O6ii99.98 (9)C8—C9—C10119.2 (3)
O6—V2—O6ii81.99 (8)C8—C9—H9120.4
O5—V2—O6ii159.32 (7)C10—C9—H9120.4
O7—V2—N493.00 (9)N2—C10—C9122.0 (3)
O6—V2—N4155.09 (8)N2—C10—H10119.0
O5—V2—N488.80 (8)C9—C10—H10119.0
O6ii—V2—N479.37 (7)N3—C11—C12122.9 (2)
O7—V2—N3164.14 (8)N3—C11—H11118.5
O6—V2—N389.38 (8)C12—C11—H11118.5
O5—V2—N379.25 (7)C11—C12—C13118.9 (3)
O6ii—V2—N380.93 (7)C11—C12—H12120.6
N4—V2—N371.51 (7)C13—C12—H12120.6
O7—V2—V2ii107.27 (7)C14—C13—C12118.8 (2)
O6—V2—V2ii44.39 (6)C14—C13—H13120.6
O5—V2—V2ii143.64 (6)C12—C13—H13120.6
O6ii—V2—V2ii37.60 (5)C13—C14—C15119.0 (2)
N4—V2—V2ii115.38 (6)C13—C14—H14120.5
N3—V2—V2ii83.22 (6)C15—C14—H14120.5
Se1—O3—V1122.48 (9)N3—C15—C14122.0 (2)
Se1—O4—V1i119.57 (9)N3—C15—C16114.8 (2)
Se1—O5—V2125.06 (10)C14—C15—C16123.2 (2)
V2—O6—V2ii98.01 (8)N4—C16—C17121.9 (2)
C1—N1—C5118.8 (2)N4—C16—C15115.8 (2)
C1—N1—V1124.72 (17)C17—C16—C15122.3 (2)
C5—N1—V1116.13 (16)C18—C17—C16118.7 (2)
C10—N2—C6119.2 (2)C18—C17—H17120.6
C10—N2—V1120.53 (17)C16—C17—H17120.6
C6—N2—V1120.24 (16)C19—C18—C17119.3 (2)
C11—N3—C15118.3 (2)C19—C18—H18120.3
C11—N3—V2123.87 (16)C17—C18—H18120.3
C15—N3—V2117.67 (16)C18—C19—C20118.8 (2)
C20—N4—C16118.7 (2)C18—C19—H19120.6
C20—N4—V2121.31 (16)C20—C19—H19120.6
C16—N4—V2119.75 (16)N4—C20—C19122.6 (2)
N1—C1—C2122.8 (3)N4—C20—H20118.7
N1—C1—H1118.6C19—C20—H20118.7
C2—C1—H1118.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formula[V4O8(SeO3)2(C10H8N2)4]
Mr605.21
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.816 (2), 10.026 (3), 11.090 (2)
α, β, γ (°)87.53 (3), 75.49 (2), 76.41 (3)
V3)1027.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.46 × 0.43 × 0.39
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(TEXSAN; Molecular Structure Corporation, 2001)
Tmin, Tmax0.302, 0.361
No. of measured, independent and
observed [I > 2σ(I)] reflections
3588, 3588, 3458
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.087, 1.04
No. of reflections3588
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.57

Computer programs: RAPID-AUTO (Rigaku, 2001), TEXSAN (Molecular Structure Corporation, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Se1—O41.6464 (16)V1—O4i2.3511 (18)
Se1—O31.7210 (17)V2—O71.6084 (18)
Se1—O51.7439 (17)V2—O61.7337 (16)
V1—O11.6285 (19)V2—O51.9093 (18)
V1—O21.6292 (17)V2—O6ii1.9876 (18)
V1—O31.9466 (18)V2—N42.210 (2)
V1—N22.142 (2)V2—N32.289 (2)
V1—N12.274 (2)
O4—Se1—O3101.45 (8)N1—V1—O4i76.03 (7)
O4—Se1—O5103.77 (9)O7—V2—O6106.45 (9)
O3—Se1—O596.61 (8)O7—V2—O597.50 (9)
O1—V1—O2104.96 (10)O6—V2—O5103.55 (8)
O1—V1—O3101.88 (8)O7—V2—O6ii99.98 (9)
O2—V1—O3101.74 (8)O6—V2—O6ii81.99 (8)
O1—V1—N293.55 (9)O5—V2—O6ii159.32 (7)
O2—V1—N294.56 (9)O7—V2—N493.00 (9)
O3—V1—N2153.69 (8)O6—V2—N4155.09 (8)
O1—V1—N190.74 (9)O5—V2—N488.80 (8)
O2—V1—N1160.71 (9)O6ii—V2—N479.37 (7)
O3—V1—N185.54 (8)O7—V2—N3164.14 (8)
O1—V1—O4i165.34 (8)O6—V2—N389.38 (8)
O2—V1—O4i86.95 (8)O5—V2—N379.25 (7)
O3—V1—O4i83.60 (7)O6ii—V2—N380.93 (7)
N2—V1—O4i76.74 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds