Download citation
Download citation
link to html
Under the strain of the quasi-planar β-lactam moiety, the rigid cyclo­hexane ring in the title compound, C7H11NO, can assume either a flexible boat form (77%) or a flexible half-chair form (23%). These two forms can be present simultaneously. The racemic crystals, isostructural with the cis-6-aza­bi­cyclo­[3.2.0]­heptan-7-one homologue [Reck et al. (1990). Acta Cryst. C46, 720–722], are characterized by N—H...O=C hydrogen bonds that are formed along the screw axes of the similar monoclinic unit cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803027958/lh6150sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803027958/lh61502sup2.hkl
Contains datablock 2

CCDC reference: 234855

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • R factor = 0.052
  • wR factor = 0.185
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT301_ALERT_3_B Main Residue Disorder ......................... 31.00 Perc.
Author Response: see _refine_special_details

Alert level C PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... C3B PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 16
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and RPluto in CSD (Allen, 2002); software used to prepare material for publication: SHELXL97.

cis-7-azabicyclo[4.2.0]octan-8-one top
Crystal data top
C7H11NOF(000) = 272
Mr = 125.17Dx = 1.200 Mg m3
Monoclinic, P21/cMelting point = 329–330 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54180 Å
a = 11.333 (1) ÅCell parameters from 25 reflections
b = 6.474 (1) Åθ = 29.3–32.3°
c = 10.181 (1) ŵ = 0.64 mm1
β = 112.00 (1)°T = 293 K
V = 692.59 (14) Å3Prism, colourless
Z = 40.50 × 0.35 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1256 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.010
Graphite monochromatorθmax = 75.6°, θmin = 4.2°
ωθ scansh = 147
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.766, Tmax = 0.822l = 1212
1554 measured reflections3 standard reflections every 60 min
1433 independent reflections intensity decay: 8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052Riding
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.101P)2 + 0.05P]
where P = (Fo2 + 2Fc2)/3
S = 1.30(Δ/σ)max < 0.001
1433 reflectionsΔρmax = 0.23 e Å3
108 parametersΔρmin = 0.15 e Å3
188 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. # start RESPONSE (PLAT301) "Normal" structure refinement (Npar = 82) finished at R1 = 0.083, wR2 = 0.354, S = 3.2. Introducing 2–2 atomic positions for C3, C4, C5 and C6 we got the final model (Npar = 108) of the disordered molecule. # end RESPONSE PLAT301)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.29462 (14)0.4259 (2)0.41635 (14)0.0589 (4)
H1A0.32190.51100.35320.077*0.769 (7)
H1B0.32340.51030.35420.077*0.231 (7)
C2A0.1508 (3)0.4204 (8)0.3717 (6)0.0667 (10)0.769 (7)
H2A10.12010.55900.37640.087*0.769 (7)
H2A20.11280.37380.27430.087*0.769 (7)
C3A0.1094 (3)0.2785 (4)0.4650 (4)0.0745 (7)0.769 (7)
H3A10.01750.26610.42500.097*0.769 (7)
H3A20.13310.34060.55800.097*0.769 (7)
C4A0.1676 (3)0.0642 (5)0.4810 (4)0.0745 (7)0.769 (7)
H4A10.09880.03420.44070.097*0.769 (7)
H4A20.20720.03420.58140.097*0.769 (7)
C5A0.2654 (4)0.0250 (7)0.4148 (6)0.0622 (8)0.769 (7)
H5A10.31340.09880.45550.081*0.769 (7)
H5A20.22240.00320.31380.081*0.769 (7)
C2B0.1574 (9)0.470 (2)0.394 (3)0.072 (4)0.231 (7)
H2B10.15400.53910.47740.094*0.231 (7)
H2B20.12070.56160.31390.094*0.231 (7)
C3B0.0810 (9)0.2735 (17)0.3687 (19)0.103 (3)0.231 (7)
H3B10.06910.22200.27510.134*0.231 (7)
H3B20.00250.30510.36930.134*0.231 (7)
C4B0.1404 (11)0.104 (3)0.476 (2)0.103 (3)0.231 (7)
H4B10.08410.01370.46120.134*0.231 (7)
H4B20.16410.15390.57230.134*0.231 (7)
C5B0.2567 (16)0.053 (2)0.442 (2)0.084 (5)0.231 (7)
H5B10.30200.05460.50730.109*0.231 (7)
H5B20.22460.00970.34820.109*0.231 (7)
C60.35598 (15)0.2074 (3)0.44054 (16)0.0610 (5)
H6A0.41350.19070.38950.079*0.769 (7)
H6B0.40710.17130.38470.079*0.231 (7)
N70.42568 (13)0.2716 (2)0.58807 (14)0.0661 (4)
H70.47990.20870.65980.086*
C80.37583 (14)0.4609 (2)0.57222 (15)0.0589 (4)
O10.38991 (13)0.60397 (19)0.65522 (12)0.0788 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0662 (9)0.0549 (8)0.0517 (8)0.0100 (6)0.0175 (6)0.0072 (6)
C2A0.0619 (16)0.059 (2)0.0662 (19)0.0025 (11)0.0095 (12)0.0031 (18)
C3A0.0711 (12)0.0739 (13)0.0868 (14)0.0113 (8)0.0392 (11)0.0019 (9)
C4A0.0711 (12)0.0739 (13)0.0868 (14)0.0113 (8)0.0392 (11)0.0019 (9)
C5A0.0791 (16)0.0479 (17)0.065 (2)0.0039 (12)0.0328 (12)0.0103 (14)
C2B0.067 (5)0.049 (6)0.082 (9)0.009 (4)0.007 (4)0.009 (5)
C3B0.064 (4)0.094 (6)0.149 (8)0.009 (3)0.038 (4)0.019 (5)
C4B0.064 (4)0.094 (6)0.149 (8)0.009 (3)0.038 (4)0.019 (5)
C5B0.140 (11)0.044 (5)0.074 (8)0.008 (5)0.047 (6)0.022 (4)
C60.0633 (9)0.0638 (9)0.0589 (8)0.0011 (6)0.0263 (7)0.0006 (6)
N70.0622 (8)0.0669 (8)0.0588 (8)0.0041 (6)0.0107 (6)0.0050 (6)
C80.0591 (8)0.0573 (8)0.0544 (8)0.0117 (6)0.0144 (6)0.0031 (6)
O10.0929 (9)0.0622 (8)0.0672 (7)0.0139 (6)0.0137 (6)0.0088 (5)
Geometric parameters (Å, º) top
C1—C2B1.513 (8)C2B—C3B1.506 (8)
C1—C2A1.519 (4)C2B—H2B10.9700
C1—C81.524 (2)C2B—H2B20.9700
C1—C61.555 (2)C3B—C4B1.514 (8)
C1—H1A0.9800C3B—H3B10.9700
C1—H1B0.9800C3B—H3B20.9700
C2A—C3A1.516 (5)C4B—C5B1.521 (8)
C2A—H2A10.9700C4B—H4B10.9700
C2A—H2A20.9700C4B—H4B20.9700
C3A—C4A1.519 (4)C5B—C61.507 (12)
C3A—H3A10.9700C5B—H5B10.9700
C3A—H3A20.9700C5B—H5B20.9700
C4A—C5A1.519 (4)C6—N71.4710 (19)
C4A—H4A10.9700C6—H6A0.9800
C4A—H4A20.9700C6—H6B0.9800
C5A—C61.521 (4)N7—C81.334 (2)
C5A—H5A10.9700N7—H70.8600
C5A—H5A20.9700C8—O11.2232 (19)
C2B—C1—C8108.2 (9)C3B—C2B—H2B2109.4
C2A—C1—C8118.5 (2)C1—C2B—H2B2109.4
C2B—C1—C6124.7 (5)H2B1—C2B—H2B2108.0
C2A—C1—C6113.1 (2)C2B—C3B—C4B114.5 (15)
C8—C1—C684.87 (11)C2B—C3B—H3B1108.6
C2A—C1—H1A112.5C4B—C3B—H3B1108.6
C8—C1—H1A112.5C2B—C3B—H3B2108.6
C6—C1—H1A112.5C4B—C3B—H3B2108.6
C2B—C1—H1B111.8H3B1—C3B—H3B2107.6
C8—C1—H1B111.8C3B—C4B—C5B100.5 (14)
C6—C1—H1B111.8C3B—C4B—H4B1111.7
C3A—C2A—C1112.1 (3)C5B—C4B—H4B1111.7
C3A—C2A—H2A1109.2C3B—C4B—H4B2111.7
C1—C2A—H2A1109.2C5B—C4B—H4B2111.7
C3A—C2A—H2A2109.2H4B1—C4B—H4B2109.4
C1—C2A—H2A2109.2C6—C5B—C4B124.8 (11)
H2A1—C2A—H2A2107.9C6—C5B—H5B1106.1
C2A—C3A—C4A113.4 (3)C4B—C5B—H5B1106.1
C2A—C3A—H3A1108.9C6—C5B—H5B2106.1
C4A—C3A—H3A1108.9C4B—C5B—H5B2106.1
C2A—C3A—H3A2108.9H5B1—C5B—H5B2106.3
C4A—C3A—H3A2108.9N7—C6—C5B107.3 (8)
H3A1—C3A—H3A2107.7N7—C6—C5A117.7 (2)
C3A—C4A—C5A117.7 (3)N7—C6—C186.67 (11)
C3A—C4A—H4A1107.9C5B—C6—C1108.2 (7)
C5A—C4A—H4A1107.9C5A—C6—C1116.5 (2)
C3A—C4A—H4A2107.9N7—C6—H6A111.3
C5A—C4A—H4A2107.9C5A—C6—H6A111.3
H4A1—C4A—H4A2107.2C1—C6—H6A111.3
C6—C5A—C4A110.6 (3)N7—C6—H6B116.8
C6—C5A—H5A1109.5C5B—C6—H6B116.8
C4A—C5A—H5A1109.5C1—C6—H6B116.8
C6—C5A—H5A2109.5C8—N7—C695.45 (12)
C4A—C5A—H5A2109.5C8—N7—H7132.3
H5A1—C5A—H5A2108.1C6—N7—H7132.3
C3B—C2B—C1111.0 (8)O1—C8—N7132.26 (14)
C3B—C2B—H2B1109.4O1—C8—C1134.71 (15)
C1—C2B—H2B1109.4N7—C8—C193.01 (12)
C8—C1—C2A—C3A49.1 (4)C8—C1—C6—N70.16 (10)
C6—C1—C2A—C3A47.8 (4)C2B—C1—C6—C5B1.3 (14)
C1—C2A—C3A—C4A51.1 (5)C8—C1—C6—C5B107.3 (9)
C2A—C3A—C4A—C5A5.1 (5)C2A—C1—C6—C5A0.8 (3)
C3A—C4A—C5A—C641.9 (5)C8—C1—C6—C5A119.6 (2)
C8—C1—C2B—C3B108.3 (16)C5B—C6—N7—C8108.3 (7)
C6—C1—C2B—C3B12 (2)C5A—C6—N7—C8118.5 (2)
C1—C2B—C3B—C4B50 (2)C1—C6—N7—C80.18 (12)
C2B—C3B—C4B—C5B67 (2)C6—N7—C8—O1178.67 (17)
C3B—C4B—C5B—C656 (2)C6—N7—C8—C10.19 (12)
C4B—C5B—C6—N769 (2)C2B—C1—C8—O153.7 (7)
C4B—C5B—C6—C124 (2)C2A—C1—C8—O165.1 (3)
C4A—C5A—C6—N756.2 (5)C6—C1—C8—O1178.60 (18)
C4A—C5A—C6—C144.6 (5)C2B—C1—C8—N7124.7 (6)
C2B—C1—C6—N7108.4 (11)C2A—C1—C8—N7113.3 (3)
C2A—C1—C6—N7118.6 (3)C6—C1—C8—N70.18 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O1i0.862.032.8781 (17)171
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds