Download citation
Download citation
link to html
The configuration of the chiral ring atoms of the title compound, C26H26N2O, obtained in an enantioselective synthesis, has been established relative to the known R configuration of the α-methyl­benzyl moieties. The crystal packing involves a two-dimensional network of C—H...π interactions between the aromatic rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000767/ln1096sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000767/ln1096Isup2.hkl
Contains datablock I

CCDC reference: 144648

Comment top

Azetidin-2-ones are of interest as potential building blocks for the synthesis of antibiotic agents (Morin & Gorman, 1982). They can be prepared via zinc-mediated condensations of ester enolates with imines. During a study on 3-amino-substituted azetidin-2-ones it was established that the zinc-mediated condensation resulted in an exclusive trans arrangement of substituents on the newly formed four-membered ring. The enantioselective synthesis favoured the formation of the (3R,4S) configuration on the new chiral centres (van der Steen et al., 1992). During a study on the enantioselective synthesis of 3-hydrocarbon-substituted azetidin-2-ones, the title compound, (I), was one of the compounds prepared (Kleijn et al., 1992). \scheme

Compound (I) was obtained in a trans configuration with an enantiomeric excess of 64%. A crystal structure determination of the predominant diastereoisomer was undertaken to establish the absolute configurations of the atoms in the ring fragment with respect to the known configuration of the (R)-α-methylbenzyl moieties. The absolute configurations of the newly formed chiral centres in the four-membered ring are R on C3 and S on C4. This shows that the enantioselective syntheses of the 3-amino- and the 3-hydrocarbon-substituted azetidin-2-ones favour the same absolute configurations in the newly formed four-membered ring.

The bond lengths and angles in (I) are well within the range reported in similar structures (Cambridge Structural Database, October 1999 version; Allen et al., 1993). The central four-membered ring is slightly bent, as is illustrated by the puckering parameter q(2) which amounts to 0.080 (2) Å (Cremer & Pople, 1975). The improper torsion angle N1—C2—C4—C3, another measure for the puckering of the four-membered ring, takes the value 171.2 (2)°, which is well within the range found in the CSD (160–180°).

Due to the lack of classic hydrogen bond donors, the packing is determined by weaker interactions. No C—H···O or C—H···N interactions are present, not even for those C—H groups neighbouring electronegative moieties. The only directional interactions in the structure appear to be C—H···π hydrogen bonds. In ring A (atoms C7–C12), the atoms C8 and C11, positioned para with respect to each other, donate a C—H···π bond to the B-rings (atoms C14–C19) of the molecules at (1/2 + x, 1/2 - y, 1 - z) and (1/2 + x, 3/2 - y, 1 - z) (geometric details are given in in Table 2), thus creating an infinite string of edge-face π-systems (Hunter, 1994) running in the [010] direction. This string of aromatic rings intersects with a similar string of C—H···π bonded ring systems, consisting of ring C (atoms C24–C29) and ring A, where the latter now acts as the acceptor. This string, which runs in the [100] direction, contains alternating intra- and intermolecular C—H···π interactions. The two intersecting strings create a two-dimensional network with base vectors [100] and [010]. The two symmetry-related two-dimensional C—H···π networks that are located at approximately z = 0.85 and z = 0.65 are joined by a C—H···π interaction between C17 of ring B and ring C, creating a `bilayer' of C—H···π bonded aromatic rings (Fig. 2). Rings A and B accept C—H···π donations from other phenyl rings on both sides of their π-systems. In contrast, ring C receives a C—H···π interaction from another phenyl ring on only one side of its π-system. The other side of ring C receives a C—H···π bond from the methyl group, C6 (geometric details are included in Table 2; this interaction is not drawn in Fig. 2).

Experimental top

Details of the synthesis of (I) are given elsewhere (Kleijn et al., 1992). Light yellow crystals were obtained from a solution in diethyl ether (m.p. 360 K).

Refinement top

H atoms were introduced at calculated positions, and included in the refinement riding on their carrier atoms. Methyl moieties were refined as rigid groups, allowing for rotation around the C—C bonds, while maintaining tetrahedral geometry at the methyl C atoms. The isotropic displacement parameters of the H atoms were set to a fixed value, related to the equivalent isotropic displacement parameter of the carrier atom by a factor of 1.5 for the methyl H atoms and a factor of 1.2 for all other H atoms. For 2104 Friedel pairs the intensities of both members were measured, i.e. 76% of the total number of Friedel pairs with θ < θmax. Due to the lack of anomalous scatterers, the absolute configuration could not be established reliably, as is illustrated by the value of -0.3 (19) obtained for the Flack x parameter (Flack, 1983) derived during a structure factor calculation using all data (meaning that only the symmetry-related intensities were averaged and not the Friedel pairs). The absolute structure was therefore set in accordance with the known configuration of the (R)-α-methylbenzyl moieties. Since there is no significant dispersion, the final refinement cycles were carried out using a data set in which the Friedel-related reflections were also averaged.

Computing details top

Data collection: locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97-2 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of (I) drawn at the 30% probability level (PLATON; Spek, 1999). H atoms have an arbitrary radius. Ring labels A, B and C refer to π-systems accepting C—H···π bonds.
[Figure 2] Fig. 2. Packing diagram for (I), showing the bilayer of C—H···π bonded aromatic rings. Only the aromatic C atoms and those H atoms involved in the interactions are shown. Atoms belonging to the rings in the back layer are drawn as black spheres, atoms belonging to rings in the front layer are drawn as white spheres. Ring labels A, B and C refer to the ring classification defined in Fig. 1. The Me···π interaction has been omitted for clarity.
(3R,4S)-3-Phenyl-1-[(R)-1-phenylethyl]-4-[(R)-1-phenylethyliminomethyl]azet idin-2-one top
Crystal data top
C26H26N2ODx = 1.186 Mg m3
Mr = 382.49Melting point: 360 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.4958 (10) Åθ = 11.5–14.0°
b = 10.1947 (8) ŵ = 0.07 mm1
c = 22.124 (2) ÅT = 293 K
V = 2141.7 (3) Å3Block, light yellow
Z = 40.4 × 0.4 × 0.2 mm
F(000) = 816
Data collection top
Enraf-Nonius CAD-4T
diffractometer
Rint = 0.027
Radiation source: rotating anodeθmax = 27.5°, θmin = 1.8°
Graphite monochromatorh = 012
ω/2θ scansk = 013
5566 measured reflectionsl = 2828
2783 independent reflections3 standard reflections every 60 min
2033 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max = 0.001
wR(F2) = 0.106Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.16 e Å3
2783 reflectionsExtinction correction: SHELXL97-2 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
265 parametersExtinction coefficient: 0.0114 (16)
0 restraintsAbsolute structure: see text
Crystal data top
C26H26N2OV = 2141.7 (3) Å3
Mr = 382.49Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4958 (10) ŵ = 0.07 mm1
b = 10.1947 (8) ÅT = 293 K
c = 22.124 (2) Å0.4 × 0.4 × 0.2 mm
Data collection top
Enraf-Nonius CAD-4T
diffractometer
Rint = 0.027
5566 measured reflections3 standard reflections every 60 min
2783 independent reflections intensity decay: 1%
2033 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2783 reflectionsΔρmin = 0.16 e Å3
265 parametersAbsolute structure: see text
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O130.30671 (19)0.31146 (19)0.43217 (8)0.0640 (6)
N10.22007 (18)0.4889 (2)0.48973 (8)0.0444 (6)
N210.0867 (2)0.5727 (2)0.57702 (8)0.0493 (6)
C20.2170 (3)0.3740 (2)0.45833 (10)0.0467 (7)
C30.0588 (2)0.3552 (2)0.47042 (9)0.0441 (7)
C40.0663 (2)0.4948 (2)0.49916 (9)0.0421 (6)
C50.3212 (2)0.5952 (3)0.49775 (10)0.0489 (7)
C60.4662 (3)0.5575 (3)0.47531 (12)0.0773 (13)
C70.3262 (2)0.6395 (2)0.56324 (9)0.0411 (6)
C80.3503 (3)0.5511 (2)0.60949 (11)0.0509 (8)
C90.3594 (3)0.5941 (3)0.66879 (11)0.0597 (9)
C100.3453 (3)0.7240 (3)0.68185 (13)0.0634 (9)
C110.3222 (3)0.8134 (3)0.63675 (13)0.0604 (9)
C120.3117 (2)0.7708 (2)0.57735 (11)0.0492 (8)
C140.0452 (2)0.3352 (2)0.42006 (9)0.0421 (6)
C150.0041 (3)0.3020 (3)0.36178 (10)0.0535 (8)
C160.1051 (3)0.2837 (3)0.31704 (12)0.0636 (10)
C170.2440 (3)0.2964 (3)0.32973 (12)0.0619 (9)
C180.2873 (3)0.3289 (3)0.38722 (12)0.0581 (9)
C190.1873 (2)0.3484 (2)0.43204 (11)0.0509 (8)
C200.0184 (2)0.5052 (2)0.56318 (9)0.0443 (7)
C220.1294 (3)0.5709 (3)0.64164 (11)0.0557 (8)
C230.2580 (4)0.4864 (4)0.64857 (18)0.0993 (16)
C240.1464 (3)0.7120 (3)0.66165 (9)0.0497 (7)
C250.0329 (3)0.7761 (3)0.68612 (13)0.0695 (10)
C260.0441 (5)0.9078 (4)0.70292 (14)0.0919 (15)
C270.1694 (5)0.9723 (4)0.69464 (15)0.0943 (16)
C280.2815 (4)0.9089 (3)0.67113 (15)0.0804 (11)
C290.2707 (3)0.7796 (3)0.65455 (12)0.0609 (9)
H310.044600.289000.502000.0530*
H410.021800.561100.473400.0510*
H510.288800.669700.473500.0590*
H610.529000.630600.480000.1160*
H620.460900.533800.433400.1160*
H630.500600.484300.498300.1160*
H810.360500.462400.600800.0610*
H910.375100.534100.699700.0720*
H1010.351400.752300.721700.0760*
H1110.313600.902000.645900.0730*
H1210.294700.831300.546700.0590*
H1510.090900.292100.352700.0640*
H1610.077000.262600.278000.0760*
H1710.310500.283000.299500.0740*
H1810.382700.337800.395900.0700*
H1910.216400.370800.470800.0610*
H2010.067600.460900.593300.0530*
H2210.052900.531500.665200.0670*
H2310.288300.487700.690000.1490*
H2320.235900.398100.637000.1490*
H2330.332000.519500.623200.1490*
H2510.051800.731800.691500.0830*
H2610.032700.951300.719600.1100*
H2710.177201.060200.705300.1130*
H2810.366400.953000.666200.0970*
H2910.348500.737100.638300.0730*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O130.0583 (10)0.0700 (12)0.0638 (11)0.0150 (9)0.0054 (9)0.0146 (10)
N10.0422 (10)0.0505 (11)0.0406 (9)0.0002 (9)0.0022 (8)0.0063 (9)
N210.0472 (11)0.0601 (12)0.0407 (10)0.0047 (9)0.0032 (9)0.0052 (9)
C20.0496 (12)0.0510 (13)0.0395 (11)0.0061 (12)0.0016 (10)0.0003 (11)
C30.0512 (12)0.0436 (12)0.0374 (10)0.0012 (11)0.0010 (9)0.0017 (10)
C40.0429 (11)0.0472 (12)0.0363 (10)0.0023 (10)0.0026 (9)0.0040 (10)
C50.0488 (12)0.0579 (13)0.0400 (11)0.0087 (11)0.0026 (10)0.0031 (11)
C60.0551 (16)0.112 (3)0.0647 (16)0.0182 (17)0.0174 (14)0.0226 (17)
C70.0344 (10)0.0477 (12)0.0413 (11)0.0052 (10)0.0010 (9)0.0016 (10)
C80.0554 (14)0.0500 (13)0.0474 (12)0.0050 (12)0.0047 (12)0.0003 (11)
C90.0565 (15)0.0789 (18)0.0438 (13)0.0052 (15)0.0064 (12)0.0078 (13)
C100.0469 (14)0.093 (2)0.0502 (13)0.0008 (15)0.0018 (12)0.0188 (15)
C110.0525 (15)0.0588 (16)0.0700 (16)0.0005 (13)0.0015 (13)0.0171 (14)
C120.0411 (12)0.0495 (14)0.0569 (13)0.0031 (11)0.0028 (11)0.0024 (11)
C140.0501 (12)0.0376 (11)0.0386 (10)0.0037 (10)0.0019 (10)0.0016 (9)
C150.0531 (14)0.0610 (15)0.0463 (12)0.0030 (13)0.0045 (11)0.0090 (12)
C160.0740 (19)0.0783 (18)0.0386 (12)0.0099 (16)0.0011 (12)0.0130 (13)
C170.0679 (17)0.0693 (17)0.0486 (14)0.0122 (15)0.0162 (12)0.0042 (13)
C180.0492 (14)0.0657 (17)0.0593 (14)0.0074 (13)0.0033 (12)0.0012 (13)
C190.0552 (14)0.0547 (14)0.0427 (12)0.0052 (12)0.0023 (11)0.0029 (11)
C200.0421 (12)0.0534 (13)0.0373 (10)0.0005 (11)0.0007 (9)0.0040 (10)
C220.0582 (15)0.0627 (16)0.0462 (12)0.0067 (13)0.0146 (12)0.0020 (12)
C230.104 (3)0.078 (2)0.116 (3)0.024 (2)0.053 (2)0.021 (2)
C240.0488 (13)0.0658 (15)0.0345 (10)0.0027 (13)0.0117 (10)0.0028 (11)
C250.0542 (16)0.095 (2)0.0592 (15)0.0116 (16)0.0068 (13)0.0018 (16)
C260.110 (3)0.100 (3)0.0658 (18)0.042 (3)0.012 (2)0.0222 (19)
C270.147 (4)0.064 (2)0.072 (2)0.009 (2)0.042 (2)0.0152 (17)
C280.097 (2)0.0652 (19)0.079 (2)0.015 (2)0.029 (2)0.0031 (17)
C290.0610 (16)0.0691 (18)0.0525 (14)0.0044 (15)0.0096 (12)0.0016 (13)
Geometric parameters (Å, º) top
O13—C21.211 (3)C26—C271.372 (6)
N1—C21.362 (3)C27—C281.350 (6)
N1—C41.476 (3)C28—C291.372 (4)
N1—C51.459 (3)C3—H310.9807
N21—C201.250 (3)C4—H410.9799
N21—C221.486 (3)C5—H510.9795
C2—C31.538 (3)C6—H610.9601
C3—C41.560 (3)C6—H620.9595
C3—C141.503 (3)C6—H630.9604
C4—C201.491 (3)C8—H810.9295
C5—C61.513 (3)C9—H910.9295
C5—C71.518 (3)C10—H1010.9294
C7—C81.383 (3)C11—H1110.9293
C7—C121.381 (3)C12—H1210.9307
C8—C91.386 (3)C15—H1510.9297
C9—C101.362 (4)C16—H1610.9292
C10—C111.369 (4)C17—H1710.9299
C11—C121.388 (4)C18—H1810.9305
C14—C151.389 (3)C19—H1910.9294
C14—C191.382 (3)C20—H2010.9307
C15—C161.391 (4)C22—H2210.9802
C16—C171.355 (4)C23—H2310.9608
C17—C181.377 (4)C23—H2320.9591
C18—C191.387 (4)C23—H2330.9606
C22—C231.502 (5)C25—H2510.9301
C22—C241.514 (4)C26—H2610.9299
C24—C251.372 (4)C27—H2710.9296
C24—C291.376 (4)C28—H2810.9295
C25—C261.397 (5)C29—H2910.9288
O13···C63.082 (4)H31···O13ii2.8763
O13···C153.338 (3)H41···C193.0793
O13···C19i3.418 (3)H41···C12vi2.8597
O13···H622.6986H41···H121vi2.4600
O13···H1512.7073H51···H1212.3108
O13···H31i2.8763H51···C29v2.9346
O13···H191i2.8476H62···O132.6986
O13···H232i2.6589H62···C22.8848
N1···H812.8088H62···C26v3.0745
C2···C19i3.442 (3)H62···C27v3.0918
C6···O133.082 (4)H63···C23.0494
C7···C203.228 (3)H63···C82.9244
C8···C203.347 (3)H81···N12.8088
C11···C253.565 (4)H81···C15i3.0990
C15···O133.338 (3)H101···H161iv2.4827
C19···C2ii3.442 (3)H111···C18v2.9969
C19···O13ii3.418 (3)H111···C19v3.0738
C20···C83.347 (3)H121···H512.3108
C20···C73.228 (3)H121···H41v2.4600
C25···C113.565 (4)H151···O132.7073
C2···H1512.7554H151···C22.7554
C2···H633.0494H151···H232i2.5528
C2···H622.8848H161···C10viii3.0634
C2···H191i3.0144H161···H101viii2.4827
C4···H1913.0328H171···C24ix3.0775
C8···H2012.8601H171···C25ix2.9776
C8···H233iii3.0491H191···C43.0328
C8···H632.9244H191···O13ii2.8476
C10···H291iii3.0660H191···C2ii3.0144
C10···H161iv3.0634H201···C82.8601
C10···H2512.7963H201···H2212.0875
C11···H2512.9584H221···H2012.0875
C12···H41v2.8597H221···H2512.3445
C15···H81ii3.0990H231···C293.0820
C15···H281v2.8864H232···O13ii2.6589
C18···H111vi2.9969H232···H151ii2.5528
C19···H413.0793H233···C8x3.0491
C19···H111vi3.0738H233···C292.8020
C23···H2912.7060H233···H2912.2488
C24···H171vii3.0775H251···C102.7963
C25···H171vii2.9776H251···C112.9584
C26···H62vi3.0745H251···H2212.3445
C27···H62vi3.0918H281···C15vi2.8864
C29···H2313.0820H291···C10x3.0660
C29···H2332.8020H291···C232.7060
C29···H51vi2.9346H291···H2332.2488
C2—N1—C494.93 (18)N1—C5—H51107.62
C2—N1—C5135.6 (2)C6—C5—H51107.64
C4—N1—C5127.13 (19)C7—C5—H51107.57
C20—N21—C22116.5 (2)C5—C6—H61109.42
O13—C2—N1132.9 (2)C5—C6—H62109.47
O13—C2—C3134.8 (2)C5—C6—H63109.46
N1—C2—C392.26 (18)H61—C6—H62109.42
C2—C3—C484.99 (14)H61—C6—H63109.55
C2—C3—C14122.00 (17)H62—C6—H63109.51
C4—C3—C14117.12 (16)C7—C8—H81119.89
N1—C4—C387.16 (15)C9—C8—H81119.80
N1—C4—C20116.03 (16)C8—C9—H91119.89
C3—C4—C20115.97 (17)C10—C9—H91119.97
N1—C5—C6111.7 (2)C9—C10—H101119.80
N1—C5—C7110.95 (18)C11—C10—H101119.65
C6—C5—C7111.11 (18)C10—C11—H111120.16
C5—C7—C8121.2 (2)C12—C11—H111120.28
C5—C7—C12120.0 (2)C7—C12—H121119.66
C8—C7—C12118.7 (2)C11—C12—H121119.67
C7—C8—C9120.3 (2)C14—C15—H151119.98
C8—C9—C10120.1 (2)C16—C15—H151120.05
C9—C10—C11120.6 (3)C15—C16—H161119.64
C10—C11—C12119.6 (3)C17—C16—H161119.63
C7—C12—C11120.7 (2)C16—C17—H171119.87
C3—C14—C15122.46 (19)C18—C17—H171119.79
C3—C14—C19119.10 (18)C17—C18—H181120.31
C15—C14—C19118.4 (2)C19—C18—H181120.33
C14—C15—C16120.0 (2)C14—C19—H191119.42
C15—C16—C17120.7 (3)C18—C19—H191119.42
C16—C17—C18120.3 (3)N21—C20—H201119.50
C17—C18—C19119.4 (3)C4—C20—H201119.50
C14—C19—C18121.2 (2)N21—C22—H221108.33
N21—C20—C4121.01 (18)C23—C22—H221108.25
N21—C22—C23109.1 (2)C24—C22—H221108.24
N21—C22—C24107.4 (2)C22—C23—H231109.44
C23—C22—C24115.4 (3)C22—C23—H232109.46
C22—C24—C25119.0 (3)C22—C23—H233109.49
C22—C24—C29122.3 (3)H231—C23—H232109.46
C25—C24—C29118.7 (3)H231—C23—H233109.48
C24—C25—C26120.2 (3)H232—C23—H233109.50
C25—C26—C27119.4 (4)C24—C25—H251119.91
C26—C27—C28120.4 (4)C26—C25—H251119.89
C27—C28—C29120.3 (3)C25—C26—H261120.28
C24—C29—C28121.0 (3)C27—C26—H261120.31
C2—C3—H31110.12C26—C27—H271119.82
C4—C3—H31110.10C28—C27—H271119.78
C14—C3—H31110.15C27—C28—H281119.85
N1—C4—H41111.87C29—C28—H281119.88
C3—C4—H41111.87C24—C29—H291119.53
C20—C4—H41111.83C28—C29—H291119.48
C4—N1—C2—O13174.6 (3)C6—C5—C7—C871.0 (3)
C4—N1—C2—C36.51 (16)C6—C5—C7—C12106.6 (3)
C5—N1—C2—O1311.9 (4)C8—C7—C12—C110.5 (3)
C5—N1—C2—C3169.2 (2)C5—C7—C12—C11177.2 (2)
C2—N1—C4—C36.42 (16)C5—C7—C8—C9177.7 (2)
C2—N1—C4—C20124.05 (19)C12—C7—C8—C90.1 (4)
C5—N1—C4—C3171.3 (2)C7—C8—C9—C100.3 (4)
C5—N1—C4—C2071.1 (3)C8—C9—C10—C110.1 (4)
C2—N1—C5—C613.7 (4)C9—C10—C11—C120.7 (4)
C2—N1—C5—C7138.3 (2)C10—C11—C12—C70.9 (4)
C4—N1—C5—C6171.9 (2)C3—C14—C15—C16179.5 (2)
C4—N1—C5—C763.5 (3)C15—C14—C19—C180.1 (4)
C22—N21—C20—C4177.1 (2)C19—C14—C15—C160.4 (4)
C20—N21—C22—C23104.5 (3)C3—C14—C19—C18179.0 (2)
C20—N21—C22—C24129.8 (2)C14—C15—C16—C170.8 (5)
O13—C2—C3—C1456.0 (4)C15—C16—C17—C180.6 (5)
N1—C2—C3—C46.16 (16)C16—C17—C18—C190.1 (4)
O13—C2—C3—C4175.0 (3)C17—C18—C19—C140.3 (4)
N1—C2—C3—C14125.2 (2)C23—C22—C24—C2934.8 (4)
C14—C3—C4—N1129.24 (17)C23—C22—C24—C25147.1 (3)
C14—C3—C4—C20113.1 (2)N21—C22—C24—C2591.0 (3)
C2—C3—C4—N15.69 (14)N21—C22—C24—C2987.1 (3)
C2—C3—C4—C20123.36 (18)C22—C24—C25—C26177.6 (3)
C4—C3—C14—C15117.2 (2)C25—C24—C29—C280.4 (4)
C2—C3—C14—C1515.4 (3)C29—C24—C25—C260.5 (4)
C2—C3—C14—C19165.52 (19)C22—C24—C29—C28177.6 (3)
C4—C3—C14—C1963.7 (2)C24—C25—C26—C270.1 (5)
C3—C4—C20—N21116.2 (2)C25—C26—C27—C280.8 (5)
N1—C4—C20—N21143.7 (2)C26—C27—C28—C290.8 (5)
N1—C5—C7—C853.9 (3)C27—C28—C29—C240.2 (5)
N1—C5—C7—C12128.4 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x1/2, y+1/2, z+1; (iii) x+1, y, z; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x1/2, y+3/2, z+1; (vii) x1/2, y+1, z+1/2; (viii) x+1/2, y+1, z1/2; (ix) x1/2, y+1, z1/2; (x) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H62···Cg3v0.963.003.741 (3)135
C8—H81···Cg2i0.932.893.757 (3)156
C11—H111···Cg2v0.932.943.801 (3)155
C17—H171···Cg3ix0.932.983.753 (3)141
C25—H251···Cg10.933.143.890 (3)139
C29—H291···Cg1x0.933.073.929 (3)155
Symmetry codes: (i) x+1/2, y+1/2, z+1; (v) x+1/2, y+3/2, z+1; (ix) x1/2, y+1, z1/2; (x) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H26N2O
Mr382.49
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.4958 (10), 10.1947 (8), 22.124 (2)
V3)2141.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.4 × 0.4 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD-4T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5566, 2783, 2033
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.02
No. of reflections2783
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16
Absolute structureSee text

Computer programs: locally modified CAD-4 Software (Enraf-Nonius, 1989), SET4 (de Boer & Duisenberg, 1984), HELENA (Spek, 1997), SHELXS86 (Sheldrick, 1985), SHELXL97-2 (Sheldrick, 1997), PLATON (Spek, 1999), PLATON.

Selected geometric parameters (Å, º) top
O13—C21.211 (3)N21—C221.486 (3)
N1—C21.362 (3)C2—C31.538 (3)
N1—C41.476 (3)C3—C41.560 (3)
N21—C201.250 (3)
C2—N1—C494.93 (18)C2—C3—C484.99 (14)
C20—N21—C22116.5 (2)N1—C4—C387.16 (15)
N1—C2—C392.26 (18)N21—C20—C4121.01 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H62···Cg3i0.963.003.741 (3)135
C8—H81···Cg2ii0.932.893.757 (3)156
C11—H111···Cg2i0.932.943.801 (3)155
C17—H171···Cg3iii0.932.983.753 (3)141
C25—H251···Cg10.933.143.890 (3)139
C29—H291···Cg1iv0.933.073.929 (3)155
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1, z1/2; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds