organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-(4-Bromo­phenyl)-10-methyl-8-phenyl-6,8-di­hydro-5H-benzo­[f]­pyrazolo­[3,4-b]­quinoline

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 4 May 2005; accepted 6 May 2005; online 14 May 2005)

The title compound, C27H20BrN3, is isostructural with the chloro analogue: the mol­ecules are linked by two independent C—H⋯π(arene) hydrogen bonds into chains of edge-fused rings.

Comment

The title compound, (I[link]) (Fig. 1[link]), is isostructural with 11-(4-chloro­phenyl)-10-methyl-8-phenyl-6,8-di­hydro-5H-benzo­[f]­pyrazolo­[3,4-b]­quinoline, (II) (Serrano et al., 2005[Serrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1058-o1060.]).[link]

[Scheme 1]

The bond lengths and angles, and the molecular conformation, for (I[link]) are all virtually identical with those for (II). Two independent C—H⋯π(arene) hydrogen bonds (Table 1[link]) link the mol­ecules of (I[link]) into a [101] chain of centrosymmetric edge-fused rings, just as in (II). There are no direction-specific interactions between adjacent chains: C—H⋯N and C—H⋯Br hydrogen bonds, and aromatic ππ stacking interactions are all absent from the structure of (I[link]).

[Figure 1]
Figure 1
The mol­ecule of compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

Equimolar amounts of 5-amino-3-methyl-1-phenyl­pyrazole (173 mg, 1.0 mmol), 2-tetralone (146 mg, 1.0 mmol) and 4-bromo­benz­aldehyde (185.0 mg, 1.0 mmol) were placed in open Pyrex-glass vessels and irradiated in a domestic microwave oven for 4 min at 600 W. The reaction mixture was then extracted with ethanol, and, after removal of the solvent, the product was recrystallized from ethanol/di­methyl­form­amide to give crystals suitable for single-crystal X-ray diffraction.

Crystal data
  • C27H20BrN3

  • Mr = 466.37

  • Triclinic, [P\overline 1]

  • a = 7.0237 (3) Å

  • b = 12.8964 (7) Å

  • c = 13.3517 (7) Å

  • α = 106.630 (3)°

  • β = 101.423 (3)°

  • γ = 102.274 (3)°

  • V = 1088.18 (10) Å3

  • Z = 2

  • Dx = 1.423 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5001 reflections

  • θ = 3.1–27.7°

  • μ = 1.91 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.36 × 0.14 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.547, Tmax = 0.945

  • 223424 measured reflections

  • 5001 independent reflections

  • 3175 reflections with I > 2σ(I)

  • Rint = 0.085

  • θmax = 27.7°

  • h = −8 → 9

  • k = −16 → 16

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.102

  • S = 1.03

  • 5001 reflections

  • 281 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0461P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C113—H113⋯Cg1i 0.95 2.71 3.588 (3) 154
C115—H115⋯Cg2ii 0.95 2.81 3.589 (3) 140
Symmetry codes: (i) -x,1-y,-z; (ii) 1-x,1-y,1-z. Note: Cg1 is the centroid of ring C81–C86, and Cg2 is the centroid of ring C1,C2,C3,C4,C4A,C11B

All H atoms were located in difference maps in fully ordered sites; they were then treated as riding atoms, with C—H distances 0.95 (aromatic), 0.98 (methyl) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl group.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

11-(4-bromophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H- benzo[f]pyrazolo[3,4-b]quinoline top
Crystal data top
C27H20BrN3Z = 2
Mr = 466.37F(000) = 476
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0237 (3) ÅCell parameters from 5001 reflections
b = 12.8964 (7) Åθ = 3.1–27.7°
c = 13.3517 (7) ŵ = 1.91 mm1
α = 106.630 (3)°T = 120 K
β = 101.423 (3)°Plate, colourless
γ = 102.274 (3)°0.36 × 0.14 × 0.03 mm
V = 1088.18 (10) Å3
Data collection top
Bruker-Nonius 95mm CCD camera on κ goniostat
diffractometer
5001 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 9.091 pixels mm-1θmax = 27.7°, θmin = 3.1°
φ and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.547, Tmax = 0.945l = 1717
223424 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0461P)2]
where P = (Fo2 + 2Fc2)/3
5001 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.47 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br140.41479 (5)0.13431 (3)0.25854 (3)0.03966 (13)
N70.2796 (3)0.81718 (19)0.26822 (18)0.0255 (5)
N80.0557 (3)0.7067 (2)0.15048 (19)0.0270 (6)
N90.1652 (3)0.5942 (2)0.10704 (19)0.0285 (6)
C10.7765 (4)0.6159 (2)0.3633 (2)0.0271 (7)
C20.9607 (4)0.6214 (3)0.4281 (3)0.0330 (7)
C31.0668 (4)0.7171 (3)0.5171 (3)0.0397 (8)
C40.9893 (4)0.8088 (3)0.5380 (2)0.0355 (7)
C4A0.8045 (4)0.8053 (2)0.4736 (2)0.0277 (7)
C50.7231 (4)0.9057 (2)0.4936 (2)0.0316 (7)
C60.6183 (4)0.9125 (2)0.3856 (2)0.0285 (7)
C6A0.4510 (4)0.8058 (2)0.3224 (2)0.0244 (6)
C7A0.1361 (4)0.7190 (2)0.2108 (2)0.0252 (6)
C100.0459 (4)0.5364 (2)0.1383 (2)0.0252 (6)
C10A0.1496 (4)0.6113 (2)0.2045 (2)0.0224 (6)
C110.3307 (4)0.6008 (2)0.2637 (2)0.0209 (6)
C11A0.4864 (4)0.7007 (2)0.3226 (2)0.0212 (6)
C11B0.6911 (4)0.7059 (2)0.3862 (2)0.0230 (6)
C810.1493 (4)0.7901 (2)0.1331 (2)0.0289 (7)
C820.3588 (4)0.7661 (3)0.1102 (2)0.0336 (7)
C830.4501 (5)0.8470 (3)0.0925 (2)0.0404 (8)
C840.3341 (5)0.9503 (3)0.0971 (3)0.0460 (9)
C850.1276 (5)0.9730 (3)0.1203 (3)0.0523 (10)
C860.0334 (5)0.8924 (3)0.1375 (3)0.0455 (9)
C1010.1264 (4)0.4110 (2)0.1040 (2)0.0318 (7)
C1110.3419 (4)0.4862 (2)0.2618 (2)0.0218 (6)
C1120.3481 (4)0.4073 (2)0.1668 (2)0.0252 (6)
C1130.3656 (4)0.3019 (2)0.1659 (2)0.0268 (6)
C1140.3778 (4)0.2760 (2)0.2600 (2)0.0255 (6)
C1150.3655 (4)0.3515 (2)0.3539 (2)0.0253 (6)
C1160.3482 (4)0.4563 (2)0.3542 (2)0.0229 (6)
H10.70630.54970.30200.033*
H21.01470.55900.41130.040*
H31.19100.72000.56320.048*
H41.06400.87560.59770.043*
H5A0.83560.97560.53500.038*
H5B0.62550.89880.53730.038*
H6A0.56210.97780.39860.034*
H6B0.71750.92340.34350.034*
H10A0.10580.38780.16820.048*
H10B0.05460.37520.05440.048*
H10C0.27150.38750.06670.048*
H820.43860.69510.10670.040*
H830.59330.83140.07710.048*
H840.39741.00520.08420.055*
H850.04781.04440.12480.063*
H860.10970.90800.15220.055*
H1120.34030.42580.10240.030*
H1130.36920.24810.10120.032*
H1150.36900.33160.41740.030*
H1160.34050.50880.41870.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br140.0560 (2)0.02559 (19)0.0352 (2)0.01541 (15)0.00394 (15)0.01040 (14)
N70.0255 (13)0.0257 (14)0.0253 (13)0.0099 (11)0.0047 (11)0.0084 (11)
N80.0226 (12)0.0298 (14)0.0298 (14)0.0122 (11)0.0019 (11)0.0118 (12)
N90.0244 (13)0.0304 (15)0.0294 (14)0.0081 (11)0.0047 (11)0.0099 (12)
C10.0244 (15)0.0284 (17)0.0296 (17)0.0081 (13)0.0084 (13)0.0104 (14)
C20.0241 (16)0.0384 (19)0.0405 (19)0.0139 (14)0.0083 (14)0.0162 (16)
C30.0215 (16)0.045 (2)0.050 (2)0.0054 (15)0.0015 (15)0.0230 (18)
C40.0334 (17)0.0335 (18)0.0306 (18)0.0012 (14)0.0009 (14)0.0122 (15)
C4A0.0295 (16)0.0273 (16)0.0263 (16)0.0053 (13)0.0061 (13)0.0125 (14)
C50.0345 (17)0.0258 (16)0.0269 (17)0.0040 (13)0.0020 (14)0.0053 (13)
C60.0294 (16)0.0240 (16)0.0288 (17)0.0070 (13)0.0038 (13)0.0074 (13)
C6A0.0258 (15)0.0264 (16)0.0221 (15)0.0082 (13)0.0075 (13)0.0090 (13)
C7A0.0250 (15)0.0325 (17)0.0216 (16)0.0116 (13)0.0061 (13)0.0122 (14)
C100.0237 (15)0.0299 (16)0.0242 (16)0.0089 (13)0.0082 (13)0.0106 (13)
C10A0.0232 (15)0.0237 (15)0.0184 (15)0.0054 (12)0.0045 (12)0.0062 (12)
C110.0233 (14)0.0264 (15)0.0175 (14)0.0122 (12)0.0079 (12)0.0088 (12)
C11A0.0222 (14)0.0235 (15)0.0196 (15)0.0062 (12)0.0069 (12)0.0093 (12)
C11B0.0225 (14)0.0259 (16)0.0215 (15)0.0058 (12)0.0071 (12)0.0098 (13)
C810.0317 (17)0.0357 (18)0.0220 (16)0.0177 (14)0.0051 (13)0.0099 (14)
C820.0309 (17)0.052 (2)0.0260 (17)0.0216 (15)0.0089 (14)0.0171 (15)
C830.0382 (18)0.069 (3)0.0233 (17)0.0323 (18)0.0090 (15)0.0168 (17)
C840.059 (2)0.050 (2)0.0327 (19)0.0386 (19)0.0032 (17)0.0092 (17)
C850.050 (2)0.035 (2)0.065 (3)0.0171 (17)0.0050 (19)0.0173 (19)
C860.0362 (18)0.037 (2)0.063 (2)0.0182 (16)0.0017 (17)0.0191 (18)
C1010.0249 (15)0.0323 (18)0.0368 (18)0.0068 (13)0.0060 (14)0.0126 (15)
C1110.0158 (13)0.0250 (15)0.0223 (15)0.0048 (11)0.0029 (12)0.0072 (13)
C1120.0260 (15)0.0297 (17)0.0202 (15)0.0095 (13)0.0042 (12)0.0095 (13)
C1130.0328 (16)0.0261 (16)0.0208 (15)0.0118 (13)0.0069 (13)0.0052 (13)
C1140.0224 (15)0.0229 (15)0.0277 (16)0.0046 (12)0.0028 (12)0.0078 (13)
C1150.0265 (15)0.0257 (16)0.0217 (15)0.0035 (13)0.0039 (12)0.0099 (13)
C1160.0219 (14)0.0258 (16)0.0194 (15)0.0076 (12)0.0044 (12)0.0056 (12)
Geometric parameters (Å, º) top
C1—C21.381 (4)C83—C841.383 (5)
C1—C11B1.403 (4)C83—H830.95
C1—H10.95C84—C851.369 (5)
C2—C31.383 (4)C84—H840.95
C2—H20.95C85—C861.393 (4)
C3—C41.385 (4)C85—H850.95
C3—H30.95C86—H860.95
C4—C4A1.392 (4)N9—C101.318 (3)
C4—H40.95C10—C10A1.438 (4)
C4A—C11B1.407 (4)C10—C1011.494 (4)
C4A—C51.501 (4)C101—H10A0.98
C5—C61.520 (4)C101—H10B0.98
C5—H5A0.99C101—H10C0.98
C5—H5B0.99C10A—C111.413 (4)
C6—C6A1.497 (4)C11—C11A1.398 (4)
C6—H6A0.99C11—C1111.490 (4)
C6—H6B0.99C111—C1161.390 (4)
C6A—N71.336 (3)C111—C1121.397 (4)
C6A—C11A1.429 (4)C112—C1131.387 (4)
N7—C7A1.342 (3)C112—H1120.95
C7A—N81.376 (3)C113—C1141.381 (4)
C7A—C10A1.392 (4)C113—H1130.95
N8—N91.379 (3)C114—C1151.381 (4)
N8—C811.423 (3)C114—Br141.894 (3)
C81—C861.373 (4)C115—C1161.382 (4)
C81—C821.388 (4)C115—H1150.95
C82—C831.385 (4)C116—H1160.95
C82—H820.95C11A—C11B1.495 (4)
C2—C1—C11B121.4 (3)C83—C84—H84120.1
C2—C1—H1119.3C84—C85—C86120.6 (3)
C11B—C1—H1119.3C84—C85—H85119.7
C1—C2—C3120.4 (3)C86—C85—H85119.7
C1—C2—H2119.8C81—C86—C85119.4 (3)
C3—C2—H2119.8C81—C86—H86120.3
C2—C3—C4119.0 (3)C85—C86—H86120.3
C2—C3—H3120.5C10—N9—N8107.3 (2)
C4—C3—H3120.5N9—C10—C10A110.3 (2)
C3—C4—C4A121.5 (3)N9—C10—C101119.1 (2)
C3—C4—H4119.2C10A—C10—C101130.6 (3)
C4A—C4—H4119.2C10—C101—H10A109.5
C4—C4A—C11B119.6 (3)C10—C101—H10B109.5
C4—C4A—C5121.7 (3)H10A—C101—H10B109.5
C11B—C4A—C5118.7 (2)C10—C101—H10C109.5
C4A—C5—C6109.6 (2)H10A—C101—H10C109.5
C4A—C5—H5A109.8H10B—C101—H10C109.5
C6—C5—H5A109.8C7A—C10A—C11118.5 (2)
C4A—C5—H5B109.8C7A—C10A—C10105.0 (2)
C6—C5—H5B109.8C11—C10A—C10136.4 (3)
H5A—C5—H5B108.2C11A—C11—C10A116.8 (2)
C6A—C6—C5109.5 (2)C11A—C11—C111124.5 (2)
C6A—C6—H6A109.8C10A—C11—C111118.7 (2)
C5—C6—H6A109.8C116—C111—C112118.9 (3)
C6A—C6—H6B109.8C116—C111—C11120.9 (2)
C5—C6—H6B109.8C112—C111—C11120.2 (2)
H6A—C6—H6B108.2C113—C112—C111120.3 (2)
N7—C6A—C11A125.1 (2)C113—C112—H112119.9
N7—C6A—C6116.3 (2)C111—C112—H112119.9
C11A—C6A—C6118.5 (2)C114—C113—C112119.5 (3)
C6A—N7—C7A114.1 (2)C114—C113—H113120.3
N7—C7A—N8126.1 (2)C112—C113—H113120.3
N7—C7A—C10A126.7 (2)C115—C114—C113121.2 (3)
N8—C7A—C10A107.2 (2)C115—C114—Br14120.2 (2)
C7A—N8—N9110.2 (2)C113—C114—Br14118.6 (2)
C7A—N8—C81130.0 (2)C114—C115—C116119.0 (2)
N9—N8—C81119.8 (2)C114—C115—H115120.5
C86—C81—C82120.6 (3)C116—C115—H115120.5
C86—C81—N8120.2 (3)C115—C116—C111121.1 (3)
C82—C81—N8119.3 (3)C115—C116—H116119.5
C83—C82—C81119.3 (3)C111—C116—H116119.5
C83—C82—H82120.4C11—C11A—C6A118.7 (2)
C81—C82—H82120.4C11—C11A—C11B124.4 (2)
C84—C83—C82120.4 (3)C6A—C11A—C11B116.9 (2)
C84—C83—H83119.8C1—C11B—C4A117.9 (2)
C82—C83—H83119.8C1—C11B—C11A123.1 (2)
C85—C84—C83119.7 (3)C4A—C11B—C11A119.0 (2)
C85—C84—H84120.1
C11B—C1—C2—C30.7 (4)C101—C10—C10A—C7A178.8 (3)
C1—C2—C3—C42.3 (5)N9—C10—C10A—C11176.4 (3)
C2—C3—C4—C4A2.1 (5)C101—C10—C10A—C112.9 (5)
C3—C4—C4A—C11B1.2 (4)C7A—C10A—C11—C11A1.7 (4)
C3—C4—C4A—C5177.9 (3)C10—C10A—C11—C11A177.2 (3)
C4—C4A—C5—C6142.4 (3)C7A—C10A—C11—C111176.9 (2)
C11B—C4A—C5—C636.7 (3)C10—C10A—C11—C1111.4 (5)
C4A—C5—C6—C6A58.3 (3)C11A—C11—C111—C11667.7 (3)
C5—C6—C6A—N7140.1 (2)C10A—C11—C111—C116110.7 (3)
C5—C6—C6A—C11A41.0 (3)C11A—C11—C111—C112111.7 (3)
C11A—C6A—N7—C7A0.3 (4)C10A—C11—C111—C11269.8 (3)
C6—C6A—N7—C7A178.5 (2)C116—C111—C112—C1131.7 (4)
C6A—N7—C7A—N8178.0 (3)C11—C111—C112—C113177.8 (2)
C6A—N7—C7A—C10A0.9 (4)C111—C112—C113—C1140.3 (4)
N7—C7A—N8—N9176.9 (2)C112—C113—C114—C1152.3 (4)
C10A—C7A—N8—N90.7 (3)C112—C113—C114—Br14176.98 (19)
N7—C7A—N8—C810.2 (5)C113—C114—C115—C1162.4 (4)
C10A—C7A—N8—C81177.8 (3)Br14—C114—C115—C116176.94 (19)
C7A—N8—C81—C8627.9 (5)C114—C115—C116—C1110.4 (4)
N9—N8—C81—C86155.2 (3)C112—C111—C116—C1151.6 (4)
C7A—N8—C81—C82152.9 (3)C11—C111—C116—C115177.8 (2)
N9—N8—C81—C8224.0 (4)C10A—C11—C11A—C6A2.2 (4)
C86—C81—C82—C830.4 (4)C111—C11—C11A—C6A176.3 (2)
N8—C81—C82—C83179.6 (3)C10A—C11—C11A—C11B177.4 (2)
C81—C82—C83—C840.3 (4)C111—C11—C11A—C11B4.1 (4)
C82—C83—C84—C850.6 (5)N7—C6A—C11A—C111.2 (4)
C83—C84—C85—C861.1 (5)C6—C6A—C11A—C11180.0 (2)
C82—C81—C86—C850.9 (5)N7—C6A—C11A—C11B178.4 (2)
N8—C81—C86—C85180.0 (3)C6—C6A—C11A—C11B0.4 (4)
C84—C85—C86—C811.2 (6)C2—C1—C11B—C4A3.9 (4)
C7A—N8—N9—C100.4 (3)C2—C1—C11B—C11A176.0 (2)
C81—N8—N9—C10177.8 (2)C4—C4A—C11B—C14.1 (4)
N8—N9—C10—C10A0.1 (3)C5—C4A—C11B—C1175.1 (2)
N8—N9—C10—C101179.3 (2)C4—C4A—C11B—C11A175.8 (2)
N7—C7A—C10A—C110.1 (4)C5—C4A—C11B—C11A5.1 (4)
N8—C7A—C10A—C11177.5 (2)C11—C11A—C11B—C124.6 (4)
N7—C7A—C10A—C10176.9 (3)C6A—C11A—C11B—C1155.0 (2)
N8—C7A—C10A—C100.7 (3)C11—C11A—C11B—C4A155.3 (3)
N9—C10—C10A—C7A0.5 (3)C6A—C11A—C11B—C4A25.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C113—H113···Cg1i0.952.713.588 (3)154
C115—H115···Cg2ii0.952.813.589 (3)140
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSerrano, H., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. E61, o1058–o1060.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds