Download citation
Download citation
link to html
(Di­phenyl phosphite-κO)(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)­manganese(III) hexa­fluoro­antimonate(V), [Mn(C44H28N4)(C12H11O3P)](SbF6), is the first example of a structurally characterized di­aryl or di­alkyl phosphite complex of a metal–porphyrin ion. The axial phosphite ligand binds to the MnIII ion via the P=O O atom, affording a nominally five-coordinate complex with an Mn—O distance of 2.120 (4) Å. The mean porphyrin Mn—N distance is 2.000 (4) Å and the MnIII ion is displaced from the 24-atom porphyrin mean plane by 0.1548 (13) Å towards the axial O atom. The porphyrin adopts a marked saddle conformation, with a small domed component. The saddle distortion of the porphyrin ligand reflects the tight back-to-back dimers formed in the lattice by pairs of neighboring cations. The `non-covalent' dimers in the lattice exhibit an unusual (weak) η2-type coordination of a pyrrole C=C bond from a neighboring mol­ecule, with MnIII...C distances of 3.697 (5) and 3.537 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103004384/ln1160sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103004384/ln1160Isup2.hkl
Contains datablock I

CCDC reference: 211729

Comment top

During the course of our work on the synthesis and characterization of novel complexes of metalloporphyrins (Munro et al., 1999, 2001), we isolated crystals of a novel MnIII–porphyrin complex, (I), from a reaction intended to produce the bis(triphenyl phosphite) derivative [Mn(TPP){P(OPh)3}2](SbF6) (TPP is 5,10,15,20-tetraphenylporphinate and THF is tetrahydrofuran):

[Mn(TPP)(THF)2](SbF6) + excess P(OPh)3 [Mn(TPP){P(OPh)3}2](SbF6) + 2THF.

Since we were unable to cleanly isolate the desired reaction product, which had a 31P NMR signal at 116.91 p.p.m. in CDCl3 solution, and instead obtained crystals mainly of the diphenyl phosphite derivative, we analyzed the commercial source of triphenyl phosphite by GC–MS and found that it contained ca 1% diphenyl phosphite. Evidently, this contaminant in the commercial reagent was present in a sufficiently large quantity under the reaction conditions to react with the MnIII–porphyrin according to:

[Mn(TPP)(THF)2](SbF6) + OPH(OPh)2 [Mn(TPP){(O)PH(OPh)2}(SbF6) + 2THF.

This unexpected behavior in the presence of a large excess of triphenyl phosphite clearly reflects the oxophilic nature of MnIII (Scheidt, 2000) and the fact that diphenyl phosphite is sterically less hindered than triphenyl phosphite and thus, we presume, a ligand with an intrinsically higher affinity constant for a metalloporphyrin.

The room-temperature X-ray crystal structure of (I) is shown in Fig. 1. The P-bound phosphite H atom (H71) was located in the difference Fourier map and was refined isotropically. There is a well defined, though relatively weak, hydrogen bond [2.64 (5) Å] between this H atom and an F atom (F2) of the SbF6 counter-ion; the P—H71···F2 angle measures 167 (3)°. As discussed below, the porphyrin conformation is clearly non-planar (saddle distortion) and the MnIII ion is located 0.1548 (13) Å above the 24-atom porphyrin mean plane (Fig. 2) to give a nominally square-pyramidal coordination geometry. The Mn—O1 distance is 2.120 (4) Å and the mean porphyrin Mn—N distance is 2.000 (4) Å. The trans N—Mn—N angles average 170.0 (3)° (Table 1), which is consistent with the square-pyramidal coordination geometry of the metal ion. The coordination group is, on the whole, similar in structure to that reported for [Mn(TPP)(H2O)](CF3SO3) (Williamson & Hill, 1986), in which Mn—O and Mn—Nporphyrin distances = 2.105 (4) and 1.995 (7) Å, respectively, and the metal ion displacement was 0.17 Å.

The porphyrin core geometry and averaged chemically unique distances and angles of (I) are shown in Fig. 2. As noted above, the porphyrin conformation is predominantly of the saddle type (Scheidt & Lee, 1987). However, the out-of-plane location of the MnIII ion results in an admixture of a classically saddled conformation (pyrrole β-carbon pairs alternately displaced above and below the porphyrin mean plane) and a domed conformation that commonly results from five-coordination in metalloporphyrins (Scheidt, 2000). The maximum out-of-plane displacement is shown by the pyrrole β-C atom C202 [0.400 (6) Å]. The mean absolute perpendicular displacements of the porphyrin N, α-, β-, and meso-C atoms are 0.03 (3), 0.13 (4), 0.35 (4), and 0.07 (5) Å, respectively.

The saddle distortion of the porphyrin macrocycle reflects the conformational adjustments that are required to accommodate the canted meso-phenyl groups (Munro et al., 1992), which are clearly tipped towards the plane of the pyrrole rings. More specifically, the dihedral angles between the four meso-phenyl groups and the 24-atom porphyrin mean plane are 53.72 (13) (C11–C16, phenyl attached to C301), 55.14 (15) (C21–C26, phenyl attached to C302), 82.2 (4) (C31–C36, phenyl attached to C303), and 59.96 (19) (C41–C46, phenyl attached to C304), respectively. These acute dihedral angles are consistent with the fact that the porphyrin cations pack as rather tight (formally non-covalent) dimers in a back-to-back fashion and that rotation of the meso-phenyl groups facilitates the close approach of the two porphyrin rings. This is illustrated in Fig. 3, which shows that the constituents of each dimer are related by a center of inversion between the cation pair.

The canted phenyl groups appended to the porphyrin meso-C atoms C301 and C302 apparently push the pyrrole ring containing atom N2 below the porphyrin mean plane. However, there are actually two interesting types of interaction that directly or indirectly involve this particular pyrrole ring. The first is steric strain (van der Waals repulsion) with the meso-phenyl groups appended to C301 and C302, as noted above. One consequence of these interactions is that a `pocket' is created that partly accommodates the SbF6 ion. Moreover, in addition to the H71···F2 hydrogen bond, several other moderate-to-weak hydrogen bonds involving the F atoms evidently stabilize the location of the anion at this site. These include H52···F1 (2.57 Å; C52—H52···F1 = 147°), H42i···F2 (2.67 Å; C42i—H42i···F2 = 136°), H22···F3 (2.53 Å; C22—H22···F3 = 155°), H25ii···F4 (2.60 Å; C25ii—H25ii···F4 = 142°), and H26ii···F5 (2.58 Å; C26ii—H26ii···F5 = 146°) [symmetry codes: (i) −x, 1 − y, 1 − z; (ii) x − 1/2, 1/2 − y, 1/2 + z]. We surmise that these interactions may collectively dictate the orientation of the axial diphenyl phosphite ligand, which exhibits N3—Mn—O1—P and Mn—O1—P—H71 dihedral angles of 22.2 (5) and 93 (2)°, respectively. The H22···F3 hydrogen bond probably also accounts, at least in part, for the orientation of the phenyl group appended to C302.

The second type of interaction with the N2 pyrrole ring involves the MnIII ion of a neighboring cation. In fact, compound (I) is best regarded as being pseudo-six-coordinate, since the MnIII ion of one cation makes two short contacts with a pair of C atoms in a neighboring cation, with Mn···C103iii and Mn···C203iii [symmetry code: (iii) 1 − x, 1 − y, 1 − z] distances of 3.697 (5) and 3.537 (5) Å, respectively. These contact distances are considerably shorter than the sum of the van der Waals radii of the Mn and C atoms concerned (3.86 Å). Given that C103 and C203 formally belong to a pyrrole CC bond, it is not unreasonable to suggest that there is a weakly coordinated alkene-like ligand (η2-binding mode) occupying the sixth coordination site in (I). Finally, we conclude that it is perhaps the latter interaction that best explains the dimeric structure of (I) in the solid state and thus both the canted meso-phenyl groups and the resulting saddled conformation of the porphyrin ring.

Experimental top

General experimental methods were as described previously (Munro et al., 2001). Triphenyl phosphite (Aldrich) was stored under nitrogen but no further steps to purify the commercial reagent were taken. H2TPP (5,10,15,20-tetraphenylporphyrin) was synthesized using published procedures (Barnett et al., 1975). [Mn(TPP)Cl] was prepared according to the method of Adler et al. (1970). To [Mn(TPP)Cl] (150 mg, 0.21 mmol) and AgSbF6 (88 mg, 0.26 mmol; Aldrich) in a 250 ml Schlenk tube under nitrogen was added freshly distilled tetrahydrofuran (50 ml, THF). The solution was allowed to stir for ca 12 h at room temperature. The THF was then removed in vacuo and the green–brown solid redissolved in dichloromethane (50 ml). The solution was filtered into a 250 ml Schlenk tube containing triphenyl phosphite (1.1 ml, 4.3 mmol). The solution was left to stir at room temperature for 10 min. The red–brown solution was then transferred into 12 Schlenk tubes in ca 4 ml aliquots and layered with hexane. X-ray quality crystals were observed after 4 d. The yield was not calculated as the bulk material was not pure. No further analysis beyond an X-ray structure determination was attempted.

Refinement top

The phosphite H atom (H71) was located by a difference Fourier synthesis calculation and was refined isotropically without restraints. All other H atoms were calculated using the standard riding model of SHELXL97 (HFIX 43 instruction; Sheldrick, 1997), with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The C31–C36 phenyl ring was disordered about two positions that were consistent with an in-plane (up–down) translational or wagging motion. The unique ring positions were modelled using rigid group constraints (C—C distances fixed at 1.39 Å and ring atoms constrained within 0.1 Å to lie within the same plane). Rigid bond restraints, in which the components of the anisotropic displacement parameters in the direction of each bond were restrained to be equal within an effective s.u. of 0.01 Å, were also applied. The anisotropic displacement parameters of the C atoms comprising each ring were further restrained with an effective s.u. of 0.03 Å2, so that their Uij components approximated to isotropic behavior (the isotropic U values were free to vary). The site-occupancy factor for the minor component of the disordered phenyl ring converged to a value of 0.33 (4). The anisotropic displacement parameters for atoms C52–C54 are suggestive of rotational motion for the phenyl group attached to O2. However, attempts to fit two ring positions for this group using standard rigid-group constraints (SHELXL97 AFIX 66 instruction) were not successful since the O2—C51—C52 angle became chemically unfeasible (94.6°) for one of the rings. Furthermore, attempts to restrain this angle to 120° lead to an unstable refinement. The C51–C56 phenyl ring was therefore modelled as a single rigid group with the same restraints as applied to the disordered phenyl rings appended to C303. Lastly, a rigid group refinement for the phenyl ring appended to O3 (C61–C66) was used to prevent the C—C bonds from becoming unreasonably short.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1992); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Labelled ORTEP-3 (Farrugia, 1997) view of (I) (30% probability displacement ellipsoids), showing the hydrogen bond between atoms F2 and H71 (all other H atoms have been omitted for clarity) and the overall molecular conformation. Only the major disordered component is shown.
[Figure 2] Fig. 2. Formal diagram of (I), showing the perpendicular displacements (in units of 0.01 Å) of each atom from the 24-atom porphyrin mean plane, as well as the average structural parameters for each chemically unique class of bond and angle in the porphyrin macrocycle.
[Figure 3] Fig. 3. Selectively labelled view of (I) (30% probability displacement ellipsoids), showing a symmetry-related cation pair [symmetry code: (i) 1 − x, 1 − y, 1 − z] and two of the significant short contacts between the dimer units (top). A perspective view of the unit cell of (I) (bottom) illustrates the interaction in relation to the remaining unit-cell contents. H atoms have been omitted for clarity.
(I) top
Crystal data top
[Mn(C44H28N4)(C12H11O3P)][SbF6]F(000) = 2288
Mr = 1137.57Dx = 1.525 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 13.719 (2) Åθ = 2–12°
b = 20.817 (3) ŵ = 0.91 mm1
c = 17.390 (2) ÅT = 296 K
β = 94.132 (11)°Cube, purple-black
V = 4953.7 (12) Å30.5 × 0.5 × 0.5 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4
diffractometer
θmax = 25.0°, θmin = 2.1°
ω–2q scansh = 116
10668 measured reflectionsk = 124
8694 independent reflectionsl = 2020
6205 reflections with I > 2σ(I)3 standard reflections every 120 min
Rint = 0.017 intensity decay: 4%
Refinement top
Refinement on F2146 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.1251P)2 + 2.2623P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.202(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.98 e Å3
8694 reflectionsΔρmin = 0.61 e Å3
660 parameters
Crystal data top
[Mn(C44H28N4)(C12H11O3P)][SbF6]V = 4953.7 (12) Å3
Mr = 1137.57Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.719 (2) ŵ = 0.91 mm1
b = 20.817 (3) ÅT = 296 K
c = 17.390 (2) Å0.5 × 0.5 × 0.5 mm
β = 94.132 (11)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.017
10668 measured reflections3 standard reflections every 120 min
8694 independent reflections intensity decay: 4%
6205 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.059146 restraints
wR(F2) = 0.202H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.98 e Å3
8694 reflectionsΔρmin = 0.61 e Å3
660 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

MEAN-PLANE DATA (SHELXL97):

(A) 24-ATOM PORPHYRIN PLANE AND PHENYL GROUP APPENDED TO C301

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

12.5533 (0.0037) x + 7.8196 (0.0097) y − 3.6991 (0.0090) z = 6.5243 (0.0062)

* −0.0068 (0.0042) N1 * 0.0653 (0.0040) N2 * −0.0137 (0.0044) N3 * 0.0365 (0.0044) N4 * −0.0668 (0.0049) C101 * −0.1856 (0.0048) C102 * 0.1186 (0.0047) C103 * 0.1625 (0.0047) C104 * −0.1194 (0.0050) C105 * −0.1554 (0.0057) C106 * 0.0938 (0.0061) C107 * 0.1643 (0.0055) C108 * −0.3130 (0.0056) C201 * −0.3996 (0.0057) C202 * 0.3631 (0.0049) C203 * 0.3759 (0.0048) C204 * −0.3337 (0.0056) C205 * −0.3255 (0.0062) C206 * 0.2959 (0.0072) C207 * 0.3652 (0.0066) C208 * −0.1173 (0.0048) C301 * −0.0049 (0.0049) C302 * −0.0710 (0.0062) C303 * 0.0716 (0.0052) C304 − 0.1548 (0.0013) Mn

Rms deviation of fitted atoms = 0.2191

− 11.6546 (0.0221) x + 10.8776 (0.0538) y + 2.3289 (0.0497) z = 2.3700 (0.0510)

Angle to previous plane (with approximate e.s.d.) = 53.72 (0.13)

* 0.0010 (0.0043) C11 * −0.0027 (0.0046) C12 * 0.0066 (0.0053) C13 * −0.0087 (0.0059) C14 * 0.0069 (0.0057) C15 * −0.0030 (0.0050) C16

Rms deviation of fitted atoms = 0.0055

(B) PHENYL GROUP APPENDED TO C302

9.5128 (0.0282) x + 2.3211 (0.0531) y + 11.4787 (0.0378) z = 9.6370 (0.0099)

Angle to previous plane (with approximate e.s.d.) = 55.14 (0.15)

* −0.0030 (0.0040) C21 * 0.0037 (0.0049) C22 * 0.0005 (0.0056) C23 * −0.0055 (0.0051) C24 * 0.0061 (0.0044) C25 * −0.0019 (0.0042) C26

Rms deviation of fitted atoms = 0.0040

(C) PHENYL GROUP APPENDED TO C303

- 6.6322 (0.0866) x + 18.0268 (0.0761) y + 2.8296 (0.1312) z = 8.0684 (0.0541)

Angle to previous plane (with approximate e.s.d.) = 82.19 (0.35)

* 0.0000 (0.0001) C31_b * 0.0000 (0.0001) C32_b * 0.0000 (0.0001) C33_b * 0.0000 (0.0001) C34_b * 0.0000 (0.0000) C35_b * 0.0000 (0.0000) C36_b

Rms deviation of fitted atoms = 0.0000

− 6.8621 (0.1886) x + 17.8773 (0.1614) y + 2.5536 (0.2709) z = 7.9230 (0.1293)

Angle to previous plane (with approximate e.s.d.) = 1.43 (1.51)

* 0.0000 (0.0002) C31A_a * 0.0000 (0.0003) C32A_a * 0.0000 (0.0003) C33A_a * 0.0000 (0.0001) C34A_a * 0.0000 (0.0000) C35A_a * 0.0000 (0.0001) C36A_a

Rms deviation of fitted atoms = 0.0000

(D) PHENYL GROUP APPENDED TO C304

- 4.3906 (0.0393) x − 3.9456 (0.0554) y + 16.5015 (0.0170) z = 3.7581 (0.0505)

Angle to previous plane (with approximate e.s.d.) = 59.96 (0.19)

* 0.0044 (0.0045) C41 * −0.0109 (0.0053) C42 * 0.0133 (0.0055) C43 * −0.0092 (0.0049) C44 * 0.0025 (0.0049) C45 * −0.0001 (0.0047) C46

Rms deviation of fitted atoms = 0.0082

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.32210 (5)0.50281 (3)0.43407 (4)0.0385 (2)
P0.12125 (13)0.40818 (9)0.45182 (11)0.0686 (5)
N10.3199 (3)0.56596 (18)0.5202 (2)0.0412 (9)
N20.3983 (3)0.44198 (19)0.5045 (2)0.0402 (9)
N30.3437 (3)0.4444 (2)0.3456 (2)0.0432 (9)
N40.2730 (3)0.5709 (2)0.3597 (2)0.0455 (10)
C1010.2769 (4)0.6257 (2)0.5166 (3)0.0418 (11)
C1020.3367 (4)0.5529 (2)0.5978 (3)0.0426 (11)
C1030.4204 (4)0.4502 (2)0.5824 (3)0.0422 (11)
C1040.4371 (4)0.3832 (2)0.4857 (3)0.0412 (11)
C1050.3758 (4)0.3812 (2)0.3499 (3)0.0444 (11)
C1060.3050 (4)0.4529 (3)0.2708 (3)0.0510 (13)
C1070.2575 (5)0.5657 (3)0.2805 (3)0.0552 (14)
C1080.2490 (4)0.6337 (2)0.3766 (3)0.0473 (12)
C2010.2657 (4)0.6484 (3)0.5934 (3)0.0549 (14)
H2010.23870.68750.60680.066*
C2020.3011 (5)0.6035 (3)0.6416 (3)0.0573 (14)
H2020.30210.60510.69510.069*
C2030.4810 (4)0.3975 (3)0.6107 (3)0.0471 (12)
H2030.50890.39250.66070.057*
C2040.4896 (4)0.3574 (3)0.5518 (3)0.0469 (12)
H2040.52430.3190.55370.056*
C2050.3560 (4)0.3513 (3)0.2773 (3)0.0549 (14)
H2050.36920.30870.26570.066*
C2060.3151 (5)0.3947 (3)0.2282 (3)0.0624 (16)
H2060.29680.38840.17620.075*
C2070.2270 (6)0.6256 (3)0.2488 (3)0.074 (2)
H2070.21190.63430.19690.089*
C2080.2236 (5)0.6673 (3)0.3068 (3)0.0660 (17)
H2080.20740.71060.30240.079*
C3010.3851 (4)0.4979 (2)0.6272 (3)0.0432 (11)
C3020.4220 (4)0.3525 (2)0.4148 (3)0.0430 (11)
C3030.2670 (5)0.5097 (3)0.2389 (3)0.0554 (14)
C3040.2476 (4)0.6591 (2)0.4502 (3)0.0455 (11)
O10.1855 (3)0.4631 (2)0.4587 (2)0.0618 (10)
O20.1607 (4)0.3647 (3)0.3899 (4)0.1038 (19)
O30.0117 (3)0.4237 (3)0.4293 (3)0.0839 (14)
C110.3971 (4)0.4906 (2)0.7136 (3)0.0459 (12)
C120.3554 (5)0.4383 (3)0.7477 (3)0.0606 (15)
H120.32150.40780.71730.073*
C130.3641 (6)0.4314 (4)0.8276 (4)0.077 (2)
H130.33490.39670.85070.092*
C140.4156 (7)0.4757 (4)0.8717 (4)0.088 (2)
H140.4230.47030.92490.105*
C150.4558 (6)0.5272 (4)0.8391 (4)0.079 (2)
H150.4890.55780.86990.095*
C160.4477 (5)0.5345 (3)0.7599 (3)0.0631 (16)
H160.47680.56960.73770.076*
C210.4494 (4)0.2833 (2)0.4096 (3)0.0446 (11)
C220.4051 (5)0.2388 (3)0.4559 (4)0.0614 (15)
H220.36080.25280.49030.074*
C230.4264 (6)0.1742 (3)0.4511 (5)0.080 (2)
H230.39640.14480.4820.096*
C240.4912 (6)0.1537 (3)0.4009 (4)0.0726 (19)
H240.50490.11010.39730.087*
C250.5371 (5)0.1967 (3)0.3552 (4)0.0641 (16)
H250.58230.18240.32180.077*
C260.5152 (4)0.2610 (3)0.3597 (3)0.0531 (13)
H260.54540.290.32830.064*
C31A0.258 (2)0.5202 (14)0.1536 (9)0.058 (7)0.33 (4)
C32A0.322 (2)0.5514 (15)0.1076 (11)0.079 (7)0.33 (4)
H32A0.37870.570.12980.095*0.33 (4)
C33A0.301 (3)0.5546 (16)0.0283 (11)0.083 (8)0.33 (4)
H33A0.34370.57550.00250.1*0.33 (4)
C34A0.216 (3)0.5268 (17)0.0050 (9)0.085 (9)0.33 (4)
H34A0.20190.5290.05810.102*0.33 (4)
C35A0.152 (3)0.4957 (15)0.0410 (12)0.081 (8)0.33 (4)
H35A0.09510.4770.01870.098*0.33 (4)
C36A0.173 (2)0.4924 (13)0.1203 (12)0.069 (7)0.33 (4)
H36A0.13010.47160.15110.083*0.33 (4)
C310.2264 (11)0.5064 (7)0.1561 (4)0.052 (3)0.67 (4)
C320.2814 (13)0.5352 (7)0.1016 (5)0.073 (4)0.67 (4)
H320.34070.55460.11690.088*0.67 (4)
C330.2478 (17)0.5349 (7)0.0243 (5)0.093 (5)0.67 (4)
H330.28460.55420.01220.111*0.67 (4)
C340.1592 (18)0.5059 (7)0.0015 (5)0.091 (6)0.67 (4)
H340.13670.50580.05030.11*0.67 (4)
C350.1041 (15)0.4771 (7)0.0560 (7)0.092 (5)0.67 (4)
H350.04480.45770.04070.11*0.67 (4)
C360.1377 (12)0.4773 (7)0.1333 (6)0.078 (4)0.67 (4)
H360.10090.4580.16980.094*0.67 (4)
C410.2125 (4)0.7276 (2)0.4585 (3)0.0488 (13)
C420.1179 (6)0.7435 (3)0.4362 (4)0.0707 (18)
H420.07450.71260.41570.085*
C430.0877 (6)0.8071 (4)0.4449 (5)0.083 (2)
H430.02290.81830.43220.099*
C440.1529 (6)0.8531 (3)0.4718 (4)0.074 (2)
H440.13290.89560.47530.088*
C450.2462 (6)0.8368 (3)0.4935 (4)0.0716 (19)
H450.28970.8680.51310.086*
C460.2774 (5)0.7733 (3)0.4865 (4)0.0610 (15)
H460.34190.76230.50070.073*
C510.1097 (5)0.3092 (3)0.3563 (4)0.085 (2)
C520.0830 (7)0.2569 (4)0.3998 (4)0.171 (6)
H520.09930.2560.45260.205*
C530.0319 (9)0.2060 (4)0.3643 (6)0.228 (8)
H530.01410.1710.39340.273*
C540.0075 (7)0.2074 (4)0.2854 (6)0.202 (7)
H540.02670.17340.26170.243*
C550.0341 (7)0.2598 (5)0.2419 (4)0.153 (5)
H550.01780.26070.18910.184*
C560.0852 (6)0.3107 (3)0.2774 (3)0.125 (3)
H560.10310.34570.24830.15*
C610.0187 (4)0.4617 (2)0.3664 (3)0.081 (2)
C620.0025 (4)0.5270 (3)0.3648 (3)0.103 (3)
H620.04180.54550.40460.124*
C630.0350 (5)0.5646 (2)0.3036 (4)0.120 (4)
H630.02080.60830.30250.144*
C640.0937 (5)0.5370 (3)0.2440 (4)0.127 (4)
H640.11890.56220.20310.152*
C650.1150 (4)0.4717 (4)0.2457 (3)0.125 (4)
H650.15430.45330.20580.15*
C660.0774 (4)0.4341 (2)0.3069 (4)0.095 (3)
H660.09160.39050.3080.114*
Sb0.21338 (4)0.23775 (3)0.65805 (3)0.0784 (2)
F10.1897 (7)0.1969 (5)0.5664 (4)0.192 (4)
F20.1165 (7)0.2919 (5)0.6273 (6)0.218 (4)
F30.3083 (9)0.2846 (6)0.6213 (5)0.285 (7)
F40.2319 (7)0.2802 (6)0.7499 (5)0.220 (5)
F50.1134 (6)0.1899 (5)0.6962 (4)0.179 (3)
F60.2973 (9)0.1779 (6)0.6881 (11)0.351 (10)
H710.116 (4)0.363 (3)0.502 (3)0.050 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0485 (4)0.0346 (4)0.0320 (4)0.0010 (3)0.0012 (3)0.0015 (3)
P0.0634 (10)0.0654 (11)0.0772 (11)0.0109 (8)0.0055 (8)0.0053 (9)
N10.056 (2)0.032 (2)0.0348 (19)0.0015 (18)0.0002 (17)0.0007 (16)
N20.049 (2)0.038 (2)0.033 (2)0.0003 (18)0.0008 (17)0.0036 (16)
N30.058 (3)0.040 (2)0.0313 (19)0.0041 (19)0.0002 (17)0.0048 (16)
N40.056 (3)0.042 (2)0.038 (2)0.0027 (19)0.0019 (18)0.0029 (18)
C1010.053 (3)0.030 (2)0.042 (3)0.000 (2)0.001 (2)0.0040 (19)
C1020.058 (3)0.037 (3)0.034 (2)0.006 (2)0.007 (2)0.000 (2)
C1030.047 (3)0.043 (3)0.036 (2)0.006 (2)0.001 (2)0.002 (2)
C1040.047 (3)0.037 (3)0.040 (2)0.001 (2)0.003 (2)0.001 (2)
C1050.058 (3)0.036 (3)0.040 (3)0.001 (2)0.002 (2)0.006 (2)
C1060.062 (3)0.052 (3)0.039 (3)0.006 (3)0.004 (2)0.009 (2)
C1070.071 (4)0.056 (3)0.037 (3)0.013 (3)0.009 (2)0.004 (2)
C1080.061 (3)0.039 (3)0.040 (3)0.004 (2)0.003 (2)0.002 (2)
C2010.072 (4)0.047 (3)0.046 (3)0.008 (3)0.007 (3)0.004 (2)
C2020.086 (4)0.048 (3)0.039 (3)0.004 (3)0.012 (3)0.003 (2)
C2030.051 (3)0.054 (3)0.035 (2)0.000 (2)0.001 (2)0.003 (2)
C2040.051 (3)0.040 (3)0.049 (3)0.006 (2)0.003 (2)0.004 (2)
C2050.070 (4)0.045 (3)0.049 (3)0.007 (3)0.008 (3)0.008 (2)
C2060.083 (4)0.053 (3)0.049 (3)0.011 (3)0.012 (3)0.014 (3)
C2070.111 (6)0.066 (4)0.042 (3)0.029 (4)0.012 (3)0.002 (3)
C2080.099 (5)0.046 (3)0.052 (3)0.017 (3)0.007 (3)0.004 (3)
C3010.053 (3)0.045 (3)0.032 (2)0.006 (2)0.002 (2)0.002 (2)
C3020.052 (3)0.035 (3)0.043 (3)0.001 (2)0.008 (2)0.000 (2)
C3030.077 (4)0.052 (3)0.036 (3)0.015 (3)0.006 (3)0.006 (2)
C3040.057 (3)0.033 (3)0.046 (3)0.002 (2)0.000 (2)0.004 (2)
O10.055 (2)0.054 (2)0.076 (3)0.0094 (19)0.0058 (19)0.005 (2)
O20.087 (4)0.096 (4)0.130 (5)0.021 (3)0.020 (3)0.038 (4)
O30.061 (3)0.090 (4)0.100 (4)0.013 (3)0.006 (2)0.024 (3)
C110.061 (3)0.045 (3)0.033 (2)0.005 (2)0.006 (2)0.004 (2)
C120.078 (4)0.052 (3)0.053 (3)0.003 (3)0.013 (3)0.006 (3)
C130.111 (6)0.069 (4)0.054 (4)0.010 (4)0.024 (4)0.019 (3)
C140.133 (7)0.091 (5)0.039 (3)0.023 (5)0.008 (4)0.005 (4)
C150.121 (6)0.076 (5)0.040 (3)0.000 (4)0.003 (3)0.008 (3)
C160.084 (4)0.063 (4)0.042 (3)0.009 (3)0.001 (3)0.006 (3)
C210.056 (3)0.035 (3)0.042 (3)0.001 (2)0.002 (2)0.001 (2)
C220.081 (4)0.042 (3)0.063 (4)0.000 (3)0.016 (3)0.005 (3)
C230.109 (6)0.048 (4)0.083 (5)0.011 (4)0.011 (4)0.012 (3)
C240.101 (5)0.035 (3)0.080 (4)0.008 (3)0.008 (4)0.006 (3)
C250.068 (4)0.059 (4)0.065 (4)0.011 (3)0.001 (3)0.017 (3)
C260.062 (3)0.050 (3)0.047 (3)0.006 (3)0.007 (3)0.004 (2)
C31A0.088 (15)0.050 (14)0.034 (9)0.013 (11)0.004 (8)0.010 (8)
C32A0.093 (16)0.096 (18)0.048 (9)0.013 (12)0.006 (10)0.005 (11)
C33A0.115 (17)0.082 (16)0.055 (9)0.028 (13)0.019 (11)0.008 (10)
C34A0.114 (19)0.089 (18)0.049 (11)0.055 (13)0.018 (10)0.002 (11)
C35A0.093 (16)0.082 (17)0.065 (11)0.025 (12)0.025 (12)0.021 (13)
C36A0.099 (16)0.045 (12)0.060 (10)0.009 (11)0.016 (11)0.017 (9)
C310.072 (8)0.035 (6)0.048 (5)0.016 (6)0.017 (4)0.008 (4)
C320.095 (9)0.078 (8)0.047 (5)0.029 (7)0.004 (5)0.003 (5)
C330.132 (13)0.097 (10)0.049 (6)0.048 (8)0.001 (7)0.005 (7)
C340.154 (14)0.071 (8)0.044 (6)0.047 (9)0.023 (7)0.014 (6)
C350.113 (11)0.088 (9)0.067 (7)0.024 (8)0.042 (7)0.024 (6)
C360.082 (8)0.084 (9)0.063 (6)0.014 (6)0.031 (6)0.002 (6)
C410.067 (4)0.037 (3)0.042 (3)0.006 (2)0.001 (2)0.002 (2)
C420.080 (5)0.050 (4)0.080 (5)0.007 (3)0.008 (4)0.006 (3)
C430.090 (5)0.065 (5)0.091 (5)0.035 (4)0.002 (4)0.001 (4)
C440.128 (6)0.040 (3)0.054 (3)0.023 (4)0.009 (4)0.002 (3)
C450.111 (6)0.041 (3)0.061 (4)0.002 (3)0.005 (4)0.005 (3)
C460.076 (4)0.047 (3)0.058 (3)0.002 (3)0.006 (3)0.006 (3)
C510.079 (5)0.068 (4)0.107 (5)0.018 (4)0.001 (4)0.018 (4)
C520.271 (17)0.113 (8)0.130 (8)0.064 (9)0.027 (10)0.000 (6)
C530.34 (2)0.156 (12)0.196 (10)0.143 (13)0.052 (13)0.032 (10)
C540.229 (15)0.200 (12)0.187 (10)0.109 (12)0.078 (11)0.094 (10)
C550.143 (10)0.173 (11)0.141 (8)0.027 (8)0.008 (8)0.079 (7)
C560.142 (9)0.123 (8)0.108 (6)0.014 (6)0.005 (6)0.024 (6)
C610.061 (4)0.086 (5)0.095 (5)0.010 (4)0.002 (4)0.022 (4)
C620.102 (6)0.076 (5)0.130 (8)0.002 (5)0.004 (6)0.015 (5)
C630.109 (7)0.087 (6)0.164 (10)0.012 (5)0.003 (7)0.033 (7)
C640.088 (6)0.134 (9)0.158 (10)0.004 (6)0.004 (6)0.069 (8)
C650.097 (7)0.175 (11)0.098 (7)0.036 (7)0.017 (5)0.031 (7)
C660.077 (5)0.091 (6)0.114 (7)0.018 (4)0.014 (5)0.017 (5)
Sb0.0921 (4)0.0816 (4)0.0626 (3)0.0064 (3)0.0126 (3)0.0093 (2)
F10.226 (8)0.246 (10)0.107 (5)0.054 (8)0.037 (5)0.067 (6)
F20.208 (9)0.154 (7)0.282 (11)0.050 (7)0.062 (8)0.015 (8)
F30.338 (13)0.341 (14)0.199 (9)0.238 (12)0.173 (9)0.084 (9)
F40.195 (8)0.341 (13)0.126 (6)0.096 (9)0.037 (5)0.099 (7)
F50.201 (7)0.210 (8)0.128 (5)0.085 (6)0.023 (5)0.045 (5)
F60.224 (12)0.232 (13)0.58 (3)0.121 (10)0.120 (14)0.036 (15)
Geometric parameters (Å, º) top
Mn—N11.995 (4)C23—H230.93
Mn—N32.000 (4)C24—C251.378 (10)
Mn—N22.003 (4)C24—H240.93
Mn—N42.003 (4)C25—C261.376 (9)
Mn—O12.120 (4)C25—H250.93
P—O11.443 (4)C26—H260.93
P—O21.535 (6)C31A—C32A1.39
P—O31.560 (5)C31A—C36A1.39
P—H711.28 (5)C32A—C33A1.39
N1—C1011.377 (6)C32A—H32A0.93
N1—C1021.380 (6)C33A—C34A1.39
N2—C1031.378 (6)C33A—H33A0.93
N2—C1041.383 (6)C34A—C35A1.39
N3—C1061.380 (6)C34A—H34A0.93
N3—C1051.386 (6)C35A—C36A1.39
N4—C1071.382 (6)C35A—H35A0.93
N4—C1081.384 (7)C36A—H36A0.93
C101—C3041.382 (7)C31—C321.39
C101—C2011.435 (7)C31—C361.39
C102—C3011.403 (7)C32—C331.39
C102—C2021.407 (7)C32—H320.93
C103—C3011.372 (7)C33—C341.39
C103—C2031.440 (7)C33—H330.93
C104—C3021.391 (7)C34—C351.39
C104—C2041.417 (7)C34—H340.93
C105—C3021.389 (7)C35—C361.39
C105—C2051.418 (7)C35—H350.93
C106—C3031.391 (8)C36—H360.93
C106—C2061.432 (8)C41—C421.368 (9)
C107—C3031.383 (8)C41—C461.369 (8)
C107—C2071.413 (8)C42—C431.399 (9)
C108—C3041.386 (7)C42—H420.93
C108—C2081.422 (8)C43—C441.369 (11)
C201—C2021.325 (8)C43—H430.93
C201—H2010.93C44—C451.351 (10)
C202—H2020.93C44—H440.93
C203—C2041.334 (7)C45—C461.397 (9)
C203—H2030.93C45—H450.93
C204—H2040.93C46—H460.93
C205—C2061.339 (8)C51—C521.39
C205—H2050.93C51—C561.39
C206—H2060.93C52—C531.39
C207—C2081.334 (9)C52—H520.93
C207—H2070.93C53—C541.39
C208—H2080.93C53—H530.93
C301—C111.507 (6)C54—C551.39
C302—C211.493 (7)C54—H540.93
C303—C31A1.496 (16)C55—C561.39
C303—C311.507 (9)C55—H550.93
C304—C411.516 (7)C56—H560.93
O2—C511.451 (6)C61—C621.39
O3—C611.390 (6)C61—C661.39
C11—C161.373 (8)C62—C631.39
C11—C121.383 (8)C62—H620.93
C12—C131.392 (8)C63—C641.39
C12—H120.93C63—H630.93
C13—C141.364 (11)C64—C651.39
C13—H130.93C64—H640.93
C14—C151.350 (11)C65—C661.39
C14—H140.93C65—H650.93
C15—C161.381 (8)C66—H660.93
C15—H150.93Sb—F61.751 (10)
C16—H160.93Sb—F31.781 (7)
C21—C261.377 (8)Sb—F21.794 (8)
C21—C221.396 (8)Sb—F11.816 (6)
C22—C231.381 (9)Sb—F41.828 (7)
C22—H220.93Sb—F51.856 (7)
C23—C241.359 (10)
N1—Mn—N3171.69 (18)C24—C23—C22119.7 (7)
N1—Mn—N289.60 (16)C24—C23—H23120.1
N3—Mn—N289.20 (16)C22—C23—H23120.2
N1—Mn—N489.75 (16)C23—C24—C25120.9 (6)
N3—Mn—N489.75 (17)C23—C24—H24119.5
N2—Mn—N4168.21 (18)C25—C24—H24119.5
N1—Mn—O192.51 (17)C26—C25—C24119.3 (6)
N3—Mn—O195.76 (17)C26—C25—H25120.4
N2—Mn—O193.41 (17)C24—C25—H25120.4
N4—Mn—O198.38 (18)C25—C26—C21121.3 (6)
O1—P—O2106.3 (3)C25—C26—H26119.4
O1—P—O3115.4 (3)C21—C26—H26119.4
O2—P—O3109.2 (3)C32A—C31A—C36A120
O1—P—H71126 (2)C32A—C31A—C303128.9 (14)
O2—P—H7195 (2)C36A—C31A—C303111.1 (14)
O3—P—H71103 (2)C33A—C32A—C31A120
C101—N1—C102105.2 (4)C33A—C32A—H32A120
C101—N1—Mn126.2 (3)C31A—C32A—H32A120
C102—N1—Mn126.5 (3)C32A—C33A—C34A120
C103—N2—C104106.2 (4)C32A—C33A—H33A120
C103—N2—Mn126.3 (3)C34A—C33A—H33A120
C104—N2—Mn127.5 (3)C35A—C34A—C33A120
C106—N3—C105105.8 (4)C35A—C34A—H34A120
C106—N3—Mn125.3 (3)C33A—C34A—H34A120
C105—N3—Mn126.8 (3)C34A—C35A—C36A120
C107—N4—C108105.3 (4)C34A—C35A—H35A120
C107—N4—Mn127.4 (4)C36A—C35A—H35A120
C108—N4—Mn127.3 (3)C35A—C36A—C31A120
N1—C101—C304126.1 (4)C35A—C36A—H36A120
N1—C101—C201109.2 (4)C31A—C36A—H36A120
C304—C101—C201124.6 (5)C32—C31—C36120
N1—C102—C301123.9 (4)C32—C31—C303116.7 (7)
N1—C102—C202110.1 (4)C36—C31—C303123.3 (7)
C301—C102—C202126.0 (5)C31—C32—C33120
C301—C103—N2125.9 (5)C31—C32—H32120
C301—C103—C203125.1 (4)C33—C32—H32120
N2—C103—C203108.8 (4)C32—C33—C34120
N2—C104—C302125.4 (4)C32—C33—H33120
N2—C104—C204109.1 (4)C34—C33—H33120
C302—C104—C204125.4 (5)C35—C34—C33120
N3—C105—C302125.2 (4)C35—C34—H34120
N3—C105—C205109.2 (4)C33—C34—H34120
C302—C105—C205125.6 (5)C36—C35—C34120
N3—C106—C303126.4 (5)C36—C35—H35120
N3—C106—C206109.5 (5)C34—C35—H35120
C303—C106—C206124.0 (5)C35—C36—C31120
N4—C107—C303125.0 (5)C35—C36—H36120
N4—C107—C207109.8 (5)C31—C36—H36120
C303—C107—C207125.1 (5)C42—C41—C46120.8 (5)
N4—C108—C304125.1 (5)C42—C41—C304120.1 (5)
N4—C108—C208109.3 (5)C46—C41—C304119.1 (5)
C304—C108—C208125.6 (5)C41—C42—C43118.7 (7)
C202—C201—C101107.3 (5)C41—C42—H42120.6
C202—C201—H201126.3C43—C42—H42120.6
C101—C201—H201126.3C44—C43—C42120.5 (7)
C201—C202—C102108.1 (5)C44—C43—H43119.8
C201—C202—H202125.9C42—C43—H43119.8
C102—C202—H202125.9C45—C44—C43120.2 (6)
C204—C203—C103107.2 (4)C45—C44—H44119.9
C204—C203—H203126.4C43—C44—H44119.9
C103—C203—H203126.4C44—C45—C46120.2 (6)
C203—C204—C104108.5 (5)C44—C45—H45119.9
C203—C204—H204125.8C46—C45—H45119.9
C104—C204—H204125.8C41—C46—C45119.5 (6)
C206—C205—C105108.4 (5)C41—C46—H46120.2
C206—C205—H205125.8C45—C46—H46120.2
C105—C205—H205125.8C52—C51—C56120
C205—C206—C106107.0 (5)C52—C51—O2122.9 (5)
C205—C206—H206126.5C56—C51—O2117.1 (5)
C106—C206—H206126.5C53—C52—C51120
C208—C207—C107107.7 (5)C53—C52—H52120
C208—C207—H207126.1C51—C52—H52120
C107—C207—H207126.1C52—C53—C54120
C207—C208—C108107.8 (5)C52—C53—H53120
C207—C208—H208126.1C54—C53—H53120
C108—C208—H208126.1C53—C54—C55120
C103—C301—C102124.2 (4)C53—C54—H54120
C103—C301—C11118.4 (4)C55—C54—H54120
C102—C301—C11117.4 (4)C56—C55—C54120
C105—C302—C104123.6 (5)C56—C55—H55120
C105—C302—C21117.9 (4)C54—C55—H55120
C104—C302—C21118.4 (5)C55—C56—C51120
C107—C303—C106123.6 (5)C55—C56—H56120
C107—C303—C31A113.0 (12)C51—C56—H56120
C106—C303—C31A121.5 (12)O3—C61—C62121.5 (4)
C107—C303—C31119.8 (7)O3—C61—C66118.4 (4)
C106—C303—C31116.4 (7)C62—C61—C66120
C101—C304—C108123.9 (5)C61—C62—C63120
C101—C304—C41117.9 (4)C61—C62—H62120
C108—C304—C41118.2 (5)C63—C62—H62120
P—O1—Mn146.7 (3)C64—C63—C62120
C51—O2—P124.6 (5)C64—C63—H63120
C61—O3—P123.0 (4)C62—C63—H63120
C16—C11—C12118.6 (5)C63—C64—C65120
C16—C11—C301122.2 (5)C63—C64—H64120
C12—C11—C301119.2 (5)C65—C64—H64120
C11—C12—C13120.1 (6)C66—C65—C64120
C11—C12—H12120C66—C65—H65120
C13—C12—H12120C64—C65—H65120
C14—C13—C12119.6 (7)C65—C66—C61120
C14—C13—H13120.2C65—C66—H66120
C12—C13—H13120.2C61—C66—H66120
C15—C14—C13120.8 (6)F6—Sb—F390.9 (8)
C15—C14—H14119.6F6—Sb—F2173.2 (6)
C13—C14—H14119.6F3—Sb—F295.4 (7)
C14—C15—C16120.0 (7)F6—Sb—F190.0 (7)
C14—C15—H15120F3—Sb—F191.8 (4)
C16—C15—H15120F2—Sb—F187.2 (5)
C11—C16—C15120.8 (6)F6—Sb—F492.1 (7)
C11—C16—H16119.6F3—Sb—F489.4 (4)
C15—C16—H16119.6F2—Sb—F490.6 (5)
C26—C21—C22118.2 (5)F1—Sb—F4177.6 (5)
C26—C21—C302122.9 (5)F6—Sb—F589.9 (7)
C22—C21—C302118.9 (5)F3—Sb—F5179.2 (6)
C23—C22—C21120.6 (6)F2—Sb—F583.8 (5)
C23—C22—H22119.7F1—Sb—F588.4 (4)
C21—C22—H22119.7F4—Sb—F590.4 (4)
N2—Mn—N1—C101179.9 (4)C206—C106—C303—C107180.0 (6)
N4—Mn—N1—C10111.7 (4)N3—C106—C303—C31A159.4 (16)
O1—Mn—N1—C10186.7 (4)C206—C106—C303—C31A16.6 (18)
N2—Mn—N1—C10218.8 (4)N3—C106—C303—C31178.4 (8)
N4—Mn—N1—C102173.0 (4)C206—C106—C303—C315.7 (11)
O1—Mn—N1—C10274.6 (4)N1—C101—C304—C1086.6 (9)
N1—Mn—N2—C1036.1 (4)C201—C101—C304—C108172.7 (6)
N3—Mn—N2—C103177.9 (4)N1—C101—C304—C41172.9 (5)
N4—Mn—N2—C10393.0 (9)C201—C101—C304—C417.8 (8)
O1—Mn—N2—C10386.4 (4)N4—C108—C304—C1014.9 (9)
N1—Mn—N2—C104175.5 (4)C208—C108—C304—C101177.1 (6)
N3—Mn—N2—C1043.7 (4)N4—C108—C304—C41175.6 (5)
N4—Mn—N2—C10488.6 (9)C208—C108—C304—C412.4 (9)
O1—Mn—N2—C10492.0 (4)O2—P—O1—Mn15.3 (6)
N2—Mn—N3—C106176.1 (5)O3—P—O1—Mn136.5 (5)
N4—Mn—N3—C10615.6 (5)N1—Mn—O1—P157.2 (5)
O1—Mn—N3—C10682.8 (5)N3—Mn—O1—P22.1 (5)
N2—Mn—N3—C10514.8 (4)N2—Mn—O1—P67.4 (5)
N4—Mn—N3—C105176.9 (4)N4—Mn—O1—P112.7 (5)
O1—Mn—N3—C10578.5 (4)O1—P—O2—C51170.0 (6)
N1—Mn—N4—C107177.0 (5)O3—P—O2—C5144.9 (7)
N3—Mn—N4—C1075.2 (5)O1—P—O3—C6151.4 (6)
N2—Mn—N4—C10790.1 (9)O2—P—O3—C6168.2 (6)
O1—Mn—N4—C10790.5 (5)C103—C301—C11—C16120.5 (6)
N1—Mn—N4—C1081.8 (5)C102—C301—C11—C1660.6 (7)
N3—Mn—N4—C108173.5 (5)C103—C301—C11—C1260.0 (7)
N2—Mn—N4—C10888.6 (9)C102—C301—C11—C12119.0 (6)
O1—Mn—N4—C10890.8 (5)C16—C11—C12—C130.8 (9)
C102—N1—C101—C304179.4 (5)C301—C11—C12—C13178.8 (6)
Mn—N1—C101—C30416.1 (8)C11—C12—C13—C141.4 (11)
C102—N1—C101—C2011.2 (6)C12—C13—C14—C152.0 (12)
Mn—N1—C101—C201163.3 (4)C13—C14—C15—C162.0 (13)
C101—N1—C102—C301176.2 (5)C12—C11—C16—C150.8 (10)
Mn—N1—C102—C30119.4 (7)C301—C11—C16—C15178.8 (6)
C101—N1—C102—C2022.0 (6)C14—C15—C16—C111.4 (12)
Mn—N1—C102—C202162.4 (4)C105—C302—C21—C2662.7 (7)
C104—N2—C103—C301170.9 (5)C104—C302—C21—C26122.1 (6)
Mn—N2—C103—C3017.7 (7)C105—C302—C21—C22115.8 (6)
C104—N2—C103—C2034.7 (5)C104—C302—C21—C2259.3 (7)
Mn—N2—C103—C203176.6 (3)C26—C21—C22—C230.5 (9)
C103—N2—C104—C302172.1 (5)C302—C21—C22—C23178.1 (6)
Mn—N2—C104—C3026.6 (7)C21—C22—C23—C240.2 (12)
C103—N2—C104—C2044.3 (5)C22—C23—C24—C250.7 (12)
Mn—N2—C104—C204177.1 (3)C23—C24—C25—C261.2 (10)
C106—N3—C105—C302178.5 (5)C24—C25—C26—C210.9 (9)
Mn—N3—C105—C30217.3 (8)C22—C21—C26—C250.0 (8)
C106—N3—C105—C2050.3 (6)C302—C21—C26—C25178.6 (5)
Mn—N3—C105—C205163.9 (4)C107—C303—C31A—C32A69.5 (19)
C105—N3—C106—C303177.5 (6)C106—C303—C31A—C32A95.5 (17)
Mn—N3—C106—C30317.9 (9)C107—C303—C31A—C36A112.0 (14)
C105—N3—C106—C2061.1 (6)C106—C303—C31A—C36A83.0 (17)
Mn—N3—C106—C206165.6 (4)C36A—C31A—C32A—C33A0
C108—N4—C107—C303176.1 (6)C303—C31A—C32A—C33A178 (3)
Mn—N4—C107—C3035.0 (9)C31A—C32A—C33A—C34A0
C108—N4—C107—C2071.7 (7)C32A—C33A—C34A—C35A0
Mn—N4—C107—C207177.2 (5)C33A—C34A—C35A—C36A0
C107—N4—C108—C304175.5 (6)C34A—C35A—C36A—C31A0
Mn—N4—C108—C3045.6 (8)C32A—C31A—C36A—C35A0
C107—N4—C108—C2082.8 (7)C303—C31A—C36A—C35A179 (2)
Mn—N4—C108—C208176.1 (4)C107—C303—C31—C3278.6 (9)
N1—C101—C201—C2020.1 (7)C106—C303—C31—C32106.9 (9)
C304—C101—C201—C202179.3 (5)C107—C303—C31—C36100.3 (10)
C101—C201—C202—C1021.3 (7)C106—C303—C31—C3674.2 (9)
N1—C102—C202—C2012.1 (7)C36—C31—C32—C330
C301—C102—C202—C201176.0 (5)C303—C31—C32—C33178.9 (10)
C301—C103—C203—C204172.2 (5)C31—C32—C33—C340
N2—C103—C203—C2043.5 (6)C32—C33—C34—C350
C103—C203—C204—C1040.7 (6)C33—C34—C35—C360
N2—C104—C204—C2032.2 (6)C34—C35—C36—C310
C302—C104—C204—C203174.1 (5)C32—C31—C36—C350
N3—C105—C205—C2061.7 (7)C303—C31—C36—C35178.8 (11)
C302—C105—C205—C206177.1 (6)C101—C304—C41—C42116.1 (7)
C105—C205—C206—C1062.3 (7)C108—C304—C41—C4264.4 (8)
N3—C106—C206—C2052.1 (7)C101—C304—C41—C4665.7 (7)
C303—C106—C206—C205178.7 (6)C108—C304—C41—C46113.8 (6)
N4—C107—C207—C2080.1 (9)C46—C41—C42—C432.1 (11)
C303—C107—C207—C208177.9 (7)C304—C41—C42—C43179.8 (6)
C107—C207—C208—C1081.8 (9)C41—C42—C43—C443.0 (12)
N4—C108—C208—C2073.0 (8)C42—C43—C44—C452.8 (11)
C304—C108—C208—C207175.3 (6)C43—C44—C45—C461.8 (11)
N2—C103—C301—C10213.4 (8)C42—C41—C46—C451.1 (10)
C203—C103—C301—C102171.6 (5)C304—C41—C46—C45179.2 (6)
N2—C103—C301—C11165.4 (5)C44—C45—C46—C410.9 (10)
C203—C103—C301—C119.5 (8)P—O2—C51—C5259.8 (8)
N1—C102—C301—C1030.8 (8)P—O2—C51—C56118.5 (6)
C202—C102—C301—C103178.7 (5)C56—C51—C52—C530
N1—C102—C301—C11179.7 (5)O2—C51—C52—C53178.3 (7)
C202—C102—C301—C112.4 (8)C51—C52—C53—C540
N3—C105—C302—C1043.6 (9)C52—C53—C54—C550
C205—C105—C302—C104177.9 (5)C53—C54—C55—C560
N3—C105—C302—C21178.5 (5)C54—C55—C56—C510
C205—C105—C302—C213.0 (8)C52—C51—C56—C550
N2—C104—C302—C1058.9 (8)O2—C51—C56—C55178.4 (6)
C204—C104—C302—C105175.4 (5)P—O3—C61—C6267.3 (7)
N2—C104—C302—C21166.0 (5)P—O3—C61—C66117.3 (5)
C204—C104—C302—C219.8 (8)O3—C61—C62—C63175.2 (6)
N4—C107—C303—C1068.1 (11)C66—C61—C62—C630
C207—C107—C303—C106174.4 (7)C61—C62—C63—C640
N4—C107—C303—C31A172.8 (15)C62—C63—C64—C650
C207—C107—C303—C31A9.7 (17)C63—C64—C65—C660
N4—C107—C303—C31166.0 (9)C64—C65—C66—C610
C207—C107—C303—C3111.5 (13)O3—C61—C66—C65175.4 (6)
N3—C106—C303—C1074.0 (11)C62—C61—C66—C650

Experimental details

Crystal data
Chemical formula[Mn(C44H28N4)(C12H11O3P)][SbF6]
Mr1137.57
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.719 (2), 20.817 (3), 17.390 (2)
β (°) 94.132 (11)
V3)4953.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.5 × 0.5 × 0.5
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10668, 8694, 6205
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.202, 1.12
No. of reflections8694
No. of parameters660
No. of restraints146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.98, 0.61

Computer programs: CAD-4 Software (Enraf-Nonius, 1992), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mn—N11.995 (4)P—O21.535 (6)
Mn—N32.000 (4)P—O31.560 (5)
Mn—N22.003 (4)P—H711.28 (5)
Mn—N42.003 (4)O2—C511.451 (6)
Mn—O12.120 (4)O3—C611.390 (6)
P—O11.443 (4)
N1—Mn—N3171.69 (18)O1—P—O2106.3 (3)
N1—Mn—N289.60 (16)O1—P—O3115.4 (3)
N3—Mn—N289.20 (16)O2—P—O3109.2 (3)
N1—Mn—N489.75 (16)O1—P—H71126 (2)
N3—Mn—N489.75 (17)O2—P—H7195 (2)
N2—Mn—N4168.21 (18)O3—P—H71103 (2)
N1—Mn—O192.51 (17)P—O1—Mn146.7 (3)
N3—Mn—O195.76 (17)C51—O2—P124.6 (5)
N2—Mn—O193.41 (17)C61—O3—P123.0 (4)
N4—Mn—O198.38 (18)
O1—Mn—N1—C10186.7 (4)O3—P—O2—C5144.9 (7)
O1—Mn—N1—C10274.6 (4)O1—P—O3—C6151.4 (6)
O1—Mn—N2—C10386.4 (4)O2—P—O3—C6168.2 (6)
O1—Mn—N2—C10492.0 (4)C102—C301—C11—C1660.6 (7)
O1—Mn—N3—C10682.8 (5)C103—C301—C11—C1260.0 (7)
O1—Mn—N3—C10578.5 (4)C105—C302—C21—C2662.7 (7)
O1—Mn—N4—C10790.5 (5)C104—C302—C21—C2259.3 (7)
O1—Mn—N4—C10890.8 (5)C107—C303—C31—C3278.6 (9)
O2—P—O1—Mn15.3 (6)C106—C303—C31—C3674.2 (9)
O3—P—O1—Mn136.5 (5)C108—C304—C41—C4264.4 (8)
N1—Mn—O1—P157.2 (5)C101—C304—C41—C4665.7 (7)
N3—Mn—O1—P22.1 (5)P—O2—C51—C5259.8 (8)
N2—Mn—O1—P67.4 (5)P—O2—C51—C56118.5 (6)
N4—Mn—O1—P112.7 (5)P—O3—C61—C6267.3 (7)
O1—P—O2—C51170.0 (6)P—O3—C61—C66117.3 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds