Download citation
Download citation
link to html
The title compound, [Au(C10H9N4O2S)(C18H15As)], is isostructural with the tri­phenyl­phosphine analog [Lang et al. (2003). Acta Cryst. C59, m95–m96]. The geometry is nearly linear at the AuI center, with Au—N = 2.0552 (15) Å, Au—As = 2.3266 (6) Å and N—Au—As = 171.56 (4)°. The mol­ecules are joined by intermolecular N—H...O bonds between the amine and sulfonyl groups of the sulfadiazine ligand. The slightly shorter Au—N distance in the title compound compared to its tri­phenyl­phosphine analog is due to packing effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017008/lh6090sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017008/lh6090Isup2.hkl
Contains datablock I

CCDC reference: 222791

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.018
  • wR factor = 0.043
  • Data-to-parameter ratio = 28.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT028_ALERT_3_B _diffrn_measured_fraction_theta_max Low ..... 0.96
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.632 1.000 Tmin and Tmax expected: 0.200 0.350 RR = 1.107 Please check that your absorption correction is appropriate. PLAT062_ALERT_4_C Rescale T(min) & T(max) by ................... 0.35 PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3A ?
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.350 Tmax scaled 0.350 Tmin scaled 0.221
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Recently, we reported the preparation and structural characterization of [4-amino-N-(pyrimidin-2-yl)benzenesulfonamido-κN](tripheylphosphine- κP)gold(I), also known as (sulfadiazinato)(triphenylphosphine)gold(I) (Lang et al., 2003). In this paper, we report the isostructural title compound, (I), also called (sulfadizinato)(triphenylarsine)gold(I). Compound (I) was obtained by the reaction of chloro(triphenylarsine)gold(I), sulfadiazine and triethylamine in methanol; recrystallization from dichloromethane and petroleum ether afforded single crystals. The asymmetric unit contains a complete molecule (Fig. 1) of the compound. Select bond distances and angles are given in Table 1.

Compound (I) is almost identical to its triphenylphosphine isostructual counterpart. The Au atom shows weak interactions with atoms O1 and N16 of the sulfadiazinate ligand [distances 2.9926 (13) and 3.0863 (17) Å respectively]. The sulfadiazinate N atom bonded to Au shows trigonal planar geometry; the sum of the angles about atom N1 is 360.4 (5)° The sulfonamide group is approximately tetrahedral. The two ring systems in the sulfadiazinate ligand of (I) can be considered as being in a cisoid conformation, since the C1—S—N1—C11 torsion angle is approximately 90°. Atom O2 of the sulfonamide group participates in intermolecular hydrogen bonding to the amino group of a neighbouring molecule to form continuous chains along the c axis (Table 2 and Fig. 2).

The compound (I) has a slightly shorter N—Au distance than that seen in (sulfadiazinato)(triphenylphosphine)gold(I), which has a N—Au distance of 2.0707 (18) Å. As the triphenylarsine ligand is slightly more Lewis basic relative to triphenylphosphine ligand (Aroney et al., 1994), the trans influence predicts a longer Au—N bond length for the former compared to the latter (Jones & Williams, 1977). The shorter distance in this case is likely caused by the packing forces due to the slightly larger triphenylarsine ligand. This is also shown by the closer intermolecular hydrogen bond interaction between an H atom of the amine group and an O atom of the nitro group in the sufadiazinate ligand in (I). The H···O distance is 0.103 Å shorter in (I) than in the triphenylphosphine analog. The bond distances within the sulfadiazinate ligands of the two complexes are equivalent.

Experimental top

To a solution of chloro(tripenylarsine)gold(I) (0.1 mmol) in methanol (5 ml), a solution of sulfadiazine (0.1 mmol) in methanol (5 ml) and triethylamine (0.1 mmol) were added. The resulting mixture was stirred under reflux for 2 h and them cooled to room temperature, after which the precipitated solid was separated by filtration (yield 80%, based on sulfadiazine). Recrystallization from dichloromethane and petroleum ether (1:1 v/v) afforded crystals of the pure product (I), after two weeks. Elemental Analysis (calculated/found): C 44.69/43.75, H 3.21/3.22, N 7.45/7.16%.

Refinement top

All H atoms were placed in calculated positions with C—H distances of 0.95 Å and N—H distances of 0.88 Å. They were included in the refinement in riding-motion approximation, with Uiso = 1.2Ueq of the carrier atom. The largest peak in the final difference Fourier map was located 0.75 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of molecule of the molecule of (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I), showing the hydrogen bonding with dashed lines. Colour codes: gold Au, pink As, yellow S, red O, blue N, black C and grey H.
triphenylarsine sulfadiazine gold(I) top
Crystal data top
[Au(C10H9N4O2S)(C18H15As)]F(000) = 1456
Mr = 752.46Dx = 1.911 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1705 reflections
a = 12.0550 (18) Åθ = 2.7–26.9°
b = 13.360 (2) ŵ = 6.99 mm1
c = 16.774 (3) ÅT = 173 K
β = 104.46 (3)°Block, colorless
V = 2616.0 (8) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
8101 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 33.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1817
Tmin = 0.221, Tmax = 0.350k = 2020
35747 measured reflectionsl = 2325
9482 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0236P)2]
where P = (Fo2 + 2Fc2)/3
9482 reflections(Δ/σ)max = 0.004
334 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Au(C10H9N4O2S)(C18H15As)]V = 2616.0 (8) Å3
Mr = 752.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0550 (18) ŵ = 6.99 mm1
b = 13.360 (2) ÅT = 173 K
c = 16.774 (3) Å0.30 × 0.20 × 0.15 mm
β = 104.46 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8101 reflections with I > 2σ(I)
Tmin = 0.221, Tmax = 0.350Rint = 0.025
35747 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.00Δρmax = 1.03 e Å3
9482 reflectionsΔρmin = 0.59 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.337416 (5)0.340050 (5)0.807518 (4)0.01926 (2)
S0.07242 (4)0.31367 (3)0.77646 (3)0.02052 (8)
As0.479100 (14)0.433631 (13)0.770011 (10)0.01763 (4)
O20.01256 (11)0.29864 (11)0.82241 (8)0.0293 (3)
N10.19560 (12)0.26847 (11)0.82703 (9)0.0210 (3)
O10.09607 (12)0.41508 (9)0.75709 (8)0.0281 (3)
C20.01794 (15)0.15342 (13)0.67994 (11)0.0220 (3)
H20.02510.12180.72920.026*
C40.04666 (15)0.15075 (13)0.53152 (11)0.0211 (3)
C210.59015 (14)0.49703 (13)0.85810 (11)0.0207 (3)
N160.31026 (15)0.17054 (12)0.92621 (11)0.0304 (4)
C430.25141 (18)0.65976 (14)0.66225 (13)0.0307 (4)
H430.17820.68240.66590.037*
C310.56449 (16)0.36201 (13)0.70579 (11)0.0213 (3)
C410.40870 (14)0.54386 (12)0.70156 (10)0.0197 (3)
C460.46496 (16)0.59301 (14)0.65025 (11)0.0239 (4)
H460.53770.57010.64570.029*
C60.03713 (15)0.29593 (13)0.60984 (11)0.0222 (3)
H60.06940.36100.61180.027*
C110.20566 (16)0.18337 (13)0.87590 (11)0.0218 (3)
N120.11556 (15)0.12289 (13)0.86924 (11)0.0336 (4)
C450.41475 (18)0.67567 (14)0.60561 (13)0.0290 (4)
H450.45310.70940.57040.035*
C230.67389 (17)0.51606 (16)1.00306 (12)0.0299 (4)
H230.67900.49611.05820.036*
C250.73574 (17)0.62156 (15)0.90710 (14)0.0323 (4)
H250.78370.67360.89630.039*
C330.7332 (2)0.32307 (19)0.66034 (16)0.0427 (6)
H330.81160.33480.66260.051*
C10.02853 (14)0.24915 (13)0.68281 (10)0.0193 (3)
C50.00087 (15)0.24808 (14)0.53535 (11)0.0234 (3)
H50.00380.28100.48610.028*
C30.05363 (15)0.10442 (14)0.60537 (11)0.0227 (3)
H30.08330.03840.60400.027*
C220.59805 (15)0.46807 (14)0.93877 (11)0.0235 (3)
H220.55130.41520.94990.028*
C260.65931 (16)0.57435 (14)0.84223 (12)0.0267 (4)
H260.65420.59470.78720.032*
C340.6751 (2)0.25121 (18)0.60904 (14)0.0412 (5)
H340.71300.21310.57600.049*
C150.3221 (2)0.09159 (17)0.97625 (14)0.0385 (5)
H150.39500.07961.01270.046*
N30.08415 (16)0.10332 (13)0.45775 (10)0.0315 (4)
H3A0.11330.04270.45580.038*
H3B0.07920.13330.41210.038*
C320.67941 (17)0.37986 (19)0.70983 (14)0.0349 (5)
H320.72060.42980.74560.042*
C420.30106 (16)0.57658 (14)0.70741 (12)0.0258 (4)
H420.26200.54240.74190.031*
C240.74211 (17)0.59285 (15)0.98731 (13)0.0312 (4)
H240.79350.62601.03160.037*
C440.30843 (18)0.70929 (15)0.61223 (13)0.0313 (4)
H440.27480.76660.58220.038*
C130.1322 (2)0.04505 (17)0.92152 (16)0.0441 (6)
H130.07020.00050.91950.053*
C360.50640 (19)0.28897 (16)0.65317 (13)0.0340 (5)
H360.42780.27670.65000.041*
C350.5618 (2)0.23378 (18)0.60514 (15)0.0453 (6)
H350.52130.18360.56930.054*
C140.2341 (2)0.02663 (18)0.97773 (15)0.0449 (6)
H140.24340.02771.01540.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01641 (3)0.02138 (3)0.02015 (3)0.00411 (2)0.00486 (2)0.00044 (2)
S0.01774 (18)0.02129 (19)0.0234 (2)0.00154 (15)0.00670 (16)0.00359 (16)
As0.01466 (7)0.01959 (8)0.01850 (8)0.00208 (6)0.00387 (6)0.00051 (6)
O20.0230 (6)0.0386 (8)0.0297 (7)0.0041 (6)0.0132 (6)0.0092 (6)
N10.0178 (7)0.0227 (7)0.0222 (7)0.0040 (5)0.0042 (6)0.0007 (6)
O10.0294 (7)0.0176 (6)0.0356 (8)0.0000 (5)0.0049 (6)0.0029 (5)
C20.0217 (8)0.0246 (8)0.0204 (8)0.0018 (7)0.0063 (7)0.0010 (7)
C40.0194 (8)0.0253 (8)0.0192 (8)0.0025 (6)0.0058 (6)0.0006 (6)
C210.0166 (7)0.0220 (8)0.0221 (8)0.0008 (6)0.0027 (6)0.0002 (6)
N160.0251 (8)0.0326 (9)0.0321 (9)0.0003 (7)0.0049 (7)0.0061 (7)
C430.0280 (10)0.0292 (10)0.0337 (11)0.0086 (8)0.0055 (8)0.0019 (8)
C310.0216 (8)0.0212 (8)0.0220 (8)0.0032 (6)0.0073 (7)0.0044 (6)
C410.0192 (8)0.0195 (8)0.0189 (8)0.0002 (6)0.0021 (6)0.0025 (6)
C460.0211 (8)0.0276 (9)0.0219 (8)0.0013 (7)0.0033 (7)0.0021 (7)
C60.0207 (8)0.0191 (8)0.0277 (9)0.0021 (6)0.0079 (7)0.0018 (7)
C110.0238 (8)0.0219 (8)0.0207 (8)0.0036 (6)0.0075 (7)0.0012 (6)
N120.0317 (9)0.0288 (8)0.0380 (10)0.0120 (7)0.0045 (8)0.0058 (7)
C450.0308 (10)0.0254 (9)0.0287 (10)0.0036 (7)0.0035 (8)0.0042 (7)
C230.0284 (9)0.0391 (11)0.0210 (9)0.0060 (8)0.0038 (7)0.0043 (8)
C250.0247 (9)0.0255 (9)0.0420 (12)0.0055 (8)0.0008 (8)0.0015 (9)
C330.0276 (11)0.0615 (16)0.0426 (13)0.0165 (10)0.0157 (10)0.0089 (11)
C10.0161 (7)0.0218 (8)0.0200 (8)0.0018 (6)0.0047 (6)0.0006 (6)
C50.0240 (8)0.0253 (8)0.0218 (8)0.0038 (7)0.0072 (7)0.0051 (7)
C30.0237 (8)0.0221 (8)0.0220 (8)0.0036 (7)0.0054 (7)0.0013 (7)
C220.0222 (8)0.0266 (9)0.0221 (9)0.0004 (7)0.0061 (7)0.0009 (7)
C260.0221 (8)0.0283 (9)0.0273 (9)0.0060 (7)0.0014 (7)0.0040 (7)
C340.0555 (15)0.0407 (12)0.0339 (12)0.0200 (11)0.0234 (11)0.0057 (10)
C150.0389 (12)0.0369 (11)0.0372 (12)0.0055 (9)0.0045 (9)0.0102 (9)
N30.0463 (10)0.0295 (8)0.0190 (8)0.0092 (7)0.0089 (7)0.0013 (6)
C320.0204 (9)0.0487 (13)0.0364 (11)0.0025 (9)0.0085 (8)0.0026 (10)
C420.0228 (9)0.0288 (9)0.0270 (9)0.0025 (7)0.0082 (7)0.0006 (7)
C240.0248 (9)0.0304 (10)0.0324 (10)0.0035 (8)0.0040 (8)0.0111 (8)
C440.0355 (11)0.0222 (9)0.0322 (10)0.0042 (8)0.0012 (8)0.0013 (8)
C130.0488 (14)0.0307 (11)0.0532 (15)0.0120 (10)0.0139 (12)0.0097 (10)
C360.0372 (11)0.0317 (10)0.0375 (12)0.0063 (9)0.0176 (9)0.0099 (9)
C350.0628 (16)0.0374 (12)0.0435 (13)0.0036 (11)0.0280 (12)0.0117 (10)
C140.0554 (15)0.0335 (11)0.0457 (14)0.0031 (11)0.0127 (12)0.0166 (10)
Geometric parameters (Å, º) top
Au—N12.0552 (15)C6—H60.9500
Au—As2.3266 (6)C11—N121.336 (2)
Au—N163.0863 (19)N12—C131.343 (3)
Au—O12.9926 (16)C45—C441.388 (3)
Au—O24.3238 (15)C45—H450.9500
S—O11.4384 (13)C23—C241.381 (3)
S—O21.4417 (14)C23—C221.385 (3)
S—N11.6309 (16)C23—H230.9500
S—C11.7538 (18)C25—C241.383 (3)
As—C311.9209 (19)C25—C261.389 (3)
As—C211.9248 (19)C25—H250.9500
As—C411.9288 (18)C33—C341.361 (4)
N1—C111.389 (2)C33—C321.398 (3)
C2—C31.382 (3)C33—H330.9500
C2—C11.392 (2)C5—H50.9500
C2—H20.9500C3—H30.9500
C4—N31.363 (2)C22—H220.9500
C4—C31.406 (2)C26—H260.9500
C4—C51.408 (2)C34—C351.371 (4)
C21—C221.388 (3)C34—H340.9500
C21—C261.394 (2)C15—C141.376 (3)
N16—C151.333 (3)C15—H150.9500
N16—C111.342 (2)N3—H3A0.8800
C43—C441.379 (3)N3—H3B0.8800
C43—C421.393 (3)C32—H320.9500
C43—H430.9500C42—H420.9500
C31—C361.383 (3)C24—H240.9500
C31—C321.391 (3)C44—H440.9500
C41—C461.387 (3)C13—C141.371 (4)
C41—C421.396 (2)C13—H130.9500
C46—C451.386 (3)C36—C351.381 (3)
C46—H460.9500C36—H360.9500
C6—C51.376 (3)C35—H350.9500
C6—C11.401 (2)C14—H140.9500
N1—Au—As171.56 (4)C44—C45—H45119.9
N1—Au—O154.00 (5)C24—C23—C22120.26 (19)
As—Au—O1118.11 (3)C24—C23—H23119.9
N1—Au—N1647.88 (6)C22—C23—H23119.9
As—Au—N16140.54 (4)C24—C25—C26120.07 (19)
O1—Au—N16100.13 (5)C24—C25—H25120.0
N1—Au—O221.37 (5)C26—C25—H25120.0
As—Au—O2151.31 (2)C34—C33—C32121.1 (2)
O1—Au—O233.43 (3)C34—C33—H33119.4
N16—Au—O266.83 (5)C32—C33—H33119.4
O1—S—O2117.35 (9)C2—C1—C6119.77 (16)
O1—S—N1105.08 (8)C2—C1—S120.74 (14)
O2—S—N1110.28 (8)C6—C1—S119.45 (13)
O1—S—C1107.04 (9)C6—C5—C4120.55 (17)
O2—S—C1108.35 (8)C6—C5—H5119.7
N1—S—C1108.41 (8)C4—C5—H5119.7
C31—As—C21106.40 (8)C2—C3—C4121.02 (17)
C31—As—C41105.32 (8)C2—C3—H3119.5
C21—As—C41103.84 (8)C4—C3—H3119.5
C31—As—Au114.61 (6)C23—C22—C21120.10 (18)
C21—As—Au116.46 (6)C23—C22—H22120.0
C41—As—Au109.13 (6)C21—C22—H22120.0
C11—N1—S122.95 (12)C25—C26—C21119.87 (18)
C11—N1—Au121.43 (12)C25—C26—H26120.1
S—N1—Au115.49 (8)C21—C26—H26120.1
S—O1—Au81.62 (6)C33—C34—C35120.0 (2)
C3—C2—C1119.87 (17)C33—C34—H34120.0
C3—C2—H2120.1C35—C34—H34120.0
C1—C2—H2120.1N16—C15—C14123.2 (2)
N3—C4—C3121.07 (16)N16—C15—H15118.4
N3—C4—C5120.54 (17)C14—C15—H15118.4
C3—C4—C5118.39 (17)C4—N3—H3A120.0
C22—C21—C26119.62 (17)C4—N3—H3B120.0
C22—C21—As119.41 (13)H3A—N3—H3B120.0
C26—C21—As120.92 (14)C31—C32—C33118.8 (2)
C15—N16—C11115.69 (18)C31—C32—H32120.6
C15—N16—Au167.06 (15)C33—C32—H32120.6
C11—N16—Au74.63 (11)C43—C42—C41119.49 (18)
C44—C43—C42120.12 (19)C43—C42—H42120.3
C44—C43—H43119.9C41—C42—H42120.3
C42—C43—H43119.9C23—C24—C25120.08 (18)
C36—C31—C32119.44 (19)C23—C24—H24120.0
C36—C31—As116.91 (14)C25—C24—H24120.0
C32—C31—As123.65 (15)C43—C44—C45120.24 (18)
C46—C41—C42120.18 (17)C43—C44—H44119.9
C46—C41—As121.35 (13)C45—C44—H44119.9
C42—C41—As118.41 (14)N12—C13—C14123.4 (2)
C45—C46—C41119.83 (18)N12—C13—H13118.3
C45—C46—H46120.1C14—C13—H13118.3
C41—C46—H46120.1C35—C36—C31120.5 (2)
C5—C6—C1120.36 (17)C35—C36—H36119.7
C5—C6—H6119.8C31—C36—H36119.7
C1—C6—H6119.8C34—C35—C36120.2 (2)
N12—C11—N16126.31 (18)C34—C35—H35119.9
N12—C11—N1119.77 (17)C36—C35—H35119.9
N16—C11—N1113.92 (16)C13—C14—C15115.9 (2)
C11—N12—C13115.36 (19)C13—C14—H14122.0
C46—C45—C44120.13 (19)C15—C14—H14122.0
C46—C45—H45119.9
C1—S—N1—C1184.01 (16)C31—As—C41—C42146.53 (14)
O1—Au—As—C31122.55 (7)C21—As—C41—C42101.82 (15)
N16—Au—As—C3173.18 (8)Au—As—C41—C4223.02 (15)
O2—Au—As—C31128.33 (7)C42—C41—C46—C450.9 (3)
O1—Au—As—C21112.35 (7)As—C41—C46—C45176.14 (14)
N16—Au—As—C2151.92 (8)C15—N16—C11—N123.0 (3)
O2—Au—As—C21106.57 (7)Au—N16—C11—N12168.7 (2)
O1—Au—As—C414.75 (6)C15—N16—C11—N1177.66 (17)
N16—Au—As—C41169.02 (7)Au—N16—C11—N110.70 (13)
O2—Au—As—C4110.53 (7)S—N1—C11—N1214.5 (2)
O1—S—O2—Au92.82 (11)Au—N1—C11—N12161.05 (14)
N1—S—O2—Au27.40 (8)S—N1—C11—N16166.06 (14)
C1—S—O2—Au145.90 (12)Au—N1—C11—N1618.4 (2)
N1—Au—O2—S109.95 (16)N16—C11—N12—C133.5 (3)
As—Au—O2—S60.00 (12)N1—C11—N12—C13177.19 (19)
O1—Au—O2—S50.72 (10)C41—C46—C45—C440.0 (3)
N16—Au—O2—S134.69 (11)C3—C2—C1—C61.0 (3)
O1—S—N1—C11161.81 (14)C3—C2—C1—S179.02 (14)
O2—S—N1—C1134.46 (17)C5—C6—C1—C20.5 (3)
O1—S—N1—Au22.37 (11)C5—C6—C1—S177.52 (13)
O2—S—N1—Au149.73 (8)O1—S—C1—C2169.68 (14)
C1—S—N1—Au91.80 (10)O2—S—C1—C242.25 (17)
O1—Au—N1—C11171.50 (16)N1—S—C1—C277.44 (16)
N16—Au—N1—C119.72 (12)O1—S—C1—C68.31 (16)
O2—Au—N1—C11158.5 (2)O2—S—C1—C6135.74 (14)
O1—Au—N1—S12.61 (6)N1—S—C1—C6104.57 (15)
N16—Au—N1—S174.40 (12)C1—C6—C5—C41.3 (3)
O2—Au—N1—S25.63 (7)N3—C4—C5—C6179.91 (17)
O2—S—O1—Au136.72 (7)C3—C4—C5—C60.7 (3)
N1—S—O1—Au13.80 (7)C1—C2—C3—C41.7 (3)
C1—S—O1—Au101.33 (7)N3—C4—C3—C2178.56 (18)
N1—Au—O1—S13.06 (6)C5—C4—C3—C20.9 (3)
As—Au—O1—S163.40 (4)C24—C23—C22—C210.1 (3)
N16—Au—O1—S26.68 (7)C26—C21—C22—C230.3 (3)
O2—Au—O1—S21.63 (4)As—C21—C22—C23177.09 (14)
C31—As—C21—C22115.03 (15)C24—C25—C26—C210.9 (3)
C41—As—C21—C22134.11 (14)C22—C21—C26—C250.2 (3)
Au—As—C21—C2214.13 (16)As—C21—C26—C25177.52 (15)
C31—As—C21—C2667.66 (16)C32—C33—C34—C350.2 (4)
C41—As—C21—C2643.21 (17)C11—N16—C15—C140.3 (3)
Au—As—C21—C26163.19 (13)Au—N16—C15—C14141.6 (6)
N1—Au—N16—C15153.1 (7)C36—C31—C32—C330.0 (3)
As—Au—N16—C1526.1 (7)As—C31—C32—C33179.88 (17)
O1—Au—N16—C15168.0 (7)C34—C33—C32—C310.2 (4)
O2—Au—N16—C15165.0 (7)C44—C43—C42—C410.0 (3)
N1—Au—N16—C118.90 (11)C46—C41—C42—C430.9 (3)
As—Au—N16—C11170.28 (9)As—C41—C42—C43176.23 (14)
O1—Au—N16—C1123.78 (11)C22—C23—C24—C250.6 (3)
O2—Au—N16—C1120.76 (10)C26—C25—C24—C231.1 (3)
C21—As—C31—C36162.71 (15)C42—C43—C44—C451.0 (3)
C41—As—C31—C3687.46 (16)C46—C45—C44—C431.0 (3)
Au—As—C31—C3632.48 (17)C11—N12—C13—C140.7 (4)
C21—As—C31—C3217.22 (19)C32—C31—C36—C350.2 (3)
C41—As—C31—C3292.61 (18)As—C31—C36—C35179.70 (18)
Au—As—C31—C32147.45 (16)C33—C34—C35—C360.0 (4)
C31—As—C41—C4636.37 (16)C31—C36—C35—C340.2 (4)
C21—As—C41—C4675.29 (15)N12—C13—C14—C152.1 (4)
Au—As—C41—C46159.87 (13)N16—C15—C14—C132.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.882.082.931 (2)162
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Au(C10H9N4O2S)(C18H15As)]
Mr752.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.0550 (18), 13.360 (2), 16.774 (3)
β (°) 104.46 (3)
V3)2616.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)6.99
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.221, 0.350
No. of measured, independent and
observed [I > 2σ(I)] reflections
35747, 9482, 8101
Rint0.025
(sin θ/λ)max1)0.767
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.043, 1.00
No. of reflections9482
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.59

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 2000), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Au—N12.0552 (15)Au—O24.3238 (15)
Au—As2.3266 (6)S—O11.4384 (13)
Au—N163.0863 (19)S—O21.4417 (14)
Au—O12.9926 (16)S—N11.6309 (16)
N1—Au—As171.56 (4)O1—S—O2117.35 (9)
N1—Au—O154.00 (5)O1—S—N1105.08 (8)
As—Au—O2151.31 (2)O2—S—N1110.28 (8)
N16—Au—O266.83 (5)
C1—S—N1—C1184.01 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.882.082.931 (2)162
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds