metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­carbonyl(3-carb­oxy­propyl)(η5-cyclo­penta­dienyl)­tungsten(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Pure and Applied Chemistry, Howard College, University of KwaZulu–Natal, Durban 4041, South Africa, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and cDepartment of Chemistry, University of Transkei, Private Bag X1, UNITRA, 5117 Umtata, South Africa
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 4 October 2004; accepted 8 October 2004; online 16 October 2004)

The bond lengths and angles in the title compound, [W(C5H5)(C4H7O2)(CO)3], are as expected for a mol­ecule of this kind. The presence of the carboxyl­ic acid group leads, however, to the creation of hydrogen-bonded dimers consisting of pairs of centrosymmetrically related mol­ecules.

Comment

The determination of the structure of the title compound, (I[link]), was undertaken as part of our ongoing study of the chemistry of heterodinuclear compounds (Friedrich et al., 2004[Friedrich, H. B., Howie, R. A., Laing, M. & Onani, M. O. (2004). J. Organomet. Chem. 689, 181-193.]). Fig. 1[link] is a drawing of the mol­ecule and selected bond lengths and angles are given in Table 1[link]. In both cases, the participation of the cyclo­penta­dienyl (Cp) group in the coordination of W is represented, purely for convenience, by the notional bond W—Cg1 where Cg1 is the centroid of the five-membered cyclo­penta­dienyl ring. On this basis, W is effectively five-coordinate in a distorted square-pyramidal environment with apical Cp. This arrangement creates the appearance of a stool with Cp as its seat and the three carbonyl groups and the carboxy ligand as its feet, four in number.[link]

[Scheme 1]

The bond lengths and angles given in Table 1[link] are unremarkable. The same is true for the W—CCp bonds in the range 2.312 (4)–2.376 (4) Å and the C—C bonds and C—C—C angles of Cp in the ranges 1.385 (7)–1.431 (7) Å and 107.3 (5)–108.4 (5)°, respectively. In the drawing of the unit-cell contents (Fig. 2[link]) a notable feature is the presence of the hydrogen-bonded dimer involving a pair of centrosymmetrically related mol­ecules. The hydrogen-bond parameters are given in Table 2[link]. No other intermolecular contacts of any significance, other than van der Waals interactions, are present in the structure. Similar hydrogen-bonded dimers are present in the structures of the analogous compounds [Cp(CO)3MoCH2COOH] and [Cp(CO)2FeCH2COOH] (Ariyaratne et al., 1969[Ariyaratne, J. K. P., Bierrum, A. M., Green, M. L. H., Ishaq, M. & Prout, C. K. (1969). J. Chem. Soc. A, pp. 1309-1321.]). Despite the limited quality of the refinements, these authors suggested that there was evidence to support some form of interaction between the metal (Mo or Fe) and the carboxyl­ic acid group. There is no evidence for such an interaction in (I[link]), which would be less likely in any case because of the length of the alkyl chain. There is perhaps a case for redetermining the earlier structures.

[Figure 1]
Figure 1
The mol­ecule of (I[link]). Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as small circles of arbitrary radii. The dashed bond joins W and the centroid of the Cp ring.
[Figure 2]
Figure 2
The unit-cell contents of (I[link]). Non-H atoms are shown as 50% probability displacement ellipsoids and H atoms as small circles of arbitrary radii. All H atoms other than those involved in hydrogen bonding (dashed lines) have been omitted. Selected atoms are labelled. [Symmetry codes: (i) x, ½ − y, ½ + z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, ½ + y, ½ − z.]

Experimental

Compound (I[link]) was obtained by hydro­lysis brought about by the presence of water in a di­chloro­methane/hexane solution of [Cp(CO)3W(CH2)3C(O)Mo(CO)(PMe3)(PPh3)Cp] (Onani, 2002[Onani, M. O. (2002). PhD thesis, University of KwaZulu-Natal, Durban, South Africa.]). Yellow crystals suitable for analysis were obtained after 5 d of slow diffusion of hexane into a di­chloro­methane solution of (I[link]) kept at 278 K.

Crystal data
  • [W(C5H5)(C4H7O2)(CO)3]

  • Mr = 420.07

  • Monoclinic, P21/c

  • a = 14.265 (2) Å

  • b = 8.1540 (11) Å

  • c = 11.229 (2) Å

  • β = 102.800 (15)°

  • V = 1273.7 (3) Å3

  • Z = 4

  • Dx = 2.191 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 11.8–12.2°

  • μ = 9.08 mm−1

  • T = 295 (2) K

  • Rhomb, yellow

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω–2θ scans

  • Absorption correction: refined from ΔF (DIFABS; Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.011, Tmax = 0.066

  • 5154 measured reflections

  • 2241 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 25.0°

  • h = −16 → 16

  • k = −1 → 9

  • l = −13 → 13

  • 3 standard reflections frequency: 120 min intensity decay: 7%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.08

  • 2241 reflections

  • 164 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0482P)2 + 0.7777P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.00 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

W1—Cg1 2.012 (2)
W1—C1 1.975 (5)
W1—C2 1.986 (5)
W1—C3 1.974 (5)
W1—C4 2.319 (4)
O1—C1 1.147 (6)
O2—C2 1.143 (6)
O3—C3 1.135 (5)
O4—C7 1.305 (5)
O5—C7 1.211 (5)
C4—C5 1.509 (6)
C5—C6 1.535 (5)
C6—C7 1.494 (6)
Cg1—W1—C1 129.02 (15)
Cg1—W1—C2 118.89 (18)
Cg1—W1—C3 123.62 (16)
Cg1—W1—C4 110.12 (13)
C1—W1—C2 75.58 (19)
C1—W1—C3 106.84 (18)
C1—W1—C4 75.15 (16)
C2—W1—C3 78.1 (2)
C2—W1—C4 130.95 (19)
C3—W1—C4 73.91 (17)
C1—W1—C4—C5 50.8 (3)
C2—W1—C4—C5 106.0 (4)
C3—W1—C4—C5 163.7 (4)
W1—C4—C5—C6 167.4 (3)
C4—C5—C6—O4 −67.5 (6)
C4—C5—C6—O5 −82.2 (3)
Note: Cg1 is the centroid of the cyclopentadienyl ring.

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.84 2.653 (5) 169
Symmetry code: (i) 1-x,1-y,1-z.

Presented here is a rerefinement, after suitable transformation of the unit-cell parameters and the atomic coordinates and reindexing of the intensity data, of a structure previously solved and fully refined in the space group P[\overline 1]. The need for the rerefinement was clearly indicated by a checkCIF level A alert and the form it should take was revealed by recourse to the ADDSYM routine of PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Close examination of a drawing of the content of the original, supposedly triclinic, unit cell fully confirmed the ADDSYM findings. Further support for the rerefinement reported here is the improvement in R [I > 2σ(I)] from 0.031 for the triclinic model to the value of 0.026 for the present refinement (with the number of refined parameters now half that of the triclinic refinement). In the final stages of the present refinement, H atoms were placed in calculated positions, with X—H = 0.82, 0.93 and 0.97 Å for hydroxyl, cyclo­penta­dienyl and methyl­ene H atoms, respectively, and refined using a riding model, with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C), as appropriate for the nature of X. The position of the hydroxyl group in terms of its rotation about the C—O bond was also refined. The highest residual electron-density peak is 0.99 Å from atom W1.The deepest residual electron-density hole lies 0.69 Å from atom W1.

Data collection: CAD-4/PC (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4/PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4/PC; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: CAD-4-PC (Enraf-Nonius, 1994); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Tricarbonyl(3-carboxypropyl)(η5-cyclopentadienyl)tungsten(II) top
Crystal data top
[W(C5H5)(C4H7O2)(CO)3]F(000) = 792
Mr = 420.07Dx = 2.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ybcCell parameters from 25 reflections
a = 14.265 (2) Åθ = 11.8–12.2°
b = 8.1540 (11) ŵ = 9.08 mm1
c = 11.229 (2) ÅT = 295 K
β = 102.800 (15)°Rhomb, yellow
V = 1273.7 (3) Å30.40 × 0.30 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2053 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω–2θ scansh = 1616
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker & Stuart, 1983)
k = 19
Tmin = 0.011, Tmax = 0.066l = 1313
5154 measured reflections3 standard reflections every 120 min
2241 independent reflections intensity decay: 7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.7777P]
where P = (Fo2 + 2Fc2)/3
2241 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 1.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Distance (1 entry) and angles (4 entries) involving Cg1 (the centroid of the cyclopentadienyl ring) have been entered by hand into the relevant sections of the cif for ease of reference.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

4.4564 (0.0323) x + 4.7000 (0.0174) y + 7.4911 (0.0205) z = 8.9230 (0.0227)

* -0.0042 (0.0029) C8 * 0.0026 (0.0030) C9 * 0.0001 (0.0031) C10 * -0.0027 (0.0032) C11 * 0.0043 (0.0030) C12 - 2.0105 (0.0021) W1 - 3.2724 (0.0062) C1 - 2.9105 (0.0073) C2 - 3.0909 (0.0066) C3

Rms deviation of fitted atoms = 0.0032

2.8996 (0.0447) x + 4.0968 (0.0144) y + 8.6965 (0.0214) z = 4.3963 (0.0356)

Angle to previous plane (with approximate e.s.d.) = 9.01 (0.38)

* 0.0000 (0.0000) C1 * 0.0000 (0.0000) C2 * 0.0000 (0.0000) C3 1.1472 (0.0028) W1 3.1471 (0.0060) C8 3.3253 (0.0063) C9 3.2498 (0.0064) C10 3.0270 (0.0066) C11 2.9704 (0.0066) C12 - 0.6372 (0.0067) O1 - 0.6798 (0.0093) O2 - 0.6125 (0.0071) O3

Rms deviation of fitted atoms = 0.0000

3.1651 (0.0224) x + 4.0974 (0.0075) y + 8.5980 (0.0115) z = 3.9634 (0.0183)

Angle to previous plane (with approximate e.s.d.) = 1.10 (0.31)

* 0.0000 (0.0000) O1 * 0.0000 (0.0000) O2 * 0.0000 (0.0000) O3

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms placed in calculated positions with X—H 0.82, 0.93 and 0.97 A for hydroxyl, cyclopentadienyl and methylene H, respectively, and refined with a riding model with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C) as appropriate for the nature of X. The position of the hydroxyl group in terms of its rotation about the C—O bond was also refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.800314 (12)0.48662 (2)0.141360 (15)0.03491 (11)
O10.8107 (2)0.1070 (5)0.1116 (3)0.0607 (9)
O20.9002 (3)0.4342 (6)0.0773 (4)0.0759 (11)
O30.6469 (3)0.6263 (5)0.0757 (3)0.0655 (9)
O40.4419 (2)0.3506 (5)0.3892 (3)0.0621 (9)
H40.43250.42210.43650.093*
O50.5900 (3)0.4493 (5)0.4377 (3)0.0567 (8)
C10.8043 (3)0.2463 (6)0.1213 (4)0.0394 (9)
C20.8645 (4)0.4546 (7)0.0031 (5)0.0523 (12)
C30.7026 (3)0.5712 (6)0.0022 (4)0.0465 (10)
C40.6532 (3)0.3944 (5)0.1705 (4)0.0408 (9)
H4A0.62020.48710.19660.049*
H4B0.61540.35960.09180.049*
C50.6527 (3)0.2565 (5)0.2599 (4)0.0439 (10)
H5A0.70030.27910.33430.053*
H5B0.67100.15550.22540.053*
C60.5543 (3)0.2328 (5)0.2916 (4)0.0471 (10)
H6A0.50500.23740.21670.057*
H6B0.55220.12430.32630.057*
C70.5312 (3)0.3564 (5)0.3790 (4)0.0425 (9)
C80.8027 (4)0.7247 (6)0.2584 (4)0.0564 (12)
H80.75390.80200.23780.068*
C90.8052 (3)0.5954 (6)0.3390 (4)0.0512 (11)
H90.75850.57150.38250.061*
C100.8902 (5)0.5065 (5)0.3438 (6)0.0542 (15)
H100.90950.41350.39070.065*
C110.9411 (3)0.5829 (7)0.2652 (5)0.0563 (12)
H110.99980.54880.25100.068*
C120.8885 (4)0.7185 (6)0.2124 (5)0.0584 (12)
H120.90590.79140.15740.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.03475 (17)0.03509 (14)0.03487 (16)0.00048 (5)0.00766 (11)0.00016 (5)
O10.063 (2)0.047 (2)0.072 (2)0.0105 (16)0.0141 (17)0.0033 (17)
O20.078 (3)0.096 (3)0.066 (2)0.004 (3)0.044 (2)0.008 (2)
O30.064 (2)0.071 (2)0.055 (2)0.0085 (19)0.0007 (17)0.0166 (18)
O40.0410 (18)0.081 (3)0.068 (2)0.0133 (17)0.0219 (16)0.0192 (19)
O50.0394 (19)0.072 (2)0.060 (2)0.0114 (18)0.0157 (17)0.016 (2)
C10.031 (2)0.040 (3)0.046 (2)0.0026 (16)0.0054 (17)0.0030 (17)
C20.052 (3)0.054 (3)0.053 (3)0.003 (2)0.017 (3)0.001 (2)
C30.053 (3)0.043 (2)0.045 (2)0.000 (2)0.014 (2)0.001 (2)
C40.035 (2)0.049 (2)0.038 (2)0.0004 (18)0.0072 (17)0.0001 (18)
C50.042 (2)0.041 (2)0.050 (2)0.0016 (18)0.014 (2)0.0023 (19)
C60.045 (2)0.043 (2)0.053 (2)0.0043 (19)0.012 (2)0.0041 (19)
C70.038 (2)0.048 (2)0.042 (2)0.0002 (19)0.0117 (18)0.0103 (19)
C80.063 (3)0.041 (2)0.061 (3)0.001 (2)0.004 (2)0.012 (2)
C90.054 (3)0.057 (3)0.043 (2)0.007 (2)0.011 (2)0.014 (2)
C100.059 (4)0.057 (3)0.042 (3)0.001 (2)0.001 (3)0.0020 (18)
C110.039 (2)0.070 (3)0.056 (3)0.010 (2)0.000 (2)0.008 (3)
C120.062 (3)0.046 (3)0.064 (3)0.022 (2)0.006 (2)0.004 (2)
Geometric parameters (Å, º) top
W1—Cg12.012 (2)C4—H4B0.9700
W1—C11.975 (5)C5—C61.535 (5)
W1—C21.986 (5)C5—H5A0.9700
W1—C31.974 (5)C5—H5B0.9700
W1—C112.312 (4)C6—C71.494 (6)
W1—C122.313 (4)C6—H6A0.9700
W1—C42.319 (4)C6—H6B0.9700
W1—C82.340 (4)C8—C91.385 (7)
W1—C102.355 (6)C8—C121.431 (7)
W1—C92.376 (4)C8—H80.9300
O1—C11.147 (6)C9—C101.403 (8)
O2—C21.143 (6)C9—H90.9300
O3—C31.135 (5)C10—C111.406 (8)
O4—C71.305 (5)C10—H100.9300
O4—H40.8200C11—C121.392 (7)
O5—C71.211 (5)C11—H110.9300
C4—C51.509 (6)C12—H120.9300
C4—H4A0.9700
Cg1—W1—C1129.02 (15)W1—C4—H4B107.7
Cg1—W1—C2118.89 (18)H4A—C4—H4B107.1
Cg1—W1—C3123.62 (16)C4—C5—C6112.8 (3)
Cg1—W1—C4110.12 (13)C4—C5—H5A109.0
C1—W1—C275.58 (19)C6—C5—H5A109.0
C1—W1—C3106.84 (18)C4—C5—H5B109.0
C1—W1—C475.15 (16)C6—C5—H5B109.0
C2—W1—C378.1 (2)H5A—C5—H5B107.8
C2—W1—C4130.95 (19)C7—C6—C5114.5 (4)
C3—W1—C473.91 (17)C7—C6—H6A108.6
C3—W1—C11136.4 (2)C5—C6—H6A108.6
C1—W1—C11111.26 (19)C7—C6—H6B108.6
C2—W1—C1191.5 (2)C5—C6—H6B108.6
C3—W1—C12102.8 (2)H6A—C6—H6B107.6
C1—W1—C12145.43 (17)O5—C7—O4123.2 (4)
C2—W1—C1293.8 (2)O5—C7—C6123.5 (4)
C11—W1—C1235.04 (19)O4—C7—C6113.3 (4)
C11—W1—C4135.87 (17)C9—C8—C12108.0 (5)
C12—W1—C4131.05 (18)C9—C8—W174.4 (3)
C3—W1—C894.28 (18)C12—C8—W171.1 (3)
C1—W1—C8152.86 (17)C9—C8—H8126.0
C2—W1—C8126.6 (2)C12—C8—H8126.0
C11—W1—C858.51 (19)W1—C8—H8120.4
C12—W1—C835.81 (18)C8—C9—C10108.3 (5)
C4—W1—C895.24 (17)C8—C9—W171.5 (3)
C3—W1—C10151.43 (19)C10—C9—W171.9 (3)
C1—W1—C1098.92 (16)C8—C9—H9125.8
C2—W1—C10121.1 (2)C10—C9—H9125.8
C11—W1—C1035.1 (2)W1—C9—H9122.4
C12—W1—C1058.17 (18)C9—C10—C11108.0 (5)
C4—W1—C10101.69 (19)C9—C10—W173.6 (3)
C8—W1—C1057.57 (17)C11—C10—W170.8 (3)
C3—W1—C9118.59 (18)C9—C10—H10126.0
C1—W1—C9118.74 (17)C11—C10—H10126.0
C2—W1—C9148.82 (19)W1—C10—H10121.3
C11—W1—C957.98 (17)C12—C11—C10108.4 (5)
C12—W1—C958.12 (18)C12—C11—W172.5 (3)
C4—W1—C980.20 (16)C10—C11—W174.1 (3)
C8—W1—C934.14 (17)C12—C11—H11125.8
C10—W1—C934.51 (19)C10—C11—H11125.8
C7—O4—H4109.5W1—C11—H11119.4
O1—C1—W1177.1 (4)C11—C12—C8107.3 (5)
O2—C2—W1178.8 (5)C11—C12—W172.5 (3)
O3—C3—W1177.1 (4)C8—C12—W173.1 (3)
C5—C4—W1118.3 (3)C11—C12—H12126.4
C5—C4—H4A107.7C8—C12—H12126.4
W1—C4—H4A107.7W1—C12—H12119.9
C5—C4—H4B107.7
C1—W1—C4—C550.8 (3)W1—C4—C5—C6167.4 (3)
C2—W1—C4—C5106.0 (4)C4—C5—C6—O467.5 (6)
C3—W1—C4—C5163.7 (4)C4—C5—C6—O582.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.842.653 (5)169
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank O. Munro for collecting the intensity data. We further thank the DAAD (Germany), NRF (South Africa) and the University of KwaZulu–Natal for support.

References

First citationAriyaratne, J. K. P., Bierrum, A. M., Green, M. L. H., Ishaq, M. & Prout, C. K. (1969). J. Chem. Soc. A, pp. 1309–1321.  CrossRef Google Scholar
First citationEnraf–Nonius (1994). CAD-4/PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFriedrich, H. B., Howie, R. A., Laing, M. & Onani, M. O. (2004). J. Organomet. Chem. 689, 181–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationOnani, M. O. (2002). PhD thesis, University of KwaZulu-Natal, Durban, South Africa.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds