Download citation
Download citation
link to html
The reaction of CuCN and KCN with (NH4)2[WS4] followed by cation exchange with PPh4Br produced the title compound, (C24H20P)2[Cu2WS4(CN)2]·CH3CN·H2O or (PPh4)2[(NC)Cu(μ-S)2W(μ-S)2Cu(CN)]·MeCN·H2O. In the structure of the dianion, [(NC)Cu(μ-S)2W(μ-S)2Cu(CN)]2−, the WS4 moiety acts as a bidentate ligand that binds two CuCN groups, thus forming a slightly bent WCu2 core with approximate D2d symmetry. The W—Cu distances are in the range 2.6463 (6)–2.6545 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103022078/ln1179sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103022078/ln1179Isup2.hkl
Contains datablock I

CCDC reference: 226104

Comment top

In the past decade, the third-order non-linear optical (NLO) properties of group IB–VIB chalcogenide clusters derived from tetrathiometallate ([MS4]2-; M = Mo and W) anions have been studied extensively (Shi et al., 1994; Shi, 1998; Yu et al., 2001). However, only a few Mo(W)/Cu(Ag)/S clusters containing cyanides have been prepared and confirmed to exhibit good NLO properties in solution (Hou et al., 1999; Zhang et al., 2000). To find clusters with better NLO properties, we carried out the reaction of CuCN and KCN with (NH4)2[WS4]. We report here the structure of the title trinuclear W/Cu/S cluster, (I).

The asymmetric unit of (I) contains one discrete cluster anion, two [PPh4]+ cations, one acetonitrile molecule and one water molecule (Fig. 1). Being isostructural with its molybdenum analogue (Gheller, et al., 1984), the dianion of (I) consists of a central WS4 moiety and two CuCN groups, which are connected via µ-S atoms. However, the dianion is slightly distorted from D2 d symmetry by small bends of 6–8° at all three metal atoms along the NC—Cu—W—Cu—CN axis (Table 1). The two Cu—C—N angles also deviate from linearity (by 2–4°). The two WCuS2 rhombuses are not quite planar but are essentially perpendicularly disposed to one another.

Each of the two Cu atoms adopts an approximately trigonal-planar coordination geometry. The WS4 moiety is a slightly distorted tetrahedron, with S—W—S bond angles ranging from 107.34 (4) to 112.17 (5)°. The mean W—µ-S bond length shows an apparent elongation of 0.052 (11) Å compared with that in free [WS4]2- [2.165 (3) Å] (Sasvari, 1963) as a result of binding two CuCN groups. The mean W—Cu distance [2.6504 (6) Å] is comparable to those found in three-coordinate Cu clusters, such as [PPh4]2[(η5-C5Me5)WS3Cu3Br3]2 [2.661 (1) Å] (Lang et al., 1997) and [PPh4][{(η5-C5Me5) WS3Cu2}2S2]2 [2.677 (3) Å] (Lang & Tatsumi, 1998). The mean Cu—µ-S and Cu—C distances are similar to those in the corresponding molybdenum analogue [Cu—µ-S = 2.210 (2) Å and Cu—C = 1.886 (9) Å; Gheller et al., 1984].

Each water molecule acts as a donor for two intermolecular hydrogen bonds (Table 2). The acceptor atoms are the cyano N atoms from opposite ends of two adjacent anions. These interactions link an alternating sequence of anions and water molecules into extended chains that run in the [1–10] direction.

Experimental top

(NH4)2[WS4] was prepared according to the literature method (McDonald et al., 1983). To a suspension produced by combining CuCN (0.89 g, 10 mmol) and KCN (0.70 g, 10.77 mmol) in water (20 ml) was added solid (NH4)2[WS4] (1.74 g, 5 mmol). The mixture was stirred for 1 h and filtered. The addition of a solution of PPh4Br (4.19 g, 10 mmol) in water (10 ml) produced a yellow precipitate, which was filtered off, washed with water and dissolved in acetonitril (60 ml). Evaporation of the solvent produced yellow platelets of (I), which were collected by filtration, washed with methanol and diethyl ether, and dried in vacuo (yield 5.29 g, 86%). IR (KBr disk, cm-1): υ(C—N) 2123 (m); υ(W—S) 457 (m), 417 (w). The crystal used for the structure determination was obtained directly from the above preparation.

Refinement top

The positions of the H atoms of the water molecule were located from a difference Fourier map and were refined freely, along with the isotropic displacement parameters. The acetonitrile H atoms were constrained to an ideal geometry [C—H = 0.96 Å, with Uiso(H) = 1.5Ueq(C)]. All other H atoms were placed in idealized positions (C—H = 0.93 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C)].

Structure description top

In the past decade, the third-order non-linear optical (NLO) properties of group IB–VIB chalcogenide clusters derived from tetrathiometallate ([MS4]2-; M = Mo and W) anions have been studied extensively (Shi et al., 1994; Shi, 1998; Yu et al., 2001). However, only a few Mo(W)/Cu(Ag)/S clusters containing cyanides have been prepared and confirmed to exhibit good NLO properties in solution (Hou et al., 1999; Zhang et al., 2000). To find clusters with better NLO properties, we carried out the reaction of CuCN and KCN with (NH4)2[WS4]. We report here the structure of the title trinuclear W/Cu/S cluster, (I).

The asymmetric unit of (I) contains one discrete cluster anion, two [PPh4]+ cations, one acetonitrile molecule and one water molecule (Fig. 1). Being isostructural with its molybdenum analogue (Gheller, et al., 1984), the dianion of (I) consists of a central WS4 moiety and two CuCN groups, which are connected via µ-S atoms. However, the dianion is slightly distorted from D2 d symmetry by small bends of 6–8° at all three metal atoms along the NC—Cu—W—Cu—CN axis (Table 1). The two Cu—C—N angles also deviate from linearity (by 2–4°). The two WCuS2 rhombuses are not quite planar but are essentially perpendicularly disposed to one another.

Each of the two Cu atoms adopts an approximately trigonal-planar coordination geometry. The WS4 moiety is a slightly distorted tetrahedron, with S—W—S bond angles ranging from 107.34 (4) to 112.17 (5)°. The mean W—µ-S bond length shows an apparent elongation of 0.052 (11) Å compared with that in free [WS4]2- [2.165 (3) Å] (Sasvari, 1963) as a result of binding two CuCN groups. The mean W—Cu distance [2.6504 (6) Å] is comparable to those found in three-coordinate Cu clusters, such as [PPh4]2[(η5-C5Me5)WS3Cu3Br3]2 [2.661 (1) Å] (Lang et al., 1997) and [PPh4][{(η5-C5Me5) WS3Cu2}2S2]2 [2.677 (3) Å] (Lang & Tatsumi, 1998). The mean Cu—µ-S and Cu—C distances are similar to those in the corresponding molybdenum analogue [Cu—µ-S = 2.210 (2) Å and Cu—C = 1.886 (9) Å; Gheller et al., 1984].

Each water molecule acts as a donor for two intermolecular hydrogen bonds (Table 2). The acceptor atoms are the cyano N atoms from opposite ends of two adjacent anions. These interactions link an alternating sequence of anions and water molecules into extended chains that run in the [1–10] direction.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Bis(tetraphenylphosphonium) (µ-tetrathiotungstenio-κ4S,S':S'':S''')bis[(cyano-κC)cuprate](2-) acetonitrile solvate monohydrate top
Crystal data top
(C24H20P)2[Cu2WS4(CN)2]·C2H3N·H2OZ = 2
Mr = 1229.07F(000) = 1224
Triclinic, P1Dx = 1.586 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6193 (2) ÅCell parameters from 6823 reflections
b = 12.7441 (10) Åθ = 3.0–27.5°
c = 20.7526 (3) ŵ = 3.31 mm1
α = 72.922 (9)°T = 193 K
β = 76.449 (9)°Prism, orange
γ = 77.159 (10)°0.40 × 0.35 × 0.30 mm
V = 2574.1 (3) Å3
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
11796 independent reflections
Radiation source: fine-focus sealed tube10551 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1616
Tmin = 0.260, Tmax = 0.370l = 2626
25798 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0435P)2 + 3.3249P]
where P = (Fo2 + 2Fc2)/3
11567 reflections(Δ/σ)max = 0.001
594 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
(C24H20P)2[Cu2WS4(CN)2]·C2H3N·H2Oγ = 77.159 (10)°
Mr = 1229.07V = 2574.1 (3) Å3
Triclinic, P1Z = 2
a = 10.6193 (2) ÅMo Kα radiation
b = 12.7441 (10) ŵ = 3.31 mm1
c = 20.7526 (3) ÅT = 193 K
α = 72.922 (9)°0.40 × 0.35 × 0.30 mm
β = 76.449 (9)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
11796 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
10551 reflections with I > 2σ(I)
Tmin = 0.260, Tmax = 0.370Rint = 0.030
25798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.02 e Å3
11567 reflectionsΔρmin = 0.84 e Å3
594 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.191801 (14)0.456795 (13)0.213625 (7)0.03355 (6)
Cu10.04607 (5)0.65710 (4)0.18518 (2)0.03762 (11)
Cu20.33923 (5)0.26156 (4)0.25402 (3)0.04664 (13)
S10.02834 (10)0.52665 (11)0.28493 (5)0.0517 (3)
S20.20355 (11)0.58110 (10)0.11241 (5)0.0446 (2)
S30.37574 (9)0.42850 (9)0.25390 (5)0.0383 (2)
S40.16032 (13)0.29406 (11)0.20766 (8)0.0643 (4)
P10.70803 (8)0.30988 (7)0.55733 (4)0.02707 (17)
P20.36721 (8)0.27464 (8)0.95461 (4)0.02791 (18)
O10.7771 (4)0.0719 (3)0.2394 (2)0.0641 (10)
N10.1291 (4)0.8821 (3)0.17698 (19)0.0457 (8)
N20.5008 (5)0.0438 (4)0.3165 (3)0.0809 (15)
N30.8447 (15)0.8912 (8)0.5232 (5)0.189 (5)
C10.0620 (4)0.7988 (3)0.17763 (19)0.0377 (8)
C20.4387 (4)0.1246 (4)0.2924 (3)0.0560 (12)
C30.7686 (3)0.4398 (3)0.53309 (17)0.0289 (7)
C40.7743 (3)0.4905 (3)0.58379 (18)0.0320 (7)
H4A0.74770.45690.62990.038*
C50.8201 (4)0.5911 (3)0.5645 (2)0.0368 (8)
H5A0.82310.62560.59780.044*
C60.8613 (4)0.6403 (3)0.4960 (2)0.0416 (9)
H6A0.89430.70660.48360.050*
C70.8538 (4)0.5915 (4)0.4460 (2)0.0433 (9)
H7A0.87920.62620.40000.052*
C80.8083 (4)0.4906 (3)0.46432 (18)0.0358 (8)
H8A0.80440.45730.43070.043*
C90.6921 (4)0.2761 (3)0.48143 (18)0.0324 (7)
C100.5690 (4)0.2879 (3)0.46541 (19)0.0361 (8)
H10A0.49340.30870.49510.043*
C110.5604 (5)0.2678 (3)0.4037 (2)0.0473 (10)
H11A0.47850.27460.39270.057*
C120.6718 (5)0.2383 (4)0.3598 (2)0.0540 (12)
H12A0.66520.22680.31860.065*
C130.7933 (6)0.2254 (4)0.3762 (2)0.0598 (13)
H13A0.86810.20390.34620.072*
C140.8058 (4)0.2442 (4)0.4369 (2)0.0487 (10)
H14A0.88820.23560.44770.058*
C150.8181 (3)0.1984 (3)0.60206 (17)0.0298 (7)
C160.8126 (4)0.0885 (3)0.6040 (2)0.0416 (9)
H16A0.75910.07450.57880.050*
C170.8872 (4)0.0008 (4)0.6435 (2)0.0486 (10)
H17A0.88220.07220.64570.058*
C180.9698 (4)0.0218 (4)0.6798 (2)0.0480 (10)
H18A1.02070.03710.70580.058*
C190.9762 (4)0.1301 (4)0.6773 (2)0.0442 (9)
H19A1.03180.14390.70140.053*
C200.9002 (3)0.2182 (3)0.63916 (18)0.0331 (7)
H20A0.90380.29090.63820.040*
C210.5502 (3)0.3230 (3)0.61230 (17)0.0275 (7)
C220.4858 (4)0.4245 (3)0.62475 (19)0.0360 (8)
H22A0.52230.48870.60290.043*
C230.3671 (4)0.4297 (3)0.6699 (2)0.0426 (9)
H23A0.32410.49750.67860.051*
C240.3127 (4)0.3355 (4)0.7018 (2)0.0421 (9)
H24A0.23370.33960.73260.051*
C250.3737 (4)0.2349 (4)0.6885 (2)0.0452 (10)
H25A0.33470.17190.70950.054*
C260.4928 (4)0.2275 (3)0.6442 (2)0.0364 (8)
H26A0.53460.15940.63560.044*
C270.4636 (3)0.2145 (3)0.88705 (18)0.0330 (7)
C280.5792 (4)0.2544 (4)0.8513 (2)0.0494 (10)
H28A0.60170.31400.86100.059*
C290.6598 (4)0.2061 (5)0.8020 (2)0.0562 (12)
H29A0.73640.23330.77790.067*
C300.6268 (4)0.1170 (4)0.7882 (2)0.0495 (10)
H30A0.68240.08350.75540.059*
C310.5127 (4)0.0774 (4)0.8225 (2)0.0465 (10)
H31A0.49080.01800.81230.056*
C320.4297 (4)0.1260 (3)0.87241 (18)0.0354 (8)
H32A0.35240.09940.89570.043*
C330.2878 (3)0.4134 (3)0.92062 (18)0.0315 (7)
C340.1981 (4)0.4692 (3)0.9655 (2)0.0392 (8)
H34A0.18580.43701.01250.047*
C350.1275 (4)0.5731 (4)0.9397 (3)0.0510 (11)
H35A0.06960.61140.96950.061*
C360.1431 (5)0.6193 (4)0.8700 (3)0.0572 (12)
H36A0.09410.68800.85290.069*
C370.2310 (6)0.5644 (4)0.8255 (3)0.0597 (13)
H37A0.24080.59660.77850.072*
C380.3055 (5)0.4612 (3)0.8498 (2)0.0446 (9)
H38A0.36570.42490.81960.053*
C390.4767 (3)0.2679 (3)1.01048 (18)0.0321 (7)
C400.4670 (4)0.3528 (4)1.04186 (19)0.0385 (8)
H40A0.40730.41821.03160.046*
C410.5479 (4)0.3386 (4)1.0890 (2)0.0477 (10)
H41A0.54210.39481.11020.057*
C420.6363 (4)0.2420 (4)1.1041 (2)0.0525 (12)
H42A0.68800.23221.13660.063*
C430.6485 (4)0.1597 (4)1.0716 (3)0.0534 (12)
H43A0.71020.09551.08110.064*
C440.5694 (4)0.1720 (4)1.0247 (2)0.0453 (10)
H44A0.57810.11621.00270.054*
C450.2376 (3)0.1970 (3)1.00156 (18)0.0312 (7)
C460.1272 (4)0.2128 (4)0.97261 (19)0.0403 (9)
H46A0.12130.26410.93060.048*
C470.0266 (4)0.1535 (4)1.0053 (2)0.0473 (10)
H47A0.04550.16280.98470.057*
C480.0330 (4)0.0807 (4)1.0684 (3)0.0569 (12)
H48A0.03570.04171.09120.068*
C490.1404 (5)0.0655 (5)1.0980 (3)0.0709 (16)
H49A0.14420.01531.14060.085*
C500.2441 (4)0.1239 (4)1.0654 (2)0.0547 (12)
H50A0.31610.11411.08620.066*
C510.7660 (14)0.9164 (7)0.4880 (6)0.130 (4)
C520.6797 (10)0.9403 (8)0.4412 (8)0.190 (7)
H52A0.59950.98500.45710.285*
H52B0.66100.87210.43780.285*
H52C0.72000.98020.39700.285*
H1WA0.805 (5)0.017 (5)0.218 (3)0.065 (16)*
H1WB0.701 (8)0.064 (6)0.261 (4)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.02836 (8)0.04182 (9)0.03259 (8)0.00316 (6)0.00754 (5)0.01305 (6)
Cu10.0354 (2)0.0434 (3)0.0349 (2)0.0008 (2)0.01073 (19)0.0122 (2)
Cu20.0390 (3)0.0419 (3)0.0617 (3)0.0011 (2)0.0152 (2)0.0181 (2)
S10.0364 (5)0.0674 (7)0.0327 (5)0.0110 (5)0.0010 (4)0.0032 (5)
S20.0478 (6)0.0567 (6)0.0279 (4)0.0040 (5)0.0047 (4)0.0140 (4)
S30.0313 (4)0.0471 (5)0.0423 (5)0.0011 (4)0.0115 (4)0.0206 (4)
S40.0581 (7)0.0515 (7)0.0996 (10)0.0112 (6)0.0402 (7)0.0219 (7)
P10.0270 (4)0.0299 (4)0.0250 (4)0.0001 (3)0.0073 (3)0.0093 (3)
P20.0277 (4)0.0321 (5)0.0267 (4)0.0095 (3)0.0046 (3)0.0086 (4)
O10.058 (2)0.063 (2)0.081 (3)0.0097 (19)0.030 (2)0.035 (2)
N10.047 (2)0.040 (2)0.049 (2)0.0071 (16)0.0067 (16)0.0101 (16)
N20.066 (3)0.037 (2)0.145 (5)0.006 (2)0.037 (3)0.028 (3)
N30.340 (17)0.122 (7)0.159 (9)0.026 (8)0.095 (10)0.088 (7)
C10.040 (2)0.044 (2)0.0321 (19)0.0153 (18)0.0055 (15)0.0072 (16)
C20.043 (2)0.042 (2)0.092 (4)0.005 (2)0.015 (2)0.028 (2)
C30.0261 (16)0.0331 (18)0.0268 (16)0.0029 (13)0.0051 (13)0.0080 (14)
C40.0333 (17)0.0380 (19)0.0246 (16)0.0050 (15)0.0045 (13)0.0092 (14)
C50.0371 (19)0.039 (2)0.039 (2)0.0062 (16)0.0097 (16)0.0147 (16)
C60.036 (2)0.040 (2)0.049 (2)0.0128 (17)0.0039 (17)0.0091 (18)
C70.047 (2)0.050 (2)0.0298 (19)0.0176 (19)0.0003 (16)0.0038 (17)
C80.0386 (19)0.044 (2)0.0261 (17)0.0080 (16)0.0025 (14)0.0132 (16)
C90.0410 (19)0.0282 (17)0.0311 (17)0.0016 (15)0.0154 (15)0.0110 (14)
C100.045 (2)0.0303 (18)0.0352 (19)0.0062 (16)0.0171 (16)0.0046 (15)
C110.070 (3)0.038 (2)0.044 (2)0.011 (2)0.031 (2)0.0082 (18)
C120.090 (4)0.041 (2)0.042 (2)0.002 (2)0.031 (2)0.0186 (19)
C130.081 (3)0.054 (3)0.043 (2)0.018 (2)0.014 (2)0.030 (2)
C140.049 (2)0.056 (3)0.045 (2)0.011 (2)0.0161 (19)0.028 (2)
C150.0268 (16)0.0339 (18)0.0274 (16)0.0020 (14)0.0061 (13)0.0102 (14)
C160.044 (2)0.037 (2)0.048 (2)0.0090 (17)0.0226 (18)0.0163 (18)
C170.052 (2)0.036 (2)0.057 (3)0.0123 (19)0.022 (2)0.018 (2)
C180.047 (2)0.047 (2)0.048 (2)0.0162 (19)0.0223 (19)0.0157 (19)
C190.036 (2)0.060 (3)0.040 (2)0.0034 (18)0.0163 (17)0.0186 (19)
C200.0295 (17)0.040 (2)0.0283 (17)0.0008 (15)0.0062 (14)0.0086 (15)
C210.0239 (15)0.0303 (17)0.0266 (16)0.0011 (13)0.0076 (12)0.0049 (13)
C220.0320 (18)0.0333 (19)0.039 (2)0.0025 (15)0.0043 (15)0.0074 (16)
C230.0324 (19)0.040 (2)0.049 (2)0.0038 (16)0.0048 (17)0.0126 (18)
C240.0264 (17)0.053 (2)0.038 (2)0.0004 (17)0.0024 (15)0.0058 (18)
C250.035 (2)0.045 (2)0.047 (2)0.0127 (18)0.0040 (17)0.0035 (18)
C260.0339 (18)0.0274 (18)0.045 (2)0.0007 (15)0.0097 (16)0.0057 (16)
C270.0322 (17)0.040 (2)0.0281 (17)0.0084 (15)0.0015 (14)0.0114 (15)
C280.044 (2)0.064 (3)0.046 (2)0.023 (2)0.0053 (18)0.021 (2)
C290.044 (2)0.081 (3)0.043 (2)0.020 (2)0.0119 (19)0.022 (2)
C300.047 (2)0.065 (3)0.033 (2)0.003 (2)0.0015 (18)0.020 (2)
C310.058 (3)0.045 (2)0.041 (2)0.003 (2)0.0121 (19)0.0192 (19)
C320.041 (2)0.036 (2)0.0318 (18)0.0081 (16)0.0068 (15)0.0113 (15)
C330.0300 (17)0.0326 (18)0.0352 (18)0.0122 (14)0.0079 (14)0.0069 (15)
C340.0336 (19)0.035 (2)0.047 (2)0.0098 (16)0.0032 (16)0.0080 (17)
C350.0299 (19)0.044 (2)0.081 (3)0.0038 (17)0.012 (2)0.019 (2)
C360.055 (3)0.040 (2)0.085 (4)0.006 (2)0.037 (3)0.011 (2)
C370.089 (4)0.044 (3)0.049 (3)0.011 (2)0.035 (3)0.003 (2)
C380.061 (3)0.042 (2)0.034 (2)0.0099 (19)0.0155 (18)0.0071 (17)
C390.0297 (17)0.039 (2)0.0310 (17)0.0132 (15)0.0064 (14)0.0076 (15)
C400.0367 (19)0.049 (2)0.0342 (19)0.0125 (17)0.0038 (15)0.0150 (17)
C410.048 (2)0.068 (3)0.037 (2)0.027 (2)0.0058 (18)0.018 (2)
C420.051 (2)0.067 (3)0.045 (2)0.030 (2)0.024 (2)0.003 (2)
C430.043 (2)0.050 (3)0.072 (3)0.016 (2)0.031 (2)0.000 (2)
C440.041 (2)0.041 (2)0.060 (3)0.0106 (18)0.0193 (19)0.011 (2)
C450.0307 (17)0.0329 (18)0.0307 (17)0.0108 (14)0.0011 (14)0.0086 (14)
C460.042 (2)0.051 (2)0.0313 (19)0.0195 (18)0.0119 (16)0.0028 (17)
C470.039 (2)0.058 (3)0.050 (2)0.024 (2)0.0099 (18)0.008 (2)
C480.039 (2)0.057 (3)0.064 (3)0.025 (2)0.001 (2)0.006 (2)
C490.049 (3)0.085 (4)0.057 (3)0.029 (3)0.010 (2)0.030 (3)
C500.040 (2)0.062 (3)0.050 (3)0.015 (2)0.0145 (19)0.013 (2)
C510.207 (13)0.060 (5)0.126 (8)0.019 (6)0.017 (8)0.043 (5)
C520.101 (7)0.095 (7)0.338 (19)0.018 (5)0.086 (10)0.038 (9)
Geometric parameters (Å, º) top
W1—S12.2087 (11)C21—C261.399 (5)
W1—S42.2151 (12)C22—C231.385 (5)
W1—S32.2178 (9)C22—H22A0.9300
W1—S22.2243 (11)C23—C241.369 (6)
W1—Cu22.6463 (6)C23—H23A0.9300
W1—Cu12.6545 (6)C24—C251.376 (6)
Cu1—C11.897 (4)C24—H24A0.9300
Cu1—S22.2295 (11)C25—C261.382 (5)
Cu1—S12.2404 (12)C25—H25A0.9300
Cu2—C21.885 (5)C26—H26A0.9300
Cu2—S42.2316 (13)C27—C321.388 (5)
Cu2—S32.2449 (11)C27—C281.395 (5)
P1—C211.798 (3)C28—C291.373 (6)
P1—C151.800 (4)C28—H28A0.9300
P1—C31.800 (4)C29—C301.382 (7)
P1—C91.803 (3)C29—H29A0.9300
P2—C271.792 (4)C30—C311.373 (6)
P2—C331.794 (4)C30—H30A0.9300
P2—C451.798 (3)C31—C321.393 (5)
P2—C391.798 (3)C31—H31A0.9300
O1—H1WA0.91 (6)C32—H32A0.9300
O1—H1WB0.84 (7)C33—C341.397 (5)
N1—C11.138 (5)C33—C381.401 (5)
N2—C21.138 (6)C34—C351.390 (6)
N3—C511.168 (15)C34—H34A0.9300
C3—C81.389 (5)C35—C361.376 (7)
C3—C41.405 (5)C35—H35A0.9300
C4—C51.387 (5)C36—C371.380 (7)
C4—H4A0.9300C36—H36A0.9300
C5—C61.383 (6)C37—C381.395 (6)
C5—H5A0.9300C37—H37A0.9300
C6—C71.383 (6)C38—H38A0.9300
C6—H6A0.9300C39—C441.392 (6)
C7—C81.390 (5)C39—C401.393 (5)
C7—H7A0.9300C40—C411.396 (5)
C8—H8A0.9300C40—H40A0.9300
C9—C101.389 (5)C41—C421.376 (7)
C9—C141.399 (6)C41—H41A0.9300
C10—C111.404 (5)C42—C431.374 (7)
C10—H10A0.9300C42—H42A0.9300
C11—C121.367 (7)C43—C441.381 (6)
C11—H11A0.9300C43—H43A0.9300
C12—C131.373 (7)C44—H44A0.9300
C12—H12A0.9300C45—C501.385 (6)
C13—C141.390 (6)C45—C461.390 (5)
C13—H13A0.9300C46—C471.375 (5)
C14—H14A0.9300C46—H46A0.9300
C15—C201.394 (5)C47—C481.372 (6)
C15—C161.403 (5)C47—H47A0.9300
C16—C171.386 (5)C48—C491.370 (7)
C16—H16A0.9300C48—H48A0.9300
C17—C181.395 (6)C49—C501.395 (6)
C17—H17A0.9300C49—H49A0.9300
C18—C191.382 (6)C50—H50A0.9300
C18—H18A0.9300C51—C521.411 (15)
C19—C201.384 (5)C52—H52A0.9600
C19—H19A0.9300C52—H52B0.9600
C20—H20A0.9300C52—H52C0.9600
C21—C221.389 (5)
S1—W1—S4110.51 (5)C15—C20—H20A119.9
S1—W1—S3108.45 (4)C22—C21—C26119.7 (3)
S4—W1—S3107.78 (4)C22—C21—P1121.7 (3)
S1—W1—S2107.34 (4)C26—C21—P1118.6 (3)
S4—W1—S2112.17 (5)C23—C22—C21119.6 (4)
S3—W1—S2110.54 (4)C23—C22—H22A120.2
S1—W1—Cu2121.83 (3)C21—C22—H22A120.2
S4—W1—Cu253.77 (3)C24—C23—C22120.3 (4)
S3—W1—Cu254.10 (3)C24—C23—H23A119.8
S2—W1—Cu2130.80 (3)C22—C23—H23A119.8
S1—W1—Cu153.92 (3)C23—C24—C25120.6 (4)
S4—W1—Cu1130.54 (3)C23—C24—H24A119.7
S3—W1—Cu1121.64 (3)C25—C24—H24A119.7
S2—W1—Cu153.51 (3)C24—C25—C26120.1 (4)
Cu2—W1—Cu1173.961 (16)C24—C25—H25A120.0
C1—Cu1—S2133.75 (12)C26—C25—H25A120.0
C1—Cu1—S1120.18 (12)C25—C26—C21119.6 (4)
S2—Cu1—S1106.06 (4)C25—C26—H26A120.2
C1—Cu1—W1172.31 (11)C21—C26—H26A120.2
S2—Cu1—W153.32 (3)C32—C27—C28119.8 (3)
S1—Cu1—W152.82 (3)C32—C27—P2121.7 (3)
C2—Cu2—S4129.30 (14)C28—C27—P2118.4 (3)
C2—Cu2—S3124.32 (14)C29—C28—C27120.2 (4)
S4—Cu2—S3106.27 (5)C29—C28—H28A119.9
C2—Cu2—W1173.86 (17)C27—C28—H28A119.9
S4—Cu2—W153.19 (3)C28—C29—C30119.8 (4)
S3—Cu2—W153.16 (3)C28—C29—H29A120.1
W1—S1—Cu173.26 (3)C30—C29—H29A120.1
W1—S2—Cu173.17 (3)C31—C30—C29120.7 (4)
W1—S3—Cu272.74 (3)C31—C30—H30A119.7
W1—S4—Cu273.04 (4)C29—C30—H30A119.7
C21—P1—C15108.88 (16)C30—C31—C32120.0 (4)
C21—P1—C3109.30 (16)C30—C31—H31A120.0
C15—P1—C3111.30 (16)C32—C31—H31A120.0
C21—P1—C9109.45 (16)C27—C32—C31119.4 (4)
C15—P1—C9108.58 (16)C27—C32—H32A120.3
C3—P1—C9109.31 (16)C31—C32—H32A120.3
C27—P2—C33110.86 (17)C34—C33—C38120.2 (4)
C27—P2—C45110.58 (16)C34—C33—P2118.7 (3)
C33—P2—C45105.95 (17)C38—C33—P2120.7 (3)
C27—P2—C39106.53 (17)C35—C34—C33119.8 (4)
C33—P2—C39113.36 (17)C35—C34—H34A120.1
C45—P2—C39109.60 (16)C33—C34—H34A120.1
H1WA—O1—H1WB107 (6)C36—C35—C34120.1 (4)
N1—C1—Cu1176.2 (4)C36—C35—H35A120.0
N2—C2—Cu2177.7 (5)C34—C35—H35A120.0
C8—C3—C4120.0 (3)C35—C36—C37120.4 (4)
C8—C3—P1120.1 (3)C35—C36—H36A119.8
C4—C3—P1119.9 (3)C37—C36—H36A119.8
C5—C4—C3119.5 (3)C36—C37—C38120.9 (4)
C5—C4—H4A120.3C36—C37—H37A119.5
C3—C4—H4A120.3C38—C37—H37A119.5
C6—C5—H5A119.9C37—C38—C33118.6 (4)
C4—C5—H5A119.9C37—C38—H38A120.7
C5—C6—H6A119.8C33—C38—H38A120.7
C7—C6—H6A119.8C44—C39—C40119.8 (3)
C6—C7—H7A119.9C44—C39—P2118.2 (3)
C8—C7—H7A119.9C40—C39—P2121.9 (3)
C6—C5—C4120.2 (3)C39—C40—C41119.1 (4)
C5—C6—C7120.4 (4)C39—C40—H40A120.4
C6—C7—C8120.1 (4)C41—C40—H40A120.4
C3—C8—C7119.8 (3)C42—C41—C40120.4 (4)
C3—C8—H8A120.1C42—C41—H41A119.8
C7—C8—H8A120.1C40—C41—H41A119.8
C10—C9—C14120.5 (3)C43—C42—C41120.4 (4)
C10—C9—P1120.4 (3)C43—C42—H42A119.8
C14—C9—P1119.0 (3)C41—C42—H42A119.8
C9—C10—C11119.0 (4)C42—C43—C44120.2 (4)
C9—C10—H10A120.5C42—C43—H43A119.9
C11—C10—H10A120.5C44—C43—H43A119.9
C12—C11—C10120.4 (4)C43—C44—C39120.1 (4)
C12—C11—H11A119.8C43—C44—H44A120.0
C10—C11—H11A119.8C39—C44—H44A120.0
C11—C12—C13120.5 (4)C50—C45—C46119.6 (3)
C11—C12—H12A119.8C50—C45—P2122.1 (3)
C13—C12—H12A119.8C46—C45—P2118.3 (3)
C12—C13—C14120.8 (4)C47—C46—C45120.9 (4)
C12—C13—H13A119.6C47—C46—H46A119.6
C14—C13—H13A119.6C45—C46—H46A119.6
C13—C14—C9118.8 (4)C48—C47—C46119.6 (4)
C13—C14—H14A120.6C48—C47—H47A120.2
C9—C14—H14A120.6C46—C47—H47A120.2
C20—C15—C16119.6 (3)C49—C48—C47120.1 (4)
C20—C15—P1121.5 (3)C49—C48—H48A119.9
C16—C15—P1118.7 (3)C47—C48—H48A119.9
C17—C16—C15119.8 (4)C48—C49—C50121.1 (4)
C17—C16—H16A120.1C48—C49—H49A119.4
C15—C16—H16A120.1C50—C49—H49A119.4
C16—C17—C18120.1 (4)C45—C50—C49118.6 (4)
C16—C17—H17A120.0C45—C50—H50A120.7
C18—C17—H17A120.0C49—C50—H50A120.7
C19—C18—C17120.1 (4)N3—C51—C52174.2 (13)
C19—C18—H18A119.9C51—C52—H52A109.5
C17—C18—H18A119.9C51—C52—H52B109.5
C18—C19—C20120.3 (4)H52A—C52—H52B109.5
C18—C19—H19A119.9C51—C52—H52C109.5
C20—C19—H19A119.9H52A—C52—H52C109.5
C19—C20—C15120.2 (4)H52B—C52—H52C109.5
C19—C20—H20A119.9
S1—W1—Cu1—S2176.12 (6)C17—C18—C19—C200.4 (6)
S4—W1—Cu1—S289.14 (7)C18—C19—C20—C151.0 (6)
S3—W1—Cu1—S293.25 (5)C16—C15—C20—C190.3 (5)
S4—W1—Cu1—S186.98 (7)P1—C15—C20—C19175.0 (3)
S3—W1—Cu1—S190.63 (5)C15—P1—C21—C22128.5 (3)
S2—W1—Cu1—S1176.12 (6)C3—P1—C21—C226.7 (3)
S1—W1—Cu2—S493.23 (7)C9—P1—C21—C22112.9 (3)
S3—W1—Cu2—S4176.16 (6)C15—P1—C21—C2650.2 (3)
S2—W1—Cu2—S489.17 (7)C3—P1—C21—C26172.0 (3)
S1—W1—Cu2—S390.60 (5)C9—P1—C21—C2668.4 (3)
S4—W1—Cu2—S3176.16 (6)C26—C21—C22—C231.6 (5)
S2—W1—Cu2—S386.99 (5)P1—C21—C22—C23177.1 (3)
S4—W1—S1—Cu1125.88 (4)C21—C22—C23—C240.5 (6)
S3—W1—S1—Cu1116.18 (4)C22—C23—C24—C251.2 (6)
S2—W1—S1—Cu13.27 (5)C23—C24—C25—C261.8 (6)
Cu2—W1—S1—Cu1174.822 (19)C24—C25—C26—C210.7 (6)
C1—Cu1—S1—W1176.15 (13)C22—C21—C26—C251.0 (5)
S2—Cu1—S1—W13.24 (5)P1—C21—C26—C25177.7 (3)
S1—W1—S2—Cu13.29 (5)C33—P2—C27—C32112.1 (3)
S4—W1—S2—Cu1124.86 (4)C45—P2—C27—C325.1 (4)
S3—W1—S2—Cu1114.82 (4)C39—P2—C27—C32124.1 (3)
Cu2—W1—S2—Cu1174.57 (2)C33—P2—C27—C2871.5 (4)
C1—Cu1—S2—W1176.06 (16)C45—P2—C27—C28171.3 (3)
S1—Cu1—S2—W13.22 (5)C39—P2—C27—C2852.2 (4)
S1—W1—S3—Cu2116.41 (4)C32—C27—C28—C290.3 (7)
S4—W1—S3—Cu23.25 (5)P2—C27—C28—C29176.1 (4)
S2—W1—S3—Cu2126.17 (4)C27—C28—C29—C300.6 (7)
Cu1—W1—S3—Cu2174.84 (2)C28—C29—C30—C311.3 (7)
C2—Cu2—S3—W1173.1 (2)C29—C30—C31—C320.9 (7)
S4—Cu2—S3—W13.20 (5)C28—C27—C32—C310.6 (6)
S1—W1—S4—Cu2115.09 (4)P2—C27—C32—C31175.7 (3)
S3—W1—S4—Cu23.26 (5)C30—C31—C32—C270.0 (6)
S2—W1—S4—Cu2125.18 (4)C27—P2—C33—C34173.7 (3)
Cu1—W1—S4—Cu2174.60 (2)C45—P2—C33—C3453.7 (3)
C2—Cu2—S4—W1172.9 (2)C39—P2—C33—C3466.5 (3)
S3—Cu2—S4—W13.20 (5)C27—P2—C33—C380.3 (3)
C21—P1—C3—C8126.7 (3)C45—P2—C33—C38120.3 (3)
C15—P1—C3—C8113.0 (3)C39—P2—C33—C38119.5 (3)
C9—P1—C3—C86.9 (3)C38—C33—C34—C350.8 (5)
C21—P1—C3—C452.6 (3)P2—C33—C34—C35174.8 (3)
C15—P1—C3—C467.7 (3)C33—C34—C35—C361.9 (6)
C9—P1—C3—C4172.4 (3)C34—C35—C36—C371.6 (7)
C8—C3—C4—C50.2 (5)C35—C36—C37—C380.1 (7)
P1—C3—C4—C5179.4 (3)C36—C37—C38—C331.0 (7)
C3—C4—C5—C60.8 (6)C34—C33—C38—C370.6 (6)
C4—C5—C6—C71.9 (6)P2—C33—C38—C37173.2 (3)
C5—C6—C7—C82.0 (6)C27—P2—C39—C4440.5 (3)
C4—C3—C8—C70.1 (6)C33—P2—C39—C44162.7 (3)
P1—C3—C8—C7179.4 (3)C45—P2—C39—C4479.2 (3)
C6—C7—C8—C30.9 (6)C27—P2—C39—C40142.5 (3)
C21—P1—C9—C1014.1 (3)C33—P2—C39—C4020.3 (4)
C15—P1—C9—C10132.8 (3)C45—P2—C39—C4097.8 (3)
C3—P1—C9—C10105.6 (3)C44—C39—C40—C412.1 (6)
C21—P1—C9—C14169.6 (3)P2—C39—C40—C41174.8 (3)
C15—P1—C9—C1450.9 (4)C39—C40—C41—C420.1 (6)
C3—P1—C9—C1470.7 (4)C40—C41—C42—C431.9 (6)
C14—C9—C10—C110.3 (6)C41—C42—C43—C441.9 (7)
P1—C9—C10—C11175.9 (3)C42—C43—C44—C390.1 (7)
C9—C10—C11—C120.7 (6)C40—C39—C44—C432.1 (6)
C10—C11—C12—C131.5 (7)P2—C39—C44—C43174.9 (3)
C11—C12—C13—C141.2 (7)C27—P2—C45—C50103.4 (4)
C12—C13—C14—C90.2 (7)C33—P2—C45—C50136.5 (4)
C10—C9—C14—C130.5 (6)C39—P2—C45—C5013.8 (4)
P1—C9—C14—C13175.7 (4)C27—P2—C45—C4677.6 (3)
C21—P1—C15—C2093.6 (3)C33—P2—C45—C4642.6 (3)
C3—P1—C15—C2027.0 (3)C39—P2—C45—C46165.3 (3)
C9—P1—C15—C20147.3 (3)C50—C45—C46—C472.6 (6)
C21—P1—C15—C1681.1 (3)P2—C45—C46—C47178.3 (3)
C3—P1—C15—C16158.3 (3)C45—C46—C47—C482.3 (7)
C9—P1—C15—C1637.9 (3)C46—C47—C48—C491.4 (8)
C20—C15—C16—C171.0 (6)C47—C48—C49—C500.8 (9)
P1—C15—C16—C17173.9 (3)C46—C45—C50—C492.0 (7)
C15—C16—C17—C181.5 (7)P2—C45—C50—C49179.0 (4)
C16—C17—C18—C190.8 (7)C48—C49—C50—C451.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···N1i0.90 (6)2.05 (6)2.947 (5)175 (5)
O1—H1WB···N20.84 (9)2.20 (9)3.038 (7)179 (10)
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Cu2WS4(CN)2]·C2H3N·H2O
Mr1229.07
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)10.6193 (2), 12.7441 (10), 20.7526 (3)
α, β, γ (°)72.922 (9), 76.449 (9), 77.159 (10)
V3)2574.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.31
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerRigaku Mercury CCD area-detector
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.260, 0.370
No. of measured, independent and
observed [I > 2σ(I)] reflections
25798, 11796, 10551
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.089, 1.02
No. of reflections11567
No. of parameters594
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.84

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2000).

Selected geometric parameters (Å, º) top
W1—S12.2087 (11)Cu1—S12.2404 (12)
W1—S42.2151 (12)Cu2—C21.885 (5)
W1—S32.2178 (9)Cu2—S42.2316 (13)
W1—S22.2243 (11)Cu2—S32.2449 (11)
W1—Cu22.6463 (6)N1—C11.138 (5)
W1—Cu12.6545 (6)N2—C21.138 (6)
Cu1—C11.897 (4)N3—C511.168 (15)
Cu1—S22.2295 (11)
S1—W1—S4110.51 (5)C2—Cu2—S4129.30 (14)
S1—W1—S3108.45 (4)C2—Cu2—S3124.32 (14)
S4—W1—S3107.78 (4)S4—Cu2—S3106.27 (5)
S1—W1—S2107.34 (4)C2—Cu2—W1173.86 (17)
S4—W1—S2112.17 (5)W1—S1—Cu173.26 (3)
S3—W1—S2110.54 (4)W1—S2—Cu173.17 (3)
Cu2—W1—Cu1173.961 (16)W1—S3—Cu272.74 (3)
C1—Cu1—S2133.75 (12)W1—S4—Cu273.04 (4)
C1—Cu1—S1120.18 (12)N1—C1—Cu1176.2 (4)
S2—Cu1—S1106.06 (4)N2—C2—Cu2177.7 (5)
C1—Cu1—W1172.31 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1WA···N1i0.90 (6)2.05 (6)2.947 (5)175 (5)
O1—H1WB···N20.84 (9)2.20 (9)3.038 (7)179 (10)
Symmetry code: (i) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds