Download citation
Download citation
link to html
In the title compound, C25H19NO4, the indole moiety is not completely planar, the heterocyclic ring being distorted very slightly towards a half-chair conformation. The benzoyl and 4-­methoxy­phenyl substituents are individually almost planar and are in a bisecting and nearly perpendicular configuration, respectively, with respect to the plane of the indole moiety. The molecular and packing structures in the crystal are stabilized by intramolecular and intermolecular C—H...O interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016304/ln1121sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016304/ln1121Isup2.hkl
Contains datablock I

CCDC reference: 179277

Comment top

1,3-Dihydro-3-methylene-2H-indol-2-one derivatives are synthetic precursors for biologically active spirocyclohexenindoles and certain alkaloids (Beccali et al., 1999). The stereochemistry, including the configuration and conformation, and their correlations with other spectroscopic properties are also of current research interest (Coda et al., 1984). The photoreaction of 1-acetylisatin with 1,2-phenylacetylenes is one of the synthetic routes for obtaining such derivatives (Zhang et al., 2000). In order to investigate the effect of the attached substituents of 1,2-diphenylacetylene on the regioselectivity of the photoreaction and the stereochemical properties of the product, we have synthesized the title compound, 1-acetyl-3-[benzoyl(4-methoxyphenyl)methylene]-2,3-dihydro-1H-indol-2-one, (I), which is the product of the photoreaction of 1-acetylisatin with 1-(4-methoxyphenyl)-2-phenylacetylene. As part of this research interest, we determined the X-ray crystal structure of (I) in order to confirm its conformation and stereochemistry.

The bond lengths and angles in the title compound (Table 1) have normal values (Allen et al., 1987), except for the bond lengths around C11, due to the steric effects of the bulky substituents. The bond lengths and angles within the indole moiety agree with those of a related structure (Usman et al., 2001).

In the title structure (Fig. 1), the indole moiety is not completely planar, with the heterocyclic ring being distorted very slightly towards a half-chair conformation. This conformation is confirmed by its puckering parameters [Q2 = 0.090 (2) Å and ϕ2 = 133 (1)°; Cremer & Pople, 1975] and the deviations of C7 and C8 from the N1/C1/C6/C7/C8 mean plane are -0.052 (2) and 0.056 (2) Å, respectively. The dihedral angle between the mean planes of the heterocyclic and benzene rings in the indole moiety is 5.5 (1)°.

The benzoyl and 4-methoxyphenyl substituents attached at C11 are almost planar, although the carbonyl group of the benzoyl moiety is twisted slightly out of the plane of the benzene ring, so that O3 deviates by 0.390 (1) Å from this plane. The O3/C11/C19/C20 plane is twisted by 22.1 (1)° from that of the benzene ring. The maximum deviation from the plane of the 4-methoxyphenyl substituent is 0.022 (2) Å at C12. The angle between the mean planes of these two substituents is 63.6 (1)°.

Although the mean plane of the 4-methoxyphenyl group is in a bisecting configuration with respect to that of the indole moiety, the benzoyl ring lies nearly perpendicular to the plane of the indole ring system. The corresponding dihedral angles are 48.1 (1) and 85.0 (1)°, respectively. The ketone O2 atom deviates by 0.324 (1) Å from the mean plane of the indole moiety, while the acetyl group attached at N1 is twisted by 10.3 (1)° from the indole-ring plane.

In the title compound, three intramolecular C—H···O interactions form closed rings, viz. O2/C8/N1/C9/C10/H10A, O1/C9/N1/C1/C2/H2A and O3/C19/C11/C12/C17/H17A. The molecules are linked by an intermolecular C23—H23A···O3 interaction into columns along the x axis, and another intermolecular C10—H10B···O3 interaction interconnects the columns into a three-dimensional framework. These interactions, as well as van der Waals interactions, stabilize the molecular and the packing structure in the crystal.

Related literature top

For related literature, see: Allen et al. (1987); Coda et al. (1984); Cremer & Pople (1975); Zhang et al. (2000).

Experimental top

The title compound, (I), was prepared by a photoinduced reaction of 1-acetylisatin with 1-methoxyphenyl-2-phenylacetylene (Zhang et al., 2000). The primary product in the photoreaction is supposed to be a spiroxetene which rearranges under reaction conditions to the Z and E isomers of 3-[benzoyl(4-methoxyphenyl)methylene]-2,3-dihydro-1H-indol-2-one. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a petroleum ether–ethyl acetate solution.

Refinement top

After checking their presence in a difference Fourier synthesis, the positions of all H atoms were geometrically idealized and allowed to ride on their parent C atoms, with C—H distances of 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and fixed displacement parameters defined by Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing of the title compound viewed down the a axis.
3-[Benzoyl(4-methoxyphenyl)methylene]-2,3-dihydro-1H-indol-2-one top
Crystal data top
C25H19NO4Dx = 1.327 Mg m3
Mr = 397.41Melting point: 453K K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.0395 (3) ÅCell parameters from 5444 reflections
b = 16.7881 (5) Åθ = 1.8–28.4°
c = 14.8438 (5) ŵ = 0.09 mm1
β = 96.954 (1)°T = 293 K
V = 1988.7 (1) Å3Block, yellow
Z = 40.34 × 0.26 × 0.22 mm
F(000) = 832
Data collection top
Siemens SMART CCD area-detector
diffractometer
4857 independent reflections
Radiation source: fine-focus sealed tube2603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 1.8°
ω scansh = 910
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1922
Tmin = 0.970, Tmax = 0.980l = 1919
13734 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
4857 reflectionsΔρmax = 0.18 e Å3
274 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0066 (12)
Crystal data top
C25H19NO4V = 1988.7 (1) Å3
Mr = 397.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0395 (3) ŵ = 0.09 mm1
b = 16.7881 (5) ÅT = 293 K
c = 14.8438 (5) Å0.34 × 0.26 × 0.22 mm
β = 96.954 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4857 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2603 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.069
13734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.91Δρmax = 0.18 e Å3
4857 reflectionsΔρmin = 0.20 e Å3
274 parameters
Special details top

Experimental. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the intensity of duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8466 (2)0.11836 (9)0.51135 (11)0.0818 (5)
O20.92050 (19)0.05665 (8)0.70865 (9)0.0587 (4)
O30.85943 (16)0.22279 (7)0.78816 (8)0.0464 (3)
O40.7318 (2)0.52297 (8)0.48966 (11)0.0748 (5)
N10.82185 (19)0.00548 (8)0.56590 (10)0.0417 (4)
C10.7254 (2)0.03884 (10)0.48790 (11)0.0397 (4)
C20.6493 (3)0.00042 (12)0.41222 (13)0.0538 (6)
H2A0.66240.05500.40470.065*
C30.5527 (3)0.04500 (13)0.34811 (14)0.0598 (6)
H3A0.50010.02010.29640.072*
C40.5313 (3)0.12558 (13)0.35797 (13)0.0568 (6)
H4A0.46390.15400.31380.068*
C50.6105 (3)0.16458 (12)0.43394 (13)0.0494 (5)
H5A0.59710.21920.44080.059*
C60.7095 (2)0.12134 (10)0.49923 (11)0.0390 (4)
C70.8035 (2)0.14297 (10)0.58651 (11)0.0353 (4)
C80.8573 (2)0.06629 (10)0.63084 (12)0.0388 (4)
C90.8729 (3)0.07465 (11)0.57524 (14)0.0488 (5)
C100.9613 (3)0.10116 (13)0.66339 (15)0.0694 (7)
H10A1.05410.06630.68120.104*
H10B1.00170.15450.65760.104*
H10C0.88540.09990.70860.104*
C110.8464 (2)0.21246 (9)0.62867 (11)0.0340 (4)
C120.8138 (2)0.29326 (10)0.58980 (11)0.0351 (4)
C130.8507 (2)0.31184 (11)0.50349 (12)0.0414 (4)
H13A0.89390.27240.46890.050*
C140.8252 (2)0.38720 (11)0.46736 (12)0.0451 (5)
H14A0.85040.39810.40910.054*
C150.7623 (3)0.44627 (11)0.51813 (13)0.0483 (5)
C160.7274 (3)0.42918 (11)0.60552 (13)0.0557 (6)
H16A0.68580.46890.64030.067*
C170.7538 (3)0.35421 (11)0.64088 (12)0.0461 (5)
H17A0.73140.34390.69980.055*
C180.7631 (4)0.54352 (14)0.40031 (16)0.0808 (8)
H18A0.73320.59820.38850.121*
H18B0.69730.51000.35730.121*
H18C0.87990.53620.39480.121*
C190.9387 (2)0.21135 (9)0.72443 (11)0.0351 (4)
C201.1223 (2)0.20053 (10)0.73653 (12)0.0388 (4)
C211.2186 (2)0.21474 (11)0.66717 (14)0.0475 (5)
H21A1.16810.23230.61100.057*
C221.3900 (3)0.20283 (13)0.68117 (17)0.0633 (6)
H22A1.45490.21390.63490.076*
C231.4647 (3)0.17483 (14)0.76303 (19)0.0711 (7)
H23A1.57970.16590.77170.085*
C241.3702 (3)0.15992 (13)0.83217 (18)0.0661 (6)
H24A1.42110.14050.88740.079*
C251.2004 (3)0.17361 (12)0.81995 (14)0.0546 (5)
H25A1.13730.16490.86760.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1294 (16)0.0465 (9)0.0646 (10)0.0160 (9)0.0084 (10)0.0150 (8)
O20.0831 (11)0.0451 (8)0.0415 (8)0.0040 (7)0.0183 (8)0.0058 (6)
O30.0464 (8)0.0599 (9)0.0335 (7)0.0034 (6)0.0076 (6)0.0019 (6)
O40.1147 (15)0.0429 (9)0.0668 (11)0.0140 (8)0.0110 (10)0.0128 (7)
N10.0528 (10)0.0335 (8)0.0375 (9)0.0029 (7)0.0001 (8)0.0007 (6)
C10.0455 (11)0.0409 (10)0.0319 (10)0.0061 (8)0.0015 (8)0.0010 (8)
C20.0723 (15)0.0441 (12)0.0428 (12)0.0113 (10)0.0018 (11)0.0067 (9)
C30.0727 (15)0.0648 (15)0.0374 (11)0.0152 (11)0.0110 (11)0.0036 (10)
C40.0637 (14)0.0602 (14)0.0417 (12)0.0078 (11)0.0134 (10)0.0075 (10)
C50.0549 (13)0.0481 (12)0.0425 (11)0.0022 (9)0.0045 (10)0.0049 (9)
C60.0420 (11)0.0412 (10)0.0332 (10)0.0038 (8)0.0020 (8)0.0017 (8)
C70.0376 (10)0.0364 (10)0.0312 (9)0.0014 (7)0.0013 (8)0.0013 (7)
C80.0411 (11)0.0371 (10)0.0368 (11)0.0052 (8)0.0013 (9)0.0003 (8)
C90.0620 (13)0.0348 (11)0.0496 (12)0.0009 (9)0.0068 (10)0.0012 (9)
C100.101 (2)0.0443 (12)0.0600 (14)0.0147 (12)0.0009 (14)0.0095 (10)
C110.0361 (10)0.0368 (10)0.0290 (9)0.0005 (7)0.0041 (8)0.0008 (7)
C120.0378 (10)0.0351 (10)0.0319 (10)0.0011 (7)0.0017 (8)0.0025 (7)
C130.0511 (11)0.0387 (10)0.0353 (10)0.0011 (8)0.0083 (9)0.0047 (8)
C140.0583 (13)0.0421 (11)0.0350 (10)0.0044 (9)0.0063 (9)0.0028 (8)
C150.0589 (13)0.0369 (11)0.0476 (12)0.0018 (9)0.0003 (10)0.0056 (9)
C160.0770 (15)0.0425 (12)0.0496 (12)0.0117 (10)0.0152 (11)0.0046 (10)
C170.0590 (13)0.0444 (11)0.0362 (11)0.0046 (9)0.0110 (10)0.0019 (8)
C180.109 (2)0.0626 (15)0.0672 (16)0.0021 (14)0.0034 (15)0.0279 (12)
C190.0419 (10)0.0315 (9)0.0319 (10)0.0050 (7)0.0038 (8)0.0012 (7)
C200.0404 (11)0.0351 (10)0.0400 (11)0.0057 (8)0.0018 (9)0.0082 (8)
C210.0482 (12)0.0463 (11)0.0486 (12)0.0083 (9)0.0087 (10)0.0120 (9)
C220.0483 (13)0.0671 (15)0.0773 (17)0.0131 (11)0.0191 (13)0.0192 (12)
C230.0407 (13)0.0686 (16)0.101 (2)0.0051 (11)0.0032 (15)0.0198 (14)
C240.0490 (14)0.0661 (15)0.0767 (16)0.0054 (11)0.0184 (13)0.0014 (12)
C250.0493 (13)0.0609 (13)0.0511 (13)0.0074 (10)0.0043 (10)0.0040 (10)
Geometric parameters (Å, º) top
O1—C91.198 (2)C11—C191.522 (2)
O2—C81.215 (2)C12—C131.385 (2)
O3—C191.2184 (19)C12—C171.394 (2)
O4—C151.368 (2)C13—C141.380 (2)
O4—C181.422 (3)C13—H13A0.9300
N1—C91.409 (2)C14—C151.378 (3)
N1—C81.409 (2)C14—H14A0.9300
N1—C11.427 (2)C15—C161.390 (3)
C1—C21.380 (3)C16—C171.370 (3)
C1—C61.403 (2)C16—H16A0.9300
C2—C31.383 (3)C17—H17A0.9300
C2—H2A0.9300C18—H18A0.9600
C3—C41.374 (3)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.390 (3)C19—C201.476 (3)
C4—H4A0.9300C20—C211.382 (2)
C5—C61.383 (3)C20—C251.394 (3)
C5—H5A0.9300C21—C221.383 (3)
C6—C71.464 (2)C21—H21A0.9300
C7—C111.349 (2)C22—C231.372 (3)
C7—C81.486 (2)C22—H22A0.9300
C9—C101.480 (3)C23—C241.372 (3)
C10—H10A0.9600C23—H23A0.9300
C10—H10B0.9600C24—C251.375 (3)
C10—H10C0.9600C24—H24A0.9300
C11—C121.485 (2)C25—H25A0.9300
C15—O4—C18118.11 (17)C14—C13—C12121.85 (16)
C9—N1—C8126.30 (16)C14—C13—H13A119.1
C9—N1—C1125.30 (15)C12—C13—H13A119.1
C8—N1—C1108.40 (14)C15—C14—C13119.62 (17)
C2—C1—C6122.09 (17)C15—C14—H14A120.2
C2—C1—N1128.07 (17)C13—C14—H14A120.2
C6—C1—N1109.78 (15)O4—C15—C14124.90 (17)
C1—C2—C3116.98 (19)O4—C15—C16115.70 (17)
C1—C2—H2A121.5C14—C15—C16119.39 (17)
C3—C2—H2A121.5C17—C16—C15120.50 (18)
C4—C3—C2122.46 (19)C17—C16—H16A119.7
C4—C3—H3A118.8C15—C16—H16A119.7
C2—C3—H3A118.8C16—C17—C12120.91 (17)
C3—C4—C5119.97 (19)C16—C17—H17A119.5
C3—C4—H4A120.0C12—C17—H17A119.5
C5—C4—H4A120.0O4—C18—H18A109.5
C6—C5—C4119.31 (19)O4—C18—H18B109.5
C6—C5—H5A120.3H18A—C18—H18B109.5
C4—C5—H5A120.3O4—C18—H18C109.5
C5—C6—C1119.16 (17)H18A—C18—H18C109.5
C5—C6—C7132.95 (17)H18B—C18—H18C109.5
C1—C6—C7107.83 (15)O3—C19—C20122.30 (16)
C11—C7—C6134.47 (16)O3—C19—C11118.77 (15)
C11—C7—C8119.96 (16)C20—C19—C11118.86 (14)
C6—C7—C8105.57 (14)C21—C20—C25119.01 (18)
O2—C8—N1125.48 (16)C21—C20—C19122.02 (17)
O2—C8—C7127.03 (16)C25—C20—C19118.95 (16)
N1—C8—C7107.50 (15)C20—C21—C22120.1 (2)
O1—C9—N1119.06 (18)C20—C21—H21A120.0
O1—C9—C10122.41 (19)C22—C21—H21A120.0
N1—C9—C10118.51 (17)C23—C22—C21120.3 (2)
C9—C10—H10A109.5C23—C22—H22A119.9
C9—C10—H10B109.5C21—C22—H22A119.9
H10A—C10—H10B109.5C22—C23—C24120.2 (2)
C9—C10—H10C109.5C22—C23—H23A119.9
H10A—C10—H10C109.5C24—C23—H23A119.9
H10B—C10—H10C109.5C23—C24—C25120.1 (2)
C7—C11—C12125.92 (16)C23—C24—H24A119.9
C7—C11—C19119.41 (15)C25—C24—H24A119.9
C12—C11—C19114.66 (13)C24—C25—C20120.3 (2)
C13—C12—C17117.69 (16)C24—C25—H25A119.8
C13—C12—C11121.17 (15)C20—C25—H25A119.8
C17—C12—C11121.04 (15)
C9—N1—C1—C27.5 (3)C8—C7—C11—C194.5 (2)
C8—N1—C1—C2172.86 (19)C7—C11—C12—C1347.7 (3)
C9—N1—C1—C6175.17 (17)C19—C11—C12—C13131.52 (18)
C8—N1—C1—C64.5 (2)C7—C11—C12—C17135.99 (19)
C6—C1—C2—C31.4 (3)C19—C11—C12—C1744.8 (2)
N1—C1—C2—C3175.67 (19)C17—C12—C13—C141.8 (3)
C1—C2—C3—C40.1 (3)C11—C12—C13—C14178.27 (17)
C2—C3—C4—C51.0 (3)C12—C13—C14—C150.4 (3)
C3—C4—C5—C60.4 (3)C18—O4—C15—C141.6 (3)
C4—C5—C6—C11.0 (3)C18—O4—C15—C16179.1 (2)
C4—C5—C6—C7177.65 (19)C13—C14—C15—O4180.0 (2)
C2—C1—C6—C52.0 (3)C13—C14—C15—C160.8 (3)
N1—C1—C6—C5175.57 (16)O4—C15—C16—C17179.8 (2)
C2—C1—C6—C7179.37 (17)C14—C15—C16—C170.5 (3)
N1—C1—C6—C71.8 (2)C15—C16—C17—C120.9 (3)
C5—C6—C7—C1110.8 (4)C13—C12—C17—C162.1 (3)
C1—C6—C7—C11172.27 (19)C11—C12—C17—C16178.53 (19)
C5—C6—C7—C8169.9 (2)C7—C11—C19—O399.9 (2)
C1—C6—C7—C87.05 (19)C12—C11—C19—O380.78 (19)
C9—N1—C8—O29.2 (3)C7—C11—C19—C2083.1 (2)
C1—N1—C8—O2171.19 (18)C12—C11—C19—C2096.15 (18)
C9—N1—C8—C7170.81 (16)O3—C19—C20—C21157.28 (17)
C1—N1—C8—C78.83 (19)C11—C19—C20—C2119.5 (2)
C11—C7—C8—O210.3 (3)O3—C19—C20—C2524.0 (2)
C6—C7—C8—O2170.26 (18)C11—C19—C20—C25159.15 (16)
C11—C7—C8—N1169.68 (15)C25—C20—C21—C220.5 (3)
C6—C7—C8—N19.76 (19)C19—C20—C21—C22179.16 (17)
C8—N1—C9—O1173.37 (19)C20—C21—C22—C231.8 (3)
C1—N1—C9—O16.2 (3)C21—C22—C23—C241.3 (3)
C8—N1—C9—C105.1 (3)C22—C23—C24—C250.5 (3)
C1—N1—C9—C10175.28 (18)C23—C24—C25—C201.8 (3)
C6—C7—C11—C124.5 (3)C21—C20—C25—C241.3 (3)
C8—C7—C11—C12174.70 (16)C19—C20—C25—C24177.41 (18)
C6—C7—C11—C19176.28 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.932.292.835 (3)117
C10—H10A···O20.962.392.762 (3)103
C10—H10B···O3i0.962.433.328 (3)155
C17—H17A···O30.932.573.149 (2)121
C23—H23A···O3ii0.932.433.251 (3)148
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H19NO4
Mr397.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.0395 (3), 16.7881 (5), 14.8438 (5)
β (°) 96.954 (1)
V3)1988.7 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.26 × 0.22
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
13734, 4857, 2603
Rint0.069
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.135, 0.91
No. of reflections4857
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
N1—C81.409 (2)C7—C81.486 (2)
N1—C11.427 (2)C11—C121.485 (2)
C1—C61.403 (2)C11—C191.522 (2)
C6—C71.464 (2)C19—C201.476 (3)
C7—C111.349 (2)
C7—C11—C12125.92 (16)O3—C19—C20122.30 (16)
C7—C11—C19119.41 (15)O3—C19—C11118.77 (15)
C12—C11—C19114.66 (13)
C8—N1—C9—O1173.37 (19)C18—O4—C15—C16179.1 (2)
C1—N1—C9—O16.2 (3)O3—C19—C20—C21157.28 (17)
C18—O4—C15—C141.6 (3)O3—C19—C20—C2524.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.932.29412.835 (3)117
C10—H10A···O20.962.38462.762 (3)103
C10—H10B···O3i0.962.43333.328 (3)155
C17—H17A···O30.932.56653.149 (2)121
C23—H23A···O3ii0.932.42823.251 (3)148
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds