Download citation
Download citation
link to html
The Ni atom in [Ni(O2CCH2)2(PPN)2(H2O)2], where PPN is 2-(p-pyridyl)-4,4,5,5-tetra­methyl­imidazoline-1-oxyl 3-oxide (C12H16N3O2), is located on a centre of inversion and exists in a distorted octahedral geometry defined by an N2O4 donor set. Complex mol­ecules aggregate into chains mediated by hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301585X/lh6086sup1.cif
Contains datablocks general, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301585X/lh6086Isup2.hkl
Contains datablock I

CCDC reference: 222796

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.123
  • Data-to-parameter ratio = 21.4

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.725 0.944 Tmin' and Tmax expected: 0.850 0.944 RR' = 0.853 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ........... 0.85 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .. 2.44 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni - O5 = 5.78 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The title compound, (I), is isomorphous with the MnII species that was investigated for novel magnetic characterisitics owing to the presence of the radical ligand, PPN, i.e. 2-(p-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (Fettouhi et al., 1999). The Ni atom is situated on a centre of inversion and exists in a distorted octahedral geometry defined by an all trans-N2O4 donor set (Fig. 1 and Table 1). The benzoate ligand is effectively mondentate as the Ni···O2 distance is 3.3110 (14) Å. There are both intra- and intermolecular hydrogen-bonding interactions involving the coordinated water molecules and the O2 atoms. The parameters associated with the intramolecular interaction are H···O2 = 1.78 Å, O2···O5 = 2.620 (2) Å and angle at H = 171°. The intermolecular interactions occur between translationally related molecules, along the a direction, and are characterized by H···O2i = 2.07 Å, O5···O2i = 2.8468 (19) Å and the angle at H = 154 [symmetry code: (i) 1 + x, y, z]. These interactions lead to the formation of 12-membered [–Ni—O—H···O—C—O–]2 rings and the chains that are thereby formed are separated by regions occupied by the PPN ligands (Fig. 2). Links between the chains are facilitated by C11—H···O4ii contacts so that H···O4ii = 2.47 Å, C11···O4ii = 3.260 (2) Å and the angle subtended at H being 142° [symmetry code: (ii) −x, −y, 1 − z]. Links between the PPN ligands also occur via C—H···O interactions so that C17—H···O3iii = 2.55 Å, C17····O3iii = 3.496 (3) Å and the angle at H = 165° and C16—H···O4iv = 2.54 Å, C16···O4iv = 3.474 (3) Å and the angle at H = 162° [symmetry codes: (iii) 1 − x, −1 − y, 1 − z; (iv) 1 − x, −y, 1 − z].

Experimental top

To a solution of Ni(O2CC5H5)2·4H2O (0.5 mmol) and benzoic acid (1 mmol) in ethanol (25 ml) was added a solid sample of PPN (1 mmol). The solution was stirred for 30 min, after which a small quantity of green solid precipitated. After filtration, the clear solution, kept in the dark, was slowly evaporated at room temperature over a period of one month, yielding green crystals suitable for analysis.

Refinement top

The C—H atoms were included in the riding-model approximation, with C—H distances of 0.94 Å (0.97 Å for methyl), Uiso(phenyl-H) = 1.2Ueq(C) and Uiso(methyl-H) = 1.5Ueq(C). The water H atoms were located from a difference map and refined, subject to O—H 0.85±0.01 Å, H···H 1.39±0.01 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHEXLTL.

Figures top
[Figure 1] Fig. 1. The molecular structure and crystallographic numbering scheme for (I). The other half of the molecule is generated by the symmetry operation (-x, −y, −z). Displacement ellipsoids are drawn at the 50% probability level (Johnson, 1976).
[Figure 2] Fig. 2. The unit-cell contents for (I) (Farrugia, 1997).
(I) top
Crystal data top
[Ni(C7H5O2)2(C12H16N3O2)2(H2O)2]Z = 1
Mr = 805.52F(000) = 424
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.7001 (3) ÅCell parameters from 2446 reflections
b = 11.3354 (6) Åθ = 2.4–28.9°
c = 12.8740 (6) ŵ = 0.57 mm1
α = 86.319 (2)°T = 223 K
β = 87.290 (2)°Irregular block, green
γ = 79.486 (2)°0.28 × 0.14 × 0.10 mm
V = 958.73 (8) Å3
Data collection top
Bruker AXS SMART CCD
diffractometer
5468 independent reflections
Radiation source: fine-focus sealed tube4462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
h = 89
Tmin = 0.725, Tmax = 0.944k = 1514
8055 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
5468 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.61 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Ni(C7H5O2)2(C12H16N3O2)2(H2O)2]γ = 79.486 (2)°
Mr = 805.52V = 958.73 (8) Å3
Triclinic, P1Z = 1
a = 6.7001 (3) ÅMo Kα radiation
b = 11.3354 (6) ŵ = 0.57 mm1
c = 12.8740 (6) ÅT = 223 K
α = 86.319 (2)°0.28 × 0.14 × 0.10 mm
β = 87.290 (2)°
Data collection top
Bruker AXS SMART CCD
diffractometer
5468 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000; Blessing, 1995)
4462 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.944Rint = 0.022
8055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.61 e Å3
5468 reflectionsΔρmin = 0.25 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00000.00000.02173 (10)
O10.01610 (18)0.16791 (11)0.04550 (10)0.0278 (3)
O20.3471 (2)0.17010 (13)0.02102 (13)0.0405 (4)
O30.6300 (2)0.38082 (13)0.36734 (12)0.0432 (4)
O40.2517 (2)0.06243 (13)0.53705 (11)0.0396 (4)
O50.28606 (18)0.01457 (12)0.07767 (10)0.0281 (3)
H5A0.380 (3)0.0741 (12)0.0744 (18)0.041*
H5B0.318 (3)0.0442 (13)0.0495 (18)0.041*
N10.1245 (2)0.07638 (13)0.14092 (12)0.0242 (3)
N20.5626 (2)0.30567 (14)0.43553 (12)0.0280 (3)
N30.3782 (2)0.15731 (14)0.51694 (12)0.0262 (3)
C10.1699 (3)0.21662 (16)0.04950 (14)0.0260 (4)
C20.1390 (3)0.33964 (16)0.09127 (14)0.0263 (4)
C30.0508 (3)0.39467 (18)0.12632 (16)0.0333 (4)
H30.16160.35470.12410.040*
C40.0800 (4)0.5083 (2)0.16472 (18)0.0416 (5)
H40.20940.54420.18970.050*
C50.0810 (4)0.5687 (2)0.16633 (19)0.0439 (5)
H50.06120.64600.19180.053*
C60.2715 (4)0.5149 (2)0.13041 (19)0.0431 (5)
H60.38120.55600.13120.052*
C70.3014 (3)0.40071 (19)0.09323 (17)0.0357 (4)
H70.43140.36440.06930.043*
C80.2922 (3)0.16078 (17)0.14235 (15)0.0287 (4)
H80.34700.19070.07870.034*
C90.3890 (3)0.20618 (17)0.23221 (15)0.0289 (4)
H90.50870.26410.22880.035*
C100.3092 (3)0.16600 (15)0.32811 (14)0.0231 (3)
C110.1299 (3)0.08011 (17)0.32730 (14)0.0269 (4)
H110.06760.05140.39000.032*
C120.0463 (3)0.03839 (17)0.23302 (14)0.0277 (4)
H120.07270.02020.23350.033*
C130.4110 (3)0.20883 (16)0.42441 (14)0.0247 (4)
C140.6664 (3)0.30747 (17)0.53683 (15)0.0292 (4)
C150.4976 (3)0.23102 (17)0.60175 (15)0.0291 (4)
C160.8510 (3)0.2476 (2)0.5093 (2)0.0472 (6)
H16A0.80540.16550.48300.071*
H16B0.93590.29170.45650.071*
H16C0.92840.24780.57110.071*
C170.7337 (3)0.43630 (19)0.57829 (18)0.0421 (5)
H17A0.61520.47280.59530.063*
H17B0.81060.43720.64040.063*
H17C0.81820.48120.52570.063*
C180.5709 (4)0.1479 (2)0.67438 (18)0.0449 (5)
H18A0.66270.10260.63600.067*
H18B0.64130.19550.73140.067*
H18C0.45520.09290.70190.067*
C190.3535 (3)0.3029 (2)0.66032 (17)0.0393 (5)
H19A0.30810.35530.61330.059*
H19B0.23710.24840.68780.059*
H19C0.42320.35100.71730.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01822 (16)0.02606 (18)0.02039 (16)0.00221 (12)0.00125 (11)0.00219 (12)
O10.0225 (6)0.0292 (7)0.0316 (7)0.0034 (5)0.0001 (5)0.0056 (5)
O20.0226 (6)0.0387 (8)0.0605 (10)0.0031 (6)0.0019 (7)0.0153 (7)
O30.0507 (9)0.0355 (8)0.0352 (8)0.0153 (7)0.0005 (7)0.0066 (6)
O40.0430 (8)0.0371 (8)0.0314 (7)0.0160 (6)0.0054 (6)0.0106 (6)
O50.0211 (6)0.0333 (7)0.0292 (7)0.0021 (5)0.0012 (5)0.0036 (6)
N10.0215 (7)0.0274 (7)0.0236 (7)0.0035 (6)0.0019 (6)0.0027 (6)
N20.0260 (7)0.0270 (8)0.0273 (8)0.0040 (6)0.0002 (6)0.0011 (6)
N30.0253 (7)0.0265 (8)0.0245 (7)0.0020 (6)0.0038 (6)0.0011 (6)
C10.0253 (8)0.0286 (9)0.0234 (8)0.0025 (7)0.0041 (7)0.0005 (7)
C20.0299 (9)0.0265 (9)0.0228 (8)0.0050 (7)0.0045 (7)0.0002 (7)
C30.0332 (10)0.0336 (10)0.0331 (10)0.0062 (8)0.0018 (8)0.0025 (8)
C40.0429 (12)0.0358 (11)0.0433 (12)0.0010 (9)0.0034 (10)0.0080 (9)
C50.0613 (14)0.0294 (10)0.0419 (12)0.0076 (10)0.0078 (11)0.0064 (9)
C60.0490 (13)0.0383 (12)0.0466 (13)0.0174 (10)0.0089 (11)0.0043 (10)
C70.0328 (10)0.0369 (11)0.0387 (11)0.0092 (8)0.0039 (9)0.0024 (9)
C80.0308 (9)0.0304 (9)0.0226 (9)0.0002 (7)0.0028 (7)0.0028 (7)
C90.0267 (9)0.0288 (9)0.0271 (9)0.0062 (7)0.0006 (7)0.0018 (7)
C100.0217 (8)0.0229 (8)0.0239 (8)0.0027 (6)0.0011 (6)0.0002 (6)
C110.0233 (8)0.0318 (9)0.0238 (9)0.0011 (7)0.0003 (7)0.0049 (7)
C120.0213 (8)0.0323 (10)0.0269 (9)0.0036 (7)0.0029 (7)0.0040 (7)
C130.0232 (8)0.0242 (8)0.0248 (8)0.0005 (7)0.0001 (7)0.0006 (7)
C140.0225 (8)0.0318 (10)0.0316 (10)0.0013 (7)0.0045 (7)0.0039 (8)
C150.0281 (9)0.0319 (10)0.0261 (9)0.0019 (7)0.0071 (7)0.0019 (7)
C160.0252 (10)0.0538 (14)0.0618 (16)0.0081 (9)0.0010 (10)0.0055 (12)
C170.0398 (11)0.0380 (12)0.0421 (12)0.0070 (9)0.0078 (10)0.0103 (9)
C180.0480 (13)0.0478 (13)0.0395 (12)0.0047 (10)0.0185 (10)0.0071 (10)
C190.0343 (10)0.0476 (12)0.0322 (11)0.0022 (9)0.0017 (8)0.0090 (9)
Geometric parameters (Å, º) top
Ni—O12.0497 (13)C6—H60.9400
Ni—O52.1036 (13)C7—H70.9400
Ni—N12.1011 (15)C8—C91.377 (3)
Ni—O1i2.0497 (13)C8—H80.9400
Ni—N1i2.1011 (15)C9—C101.393 (3)
Ni—O5i2.1036 (13)C9—H90.9400
O1—C11.260 (2)C10—C111.401 (2)
O2—C11.256 (2)C10—C131.456 (2)
O3—N21.272 (2)C11—C121.380 (2)
O4—N31.274 (2)C11—H110.9400
O5—H5A0.836 (9)C12—H120.9400
O5—H5B0.844 (9)C14—C171.518 (3)
N1—C81.336 (2)C14—C161.532 (3)
N1—C121.338 (2)C14—C151.541 (3)
N2—C131.358 (2)C15—C191.518 (3)
N2—C141.504 (2)C15—C181.526 (3)
N3—C131.351 (2)C16—H16A0.9700
N3—C151.501 (2)C16—H16B0.9700
C1—C21.502 (3)C16—H16C0.9700
C2—C31.379 (3)C17—H17A0.9700
C2—C71.394 (3)C17—H17B0.9700
C3—C41.386 (3)C17—H17C0.9700
C3—H30.9400C18—H18A0.9700
C4—C51.381 (3)C18—H18B0.9700
C4—H40.9400C18—H18C0.9700
C5—C61.382 (3)C19—H19A0.9700
C5—H50.9400C19—H19B0.9700
C6—C71.386 (3)C19—H19C0.9700
O1—Ni—O588.52 (5)C8—C9—C10119.78 (16)
O1—Ni—N189.99 (5)C8—C9—H9120.1
O1—Ni—O5i91.48 (5)C10—C9—H9120.1
O1—Ni—N1i90.01 (5)C9—C10—C11116.99 (16)
O5—Ni—N193.10 (5)C9—C10—C13121.35 (15)
O5—Ni—N1i86.90 (5)C11—C10—C13121.64 (16)
O1i—Ni—O1180.00 (7)C12—C11—C10118.94 (17)
O1i—Ni—N190.01 (5)C12—C11—H11120.5
O1i—Ni—N1i89.99 (5)C10—C11—H11120.5
N1—Ni—N1i180.00 (9)N1—C12—C11123.89 (16)
O1i—Ni—O5i88.52 (5)N1—C12—H12118.1
N1—Ni—O5i86.90 (5)C11—C12—H12118.1
N1i—Ni—O5i93.10 (5)N3—C13—N2107.91 (15)
O1i—Ni—O591.48 (5)N3—C13—C10126.50 (15)
O5i—Ni—O5180.00 (10)N2—C13—C10125.53 (16)
C1—O1—Ni128.78 (12)N2—C14—C17109.83 (16)
Ni—O5—H5A126.3 (17)N2—C14—C16104.79 (17)
Ni—O5—H5B94.6 (16)C17—C14—C16110.55 (16)
H5A—O5—H5B110.8 (14)N2—C14—C15100.65 (13)
C8—N1—C12116.91 (15)C17—C14—C15115.74 (17)
C8—N1—Ni121.35 (12)C16—C14—C15114.17 (18)
C12—N1—Ni121.65 (12)N3—C15—C19106.35 (15)
O3—N2—C13126.79 (16)N3—C15—C18109.55 (16)
O3—N2—C14121.32 (14)C19—C15—C18110.31 (18)
C13—N2—C14111.48 (15)N3—C15—C14100.68 (14)
O4—N3—C13126.77 (15)C19—C15—C14114.00 (17)
O4—N3—C15120.83 (15)C18—C15—C14115.09 (17)
C13—N3—C15112.21 (14)C14—C16—H16A109.5
O2—C1—O1124.87 (17)C14—C16—H16B109.5
O2—C1—C2117.59 (16)H16A—C16—H16B109.5
O1—C1—C2117.53 (16)C14—C16—H16C109.5
C3—C2—C7119.08 (18)H16A—C16—H16C109.5
C3—C2—C1120.58 (17)H16B—C16—H16C109.5
C7—C2—C1120.33 (17)C14—C17—H17A109.5
C2—C3—C4120.7 (2)C14—C17—H17B109.5
C2—C3—H3119.6H17A—C17—H17B109.5
C4—C3—H3119.6C14—C17—H17C109.5
C5—C4—C3120.1 (2)H17A—C17—H17C109.5
C5—C4—H4120.0H17B—C17—H17C109.5
C3—C4—H4120.0C15—C18—H18A109.5
C4—C5—C6119.7 (2)C15—C18—H18B109.5
C4—C5—H5120.1H18A—C18—H18B109.5
C6—C5—H5120.1C15—C18—H18C109.5
C5—C6—C7120.3 (2)H18A—C18—H18C109.5
C5—C6—H6119.9H18B—C18—H18C109.5
C7—C6—H6119.9C15—C19—H19A109.5
C6—C7—C2120.1 (2)C15—C19—H19B109.5
C6—C7—H7119.9H19A—C19—H19B109.5
C2—C7—H7119.9C15—C19—H19C109.5
N1—C8—C9123.44 (17)H19A—C19—H19C109.5
N1—C8—H8118.3H19B—C19—H19C109.5
C9—C8—H8118.3
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H5O2)2(C12H16N3O2)2(H2O)2]
Mr805.52
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)6.7001 (3), 11.3354 (6), 12.8740 (6)
α, β, γ (°)86.319 (2), 87.290 (2), 79.486 (2)
V3)958.73 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.28 × 0.14 × 0.10
Data collection
DiffractometerBruker AXS SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000; Blessing, 1995)
Tmin, Tmax0.725, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
8055, 5468, 4462
Rint0.022
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.05
No. of reflections5468
No. of parameters256
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHEXLTL.

Selected geometric parameters (Å, º) top
Ni—O12.0497 (13)O2—C11.256 (2)
Ni—O52.1036 (13)O3—N21.272 (2)
Ni—N12.1011 (15)O4—N31.274 (2)
O1—C11.260 (2)
O1—Ni—O588.52 (5)O1—Ni—N1i90.01 (5)
O1—Ni—N189.99 (5)O5—Ni—N193.10 (5)
O1—Ni—O5i91.48 (5)O5—Ni—N1i86.90 (5)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds