Download citation
Download citation
link to html
The title structure, C2H10N22+·2Na+·C2H4O7P24−·4H2O or (NH3CH2CH2NH3)Na2(hedp)·4H2O (SDP-2) (hedp = 1-hydroxy­ethyl­idenedi­phospho­nate), contains one-dimensional anionic sodium–hedp chains which are connected by N—H...O and O—H...O hydrogen bonds. There are two crystallographically independent P atom environments.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013278/lh6070sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013278/lh6070Isup2.hkl
Contains datablock I

CCDC reference: 194948

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.064
  • Data-to-parameter ratio = 9.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_420 Alert B D-H Without Acceptor O9 - H9A ... ? General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.02 From the CIF: _reflns_number_total 2203 Count of symmetry unique reflns 1351 Completeness (_total/calc) 163.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 852 Fraction of Friedel pairs measured 0.631 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Hydroxyethane-1,1-diphosphonic acid (H4hedp), which has a characteristic P—C—P linkage, finds applications in biomedical areas, water treatment, ion exchange and lipophlic solvent extraction (Francis et al., 1969; Jurisson et al., 1993). Recently, owing to its versatile coordination abilities with metal ions, the compound has been introduced into the field of materials and used as a polydentate ligand to construct novel structures with special properties (Serezhkin et al., 2000; Sergienko, 2000; Nash et al., 1998). Hedp possesses seven active oxygen atoms, so, at most, it can serve as a heptadentate ligand. Furthermore, the CH3 and OH groups attached to the organic tether of hedp not only provide a steric hindrance, but also a possible hydrophobic or hydrophilic environment which may be important in the self-assembly of some metal diphosphonates.

More recently, many efforts have been devoted to synthesizing open-framework metal–hedp compounds. The idea was highlighted by the studies on Sn2(hedp) (Zapf et al., 1996). Attempting to obtain novel structures, Zheng et al. (2000, 2001) using different organic amines as the template, synthesized several metal–hedp compounds with different structures (Zheng et al., 2000, 2002; Song et al., 2001). The authors attributed the structural difference among the compounds to the effect of the templates employed. The smaller size template NH2CH2CH2NH2 (en) directed the formation of a linear single chain compound; while the larger size templates such as NH2(CH2)mNH2 (m = 4, 5, 6) directed the formation of anionic double chains which were held together by strong hydrogen bonds to form three-dimensional channels. The use of organic amines as templates in the above synthesizing process is relatively new, which not only diversifies the members of the family but also adds a promising direction for the future studies of the compounds.

In the present paper, we describe the synthesis and crystal structure of a new member of the metal-hedp series, (NH3CH2CH2NH3)Na2(hedp)·4H2O (designated as SDP2), (I).

The fundamental building unit of SDP2 is the extended one-dimensional anionic [Na2(hedp)(H2O)3]2- chains along the b axis, which are charge-balanced by enH22+ cations and linked together by hydrogen bonds (Figs 1 and 2). Within a chain, two kinds of Na atom environments are found. The Na1 atom links with the hedp ligand through atoms O1 and O7 from one ligand and O3i, O4i and O5i [symmetry code: (i) x, 1 + y, z] from another neighboring ligand. Being different from Na1, there are three bonds from water molecules, O8, O9 and O10 and three bonds from the hedp ligand through O3, O5 and O7 contributing to the coordination of Na2. For the two tetrahedral coordinated P atoms in a ligand, there are two pendant {PO} bonds in the form of PO, namely P1O2 and P2O6. The lengths of the PO is 1.5231 (19) and 1.514 (2) Å, respectively. In comparison with the PO bond lengths in H4hedp and other metal–hedp compounds, the distance is longer, which can be explained by the fact that there are strong hydrogen bonds between the P O and the enH22+. Here hedp acts as a pentadentate ligand, bridging the Na atoms through four ionized O(P) atoms of the two diphosphonate groups and the protonated O(C) atom of the hydroxyl group. The torsion angles for O2—P1—C1—P2 and O6—P2—C1—P1 are -166.84 (12) and -166.68 (15)°, respectively. In structural contrast between SDP2 and another disodium 1-hydroxylidenediphosphonate tetrahydrate (Barnett et al., 1979), the effect of ethylenediamine on tailoring the structure of the sodium 1-hydroxylidenediphosphonate is obvious. Between the chains, the protonated enH22+ and acts as a charge-compensating cation and also bridges the chains through N—H···O hydrogen bonds. Three coordinated water molecules O8, O9 and O10 and one lattice water O11 also contribute to the hydrogen-bonding motif (see Table 2). It is the strong hydrogen bonds that help stabilize the crystal structure.

Experimental top

All starting materials were analytical pure and used without further purification. SDP2 was prepared by the following method. Na4C2H4O7P2, NH4F(ammonium fluoride), H2O(deionized water) and C4H8O2 (dioxane), in a 1:0.2:80:2 molar ratio, were stirred at ambient temperature in a plastic container. Ethylenediamine was added dropwise to the mixture until a pH of 10 was achieved. Stirring was continued until a homogeneous white gel formed. The container was covered with a watch glass, and left undisturbed at ambient temperature. After two weeks, transparent and colorless crystals began to form. The purity of SDP2 was verified by elemental analysis: calculated for C4H22N2Na2O11P2 (wt%): C 12.57, H 5.81, N 7.33, Na 12.03, P 16.21; found: C 11.90, H 4.73, N 7.07, Na 11.85, P 15.30. F T–IR (KBr pellet,ν cm-1: 3259, 3103, 2993, 2988, 2130, 1719, 1648, 996, 955, 885, 806, 733. 13C CP/MAS NMR (external reference: DSS, δ p.p.m.): 22.8 (CH3), 36.7 (CH2CH2), and 72.1 (C); 31P MAS NMR (external reference: 85% H3PO4, δ p.p.m.): 20.1 and 17.9.

Refinement top

H atoms were placed in geometrically calculated positions and refined with a riding model. C—H (methyl), C—H (methylene), N—H (protonated amino) and O—H (hydroxyl) were constrained to 0.96, 0.97, 0.89–0.92 and 0.86 Å, respectively. H-atom isotropic displacement parameters were set to be 1.5Ueq (1.2 for methylene and 1.3 for hydroxyl) of the parent atoms. All water H atoms were refined using a riding model with Uiso(H) = 1.5Ueq(O).

Structure description top

Hydroxyethane-1,1-diphosphonic acid (H4hedp), which has a characteristic P—C—P linkage, finds applications in biomedical areas, water treatment, ion exchange and lipophlic solvent extraction (Francis et al., 1969; Jurisson et al., 1993). Recently, owing to its versatile coordination abilities with metal ions, the compound has been introduced into the field of materials and used as a polydentate ligand to construct novel structures with special properties (Serezhkin et al., 2000; Sergienko, 2000; Nash et al., 1998). Hedp possesses seven active oxygen atoms, so, at most, it can serve as a heptadentate ligand. Furthermore, the CH3 and OH groups attached to the organic tether of hedp not only provide a steric hindrance, but also a possible hydrophobic or hydrophilic environment which may be important in the self-assembly of some metal diphosphonates.

More recently, many efforts have been devoted to synthesizing open-framework metal–hedp compounds. The idea was highlighted by the studies on Sn2(hedp) (Zapf et al., 1996). Attempting to obtain novel structures, Zheng et al. (2000, 2001) using different organic amines as the template, synthesized several metal–hedp compounds with different structures (Zheng et al., 2000, 2002; Song et al., 2001). The authors attributed the structural difference among the compounds to the effect of the templates employed. The smaller size template NH2CH2CH2NH2 (en) directed the formation of a linear single chain compound; while the larger size templates such as NH2(CH2)mNH2 (m = 4, 5, 6) directed the formation of anionic double chains which were held together by strong hydrogen bonds to form three-dimensional channels. The use of organic amines as templates in the above synthesizing process is relatively new, which not only diversifies the members of the family but also adds a promising direction for the future studies of the compounds.

In the present paper, we describe the synthesis and crystal structure of a new member of the metal-hedp series, (NH3CH2CH2NH3)Na2(hedp)·4H2O (designated as SDP2), (I).

The fundamental building unit of SDP2 is the extended one-dimensional anionic [Na2(hedp)(H2O)3]2- chains along the b axis, which are charge-balanced by enH22+ cations and linked together by hydrogen bonds (Figs 1 and 2). Within a chain, two kinds of Na atom environments are found. The Na1 atom links with the hedp ligand through atoms O1 and O7 from one ligand and O3i, O4i and O5i [symmetry code: (i) x, 1 + y, z] from another neighboring ligand. Being different from Na1, there are three bonds from water molecules, O8, O9 and O10 and three bonds from the hedp ligand through O3, O5 and O7 contributing to the coordination of Na2. For the two tetrahedral coordinated P atoms in a ligand, there are two pendant {PO} bonds in the form of PO, namely P1O2 and P2O6. The lengths of the PO is 1.5231 (19) and 1.514 (2) Å, respectively. In comparison with the PO bond lengths in H4hedp and other metal–hedp compounds, the distance is longer, which can be explained by the fact that there are strong hydrogen bonds between the P O and the enH22+. Here hedp acts as a pentadentate ligand, bridging the Na atoms through four ionized O(P) atoms of the two diphosphonate groups and the protonated O(C) atom of the hydroxyl group. The torsion angles for O2—P1—C1—P2 and O6—P2—C1—P1 are -166.84 (12) and -166.68 (15)°, respectively. In structural contrast between SDP2 and another disodium 1-hydroxylidenediphosphonate tetrahydrate (Barnett et al., 1979), the effect of ethylenediamine on tailoring the structure of the sodium 1-hydroxylidenediphosphonate is obvious. Between the chains, the protonated enH22+ and acts as a charge-compensating cation and also bridges the chains through N—H···O hydrogen bonds. Three coordinated water molecules O8, O9 and O10 and one lattice water O11 also contribute to the hydrogen-bonding motif (see Table 2). It is the strong hydrogen bonds that help stabilize the crystal structure.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SHELXTL (Sheldrick, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of SDP2 with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the hydrogen-bonding interactions.
[Figure 2] Fig. 2. SDP2 structure viewed along [010]. Displacement ellipsoids are drawn at the 60% probability level. Key: C atoms, gray; H atoms, white; N atoms, yellow; P atoms, green; Na atoms, red; O atoms, blue).
Ethylenediammonium disodium (1-hydroxyethylidene)diphosphonate tetrahydrate top
Crystal data top
C2H10N22+·2Na+·C2H4O7P24·4H2OF(000) = 800
Mr = 382.16Dx = 1.731 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c-2nCell parameters from 2203 reflections
a = 20.966 (7) Åθ = 1.9–25.0°
b = 5.8928 (18) ŵ = 0.41 mm1
c = 11.871 (4) ÅT = 293 K
V = 1466.6 (8) Å3Arching, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2203 independent reflections
Radiation source: fine-focus sealed tube2021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2422
Tmin = 0.922, Tmax = 0.960k = 74
5700 measured reflectionsl = 1214
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0395P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2203 reflectionsΔρmax = 0.27 e Å3
236 parametersΔρmin = 0.31 e Å3
13 restraintsAbsolute structure: Flack (1983), 1217 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (10)
Crystal data top
C2H10N22+·2Na+·C2H4O7P24·4H2OV = 1466.6 (8) Å3
Mr = 382.16Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.966 (7) ŵ = 0.41 mm1
b = 5.8928 (18) ÅT = 293 K
c = 11.871 (4) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2021 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.960Rint = 0.025
5700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.27 e Å3
S = 1.06Δρmin = 0.31 e Å3
2203 reflectionsAbsolute structure: Flack (1983), 1217 Friedel pairs
236 parametersAbsolute structure parameter: 0.10 (10)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.61931 (5)0.93017 (17)0.76226 (11)0.0273 (3)
Na20.67051 (6)0.3420 (2)0.91792 (10)0.0291 (3)
P10.53935 (3)0.42129 (11)0.74458 (6)0.01483 (16)
O10.53603 (9)0.6738 (3)0.77194 (16)0.0235 (5)
C10.59651 (13)0.3776 (4)0.6273 (2)0.0164 (6)
P20.68185 (3)0.40810 (10)0.66815 (6)0.01623 (16)
O20.47523 (8)0.3352 (3)0.70202 (16)0.0209 (4)
C20.58056 (14)0.5353 (5)0.5298 (2)0.0236 (6)
H2D0.58350.69010.55450.035*
H2E0.53800.50500.50400.035*
H2F0.61010.51030.46930.035*
O30.56466 (8)0.2817 (3)0.84275 (16)0.0217 (4)
O40.59212 (10)0.1408 (3)0.59455 (19)0.0240 (5)
H40.5590 (17)0.122 (5)0.553 (3)0.032 (9)*
O50.70022 (8)0.2009 (3)0.73698 (18)0.0259 (5)
O60.71844 (10)0.4233 (5)0.5584 (2)0.0418 (6)
O70.68648 (9)0.6216 (3)0.7393 (2)0.0353 (6)
N10.78297 (12)0.8749 (4)0.8196 (2)0.0207 (5)
H1A0.7635 (16)0.996 (6)0.791 (3)0.031*
H1B0.7900 (16)0.884 (5)0.893 (3)0.031*
H1C0.7545 (15)0.762 (5)0.801 (3)0.031*
N20.92905 (12)0.5870 (5)0.7006 (2)0.0244 (6)
H2A0.9432 (16)0.442 (6)0.700 (3)0.037*
H2B0.9586 (16)0.689 (5)0.722 (3)0.037*
H2C0.9226 (18)0.615 (5)0.628 (3)0.037*
C30.84201 (13)0.8452 (4)0.7533 (3)0.0236 (6)
H3A0.87250.96160.77440.028*
H3B0.83240.86370.67390.028*
C40.87151 (14)0.6126 (4)0.7724 (3)0.0262 (7)
H4A0.88320.59590.85110.031*
H4B0.84080.49540.75400.031*
O80.66083 (11)0.0356 (4)0.9915 (2)0.0406 (6)
H8A0.6361 (12)0.150 (4)0.994 (4)0.061*
H8B0.6981 (8)0.073 (5)1.014 (4)0.061*
O90.59591 (11)0.5420 (4)1.02754 (19)0.0354 (5)
H9A0.5755 (14)0.471 (6)0.977 (2)0.053*
H9B0.5711 (14)0.580 (6)1.082 (2)0.053*
O100.76383 (13)0.4109 (4)1.0085 (3)0.0515 (7)
H10A0.7860 (16)0.298 (4)1.026 (4)0.077*
H10B0.7771 (19)0.534 (3)1.037 (4)0.077*
O110.50591 (13)0.9515 (4)0.9562 (2)0.0447 (7)
H11A0.513 (2)1.075 (3)0.922 (3)0.067*
H11B0.515 (2)0.839 (4)0.913 (3)0.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0228 (6)0.0172 (5)0.0419 (7)0.0011 (4)0.0035 (5)0.0002 (5)
Na20.0269 (6)0.0346 (6)0.0258 (6)0.0021 (5)0.0015 (5)0.0058 (5)
P10.0139 (3)0.0146 (3)0.0160 (3)0.0005 (2)0.0002 (3)0.0001 (3)
O10.0209 (10)0.0166 (10)0.0329 (13)0.0000 (7)0.0036 (9)0.0028 (8)
C10.0153 (13)0.0166 (14)0.0172 (14)0.0007 (10)0.0015 (11)0.0019 (10)
P20.0134 (3)0.0161 (3)0.0192 (4)0.0008 (3)0.0002 (3)0.0003 (3)
O20.0146 (9)0.0225 (9)0.0256 (10)0.0034 (7)0.0037 (8)0.0018 (8)
C20.0208 (15)0.0295 (16)0.0205 (15)0.0028 (12)0.0008 (12)0.0040 (12)
O30.0191 (10)0.0262 (11)0.0199 (10)0.0006 (8)0.0019 (8)0.0061 (8)
O40.0205 (11)0.0192 (10)0.0322 (12)0.0004 (8)0.0054 (9)0.0093 (8)
O50.0186 (9)0.0207 (10)0.0385 (12)0.0035 (7)0.0036 (9)0.0083 (9)
O60.0189 (12)0.0798 (19)0.0266 (12)0.0014 (11)0.0038 (10)0.0102 (11)
O70.0222 (11)0.0195 (10)0.0641 (16)0.0033 (7)0.0139 (11)0.0160 (11)
N10.0187 (13)0.0202 (14)0.0233 (14)0.0014 (10)0.0019 (10)0.0010 (11)
N20.0204 (13)0.0238 (14)0.0289 (15)0.0037 (10)0.0019 (11)0.0028 (11)
C30.0216 (14)0.0253 (14)0.0239 (15)0.0005 (11)0.0011 (13)0.0013 (12)
C40.0226 (14)0.0254 (16)0.0305 (18)0.0006 (11)0.0005 (12)0.0018 (13)
O80.0258 (13)0.0398 (13)0.0563 (17)0.0011 (10)0.0078 (12)0.0125 (13)
O90.0259 (12)0.0516 (15)0.0286 (13)0.0050 (10)0.0005 (10)0.0133 (10)
O100.0484 (17)0.0371 (14)0.069 (2)0.0067 (12)0.0309 (14)0.0024 (14)
O110.0589 (17)0.0320 (14)0.0433 (16)0.0047 (12)0.0251 (13)0.0049 (11)
Geometric parameters (Å, º) top
Na1—O12.312 (2)P2—O51.5188 (19)
Na1—O72.316 (2)P2—Na1ii3.3014 (15)
Na1—O5i2.348 (2)C2—H2D0.96
Na1—O4i2.414 (3)C2—H2E0.96
Na1—O3i2.553 (2)C2—H2F0.96
Na1—O8i2.864 (3)O3—Na1ii2.553 (2)
Na1—C1i3.122 (3)O4—Na1ii2.414 (3)
Na1—Na2i3.2336 (17)O4—H40.86 (4)
Na1—P2i3.3014 (15)O5—Na1ii2.348 (2)
Na1—P1i3.3511 (15)N1—C31.477 (4)
Na1—P13.4418 (15)N1—H1A0.89 (4)
Na1—Na24.0718 (19)N1—H1B0.89 (4)
Na2—O102.269 (3)N1—H1C0.92 (3)
Na2—O92.351 (2)N2—C41.485 (4)
Na2—O52.386 (2)N2—H2A0.91 (4)
Na2—O82.399 (3)N2—H2B0.90 (3)
Na2—O32.418 (2)N2—H2C0.89 (4)
Na2—O72.706 (3)C3—C41.521 (4)
Na2—P23.0000 (17)C3—H3A0.97
Na2—Na1ii3.2336 (17)C3—H3B0.97
Na2—H9A2.25 (3)C4—H4A0.97
P1—O31.5219 (19)C4—H4B0.97
P1—O21.5231 (19)O8—Na1ii2.864 (3)
P1—O11.5247 (19)O8—H8A0.850 (10)
P1—C11.855 (3)O8—H8B0.853 (10)
P1—Na1ii3.3511 (15)O9—H9A0.85 (3)
C1—O41.452 (3)O9—H9B0.86 (3)
C1—C21.522 (4)O10—H10A0.84 (3)
C1—P21.862 (3)O10—H10B0.85 (3)
C1—Na1ii3.122 (3)O11—H11A0.851 (10)
P2—O61.514 (2)O11—H11B0.86 (3)
P2—O71.518 (2)
O1—Na1—O787.25 (8)O9—Na2—H9A21.1 (7)
O1—Na1—O5i174.92 (10)O5—Na2—H9A129.2 (4)
O7—Na1—O5i94.54 (8)O8—Na2—H9A97.2 (10)
O1—Na1—O4i101.46 (8)O3—Na2—H9A49.5 (7)
O7—Na1—O4i116.74 (10)O7—Na2—H9A98.6 (10)
O5i—Na1—O4i73.49 (8)P2—Na2—H9A109.6 (8)
O1—Na1—O3i99.94 (7)Na1ii—Na2—H9A98.0 (4)
O7—Na1—O3i162.58 (9)Na1—Na2—H9A67.7 (10)
O5i—Na1—O3i79.67 (7)O3—P1—O2112.43 (11)
O4i—Na1—O3i77.61 (7)O3—P1—O1112.36 (11)
O1—Na1—O8i103.20 (8)O2—P1—O1110.82 (11)
O7—Na1—O8i88.99 (9)O3—P1—C1105.93 (11)
O5i—Na1—O8i81.61 (8)O2—P1—C1105.97 (12)
O4i—Na1—O8i144.99 (8)O1—P1—C1108.95 (11)
O3i—Na1—O8i73.96 (7)O3—P1—Na1ii46.44 (8)
O1—Na1—C1i117.50 (8)O2—P1—Na1ii100.06 (8)
O7—Na1—C1i134.08 (10)O1—P1—Na1ii148.47 (8)
O5i—Na1—C1i58.07 (7)C1—P1—Na1ii66.67 (8)
O4i—Na1—C1i26.69 (7)O3—P1—Na1104.74 (8)
O3i—Na1—C1i55.81 (7)O2—P1—Na1137.76 (8)
O8i—Na1—C1i118.33 (7)C1—P1—Na181.49 (8)
O1—Na1—Na2i135.46 (7)Na1ii—P1—Na1120.33 (4)
O7—Na1—Na2i117.05 (7)P1—O1—Na1126.35 (11)
O5i—Na1—Na2i47.41 (6)O4—C1—C2111.7 (2)
O4i—Na1—Na2i99.42 (6)O4—C1—P1107.07 (17)
O3i—Na1—Na2i47.63 (5)C2—C1—P1110.14 (18)
O8i—Na1—Na2i45.84 (5)O4—C1—P2102.90 (16)
C1i—Na1—Na2i73.15 (6)C2—C1—P2110.51 (19)
O1—Na1—P2i150.96 (7)P1—C1—P2114.33 (14)
O7—Na1—P2i112.85 (7)O4—C1—Na1ii48.33 (12)
O5i—Na1—P2i24.52 (5)C2—C1—Na1ii160.01 (19)
O4i—Na1—P2i51.40 (5)P1—C1—Na1ii80.27 (9)
O3i—Na1—P2i67.21 (5)P2—C1—Na1ii78.51 (9)
O8i—Na1—P2i98.09 (6)O6—P2—O7113.40 (15)
C1i—Na1—P2i33.56 (5)O6—P2—O5112.44 (13)
Na2i—Na1—P2i54.64 (4)O7—P2—O5110.53 (14)
O1—Na1—P1i100.93 (6)O6—P2—C1105.57 (12)
O7—Na1—P1i167.12 (9)O7—P2—C1106.62 (11)
O5i—Na1—P1i76.50 (5)O5—P2—C1107.83 (11)
O4i—Na1—P1i52.14 (5)O6—P2—Na2153.90 (9)
O3i—Na1—P1i25.59 (4)O7—P2—Na264.09 (11)
O8i—Na1—P1i98.67 (6)O5—P2—Na251.97 (8)
C1i—Na1—P1i33.06 (5)C1—P2—Na299.71 (9)
Na2i—Na1—P1i63.49 (4)O6—P2—Na1ii122.86 (11)
P2i—Na1—P1i56.00 (3)O7—P2—Na1ii122.96 (11)
O1—Na1—P120.90 (5)C1—P2—Na1ii67.93 (8)
O7—Na1—P166.73 (6)Na2—P2—Na1ii61.53 (3)
O5i—Na1—P1159.40 (6)C1—C2—H2D109.5
O4i—Na1—P1106.42 (6)C1—C2—H2E109.5
O3i—Na1—P1120.74 (6)H2D—C2—H2E109.5
O8i—Na1—P1105.50 (6)C1—C2—H2F109.5
C1i—Na1—P1129.05 (6)H2D—C2—H2F109.5
Na2i—Na1—P1148.25 (5)H2E—C2—H2F109.5
P2i—Na1—P1156.35 (5)P1—O3—Na2121.54 (10)
P1i—Na1—P1120.33 (4)P1—O3—Na1ii107.97 (10)
O1—Na1—Na267.69 (6)Na2—O3—Na1ii81.11 (7)
O7—Na1—Na239.19 (7)C1—O4—Na1ii104.98 (16)
O5i—Na1—Na2116.48 (6)C1—O4—H4109 (2)
O4i—Na1—Na2150.93 (6)Na1ii—O4—H4127 (2)
O3i—Na1—Na2129.73 (7)P2—O5—Na1ii115.58 (10)
O8i—Na1—Na263.17 (5)P2—O5—Na297.93 (10)
C1i—Na1—Na2172.80 (6)Na1ii—O5—Na286.16 (8)
Na2i—Na1—Na2106.98 (5)P2—O7—Na1132.63 (12)
P2i—Na1—Na2140.81 (4)P2—O7—Na285.61 (10)
P1i—Na1—Na2153.56 (4)Na1—O7—Na2108.08 (10)
P1—Na1—Na254.16 (3)C3—N1—H1A106 (2)
O10—Na2—O9102.81 (11)C3—N1—H1B113 (2)
O10—Na2—O5105.29 (11)H1A—N1—H1B113 (3)
O9—Na2—O5147.84 (9)C3—N1—H1C109 (2)
O10—Na2—O893.80 (10)H1A—N1—H1C101 (3)
O9—Na2—O8101.95 (10)H1B—N1—H1C112 (3)
O5—Na2—O891.53 (9)C4—N2—H2A111 (2)
O10—Na2—O3172.96 (11)C4—N2—H2B110 (2)
O9—Na2—O370.58 (8)H2A—N2—H2B114 (3)
O5—Na2—O381.73 (7)C4—N2—H2C115 (2)
O8—Na2—O385.44 (8)H2A—N2—H2C102 (3)
O10—Na2—O798.96 (10)H2B—N2—H2C105 (3)
O9—Na2—O7102.18 (9)N1—C3—C4111.6 (2)
O5—Na2—O758.28 (7)N1—C3—H3A109.3
O8—Na2—O7149.36 (9)C4—C3—H3A109.3
O3—Na2—O785.06 (7)N1—C3—H3B109.3
O10—Na2—P2112.13 (10)C4—C3—H3B109.3
O9—Na2—P2122.32 (8)H3A—C3—H3B108.0
O5—Na2—P230.09 (5)N2—C4—C3109.7 (2)
O8—Na2—P2119.14 (8)N2—C4—H4A109.7
O3—Na2—P274.16 (6)C3—C4—H4A109.7
O7—Na2—P230.30 (5)N2—C4—H4B109.7
O10—Na2—Na1ii133.73 (8)C3—C4—H4B109.7
O9—Na2—Na1ii118.14 (8)H4A—C4—H4B108.2
O5—Na2—Na1ii46.43 (5)Na2—O8—Na1ii75.23 (8)
O8—Na2—Na1ii58.93 (7)Na2—O8—H8A143 (2)
O3—Na2—Na1ii51.26 (5)Na1ii—O8—H8A78 (3)
O7—Na2—Na1ii92.87 (6)Na2—O8—H8B106 (2)
P2—Na2—Na1ii63.83 (4)Na1ii—O8—H8B124 (3)
O10—Na2—Na1106.86 (7)H8A—O8—H8B109.8 (17)
O9—Na2—Na169.47 (7)Na2—O9—H9A72 (2)
O5—Na2—Na187.53 (6)Na2—O9—H9B162 (3)
O8—Na2—Na1158.82 (8)H9A—O9—H9B110.7 (17)
O3—Na2—Na173.48 (5)Na2—O10—H10A117 (3)
O7—Na2—Na132.74 (5)Na2—O10—H10B129 (3)
P2—Na2—Na157.44 (3)H10A—O10—H10B113 (4)
Na1ii—Na2—Na1106.98 (5)H11A—O11—H11B109.8 (17)
O10—Na2—H9A123.8 (7)
O1—Na1—Na2—O10164.90 (11)Na1—P1—C1—P255.78 (12)
O7—Na1—Na2—O1080.18 (13)O3—P1—C1—Na1ii25.37 (10)
O5i—Na1—Na2—O1018.29 (13)O2—P1—C1—Na1ii94.27 (9)
O4i—Na1—Na2—O10122.34 (16)O1—P1—C1—Na1ii146.45 (9)
O3i—Na1—Na2—O1080.55 (12)Na1—P1—C1—Na1ii128.36 (6)
O8i—Na1—Na2—O1045.94 (11)O4—C1—P2—O677.6 (2)
Na2i—Na1—Na2—O1032.03 (11)C2—C1—P2—O641.7 (2)
P2i—Na1—Na2—O1022.30 (12)P1—C1—P2—O6166.68 (15)
P1i—Na1—Na2—O1096.31 (13)Na1ii—C1—P2—O6119.66 (12)
P1—Na1—Na2—O10176.76 (10)O4—C1—P2—O7161.51 (18)
O1—Na1—Na2—O967.21 (9)C2—C1—P2—O779.1 (2)
O7—Na1—Na2—O9177.87 (11)P1—C1—P2—O745.79 (18)
O5i—Na1—Na2—O9115.98 (10)Na1ii—C1—P2—O7119.45 (12)
O4i—Na1—Na2—O9139.96 (15)O4—C1—P2—O542.8 (2)
O3i—Na1—Na2—O917.14 (10)C2—C1—P2—O5162.14 (19)
O8i—Na1—Na2—O951.76 (9)P1—C1—P2—O572.93 (16)
Na2i—Na1—Na2—O965.66 (8)Na1ii—C1—P2—O50.73 (11)
P2i—Na1—Na2—O9119.99 (9)O4—C1—P2—Na295.81 (16)
P1i—Na1—Na2—O91.39 (11)C2—C1—P2—Na2144.84 (18)
P1—Na1—Na2—O985.54 (7)P1—C1—P2—Na219.91 (14)
O1—Na1—Na2—O589.87 (8)Na1ii—C1—P2—Na253.76 (5)
O7—Na1—Na2—O525.05 (9)O4—C1—P2—Na1ii42.05 (14)
O5i—Na1—Na2—O586.94 (9)C2—C1—P2—Na1ii161.4 (2)
O4i—Na1—Na2—O517.11 (15)P1—C1—P2—Na1ii73.67 (12)
O3i—Na1—Na2—O5174.22 (8)O10—Na2—P2—O621.9 (3)
O8i—Na1—Na2—O5151.17 (8)O9—Na2—P2—O6144.7 (3)
Na2i—Na1—Na2—O5137.27 (6)O5—Na2—P2—O660.4 (3)
P2i—Na1—Na2—O582.93 (8)O8—Na2—P2—O686.0 (3)
P1i—Na1—Na2—O5158.46 (9)O3—Na2—P2—O6161.4 (3)
P1—Na1—Na2—O571.53 (6)O7—Na2—P2—O690.7 (3)
O1—Na1—Na2—O82.0 (2)Na1ii—Na2—P2—O6107.2 (3)
O7—Na1—Na2—O8112.9 (2)Na1—Na2—P2—O6118.4 (3)
O5i—Na1—Na2—O8174.8 (2)O10—Na2—P2—O768.73 (11)
O4i—Na1—Na2—O870.7 (3)O9—Na2—P2—O753.99 (12)
O3i—Na1—Na2—O886.4 (2)O5—Na2—P2—O7151.03 (13)
O8i—Na1—Na2—O8121.0 (3)O8—Na2—P2—O7176.71 (11)
Na2i—Na1—Na2—O8134.9 (2)O3—Na2—P2—O7107.93 (10)
P2i—Na1—Na2—O8170.8 (2)Na1ii—Na2—P2—O7162.10 (9)
P1i—Na1—Na2—O870.6 (3)Na1—Na2—P2—O727.69 (8)
P1—Na1—Na2—O816.3 (2)O10—Na2—P2—O582.30 (12)
O1—Na1—Na2—O37.76 (7)O9—Na2—P2—O5154.98 (13)
O7—Na1—Na2—O3107.16 (10)O8—Na2—P2—O525.68 (11)
O5i—Na1—Na2—O3169.05 (9)O3—Na2—P2—O5101.03 (11)
O4i—Na1—Na2—O364.99 (15)O7—Na2—P2—O5151.03 (13)
O3i—Na1—Na2—O392.11 (9)Na1ii—Na2—P2—O546.87 (9)
O8i—Na1—Na2—O3126.73 (8)Na1—Na2—P2—O5178.72 (10)
Na2i—Na1—Na2—O3140.63 (6)O10—Na2—P2—C1172.59 (11)
P2i—Na1—Na2—O3165.04 (8)O9—Na2—P2—C149.87 (11)
P1i—Na1—Na2—O376.36 (10)O5—Na2—P2—C1105.11 (12)
P1—Na1—Na2—O310.57 (5)O8—Na2—P2—C179.43 (11)
O1—Na1—Na2—O7114.92 (10)O3—Na2—P2—C14.07 (9)
O5i—Na1—Na2—O761.89 (11)O7—Na2—P2—C1103.86 (12)
O4i—Na1—Na2—O742.16 (15)Na1ii—Na2—P2—C158.24 (8)
O3i—Na1—Na2—O7160.73 (11)Na1—Na2—P2—C176.17 (8)
O8i—Na1—Na2—O7126.12 (10)O10—Na2—P2—Na1ii129.17 (8)
Na2i—Na1—Na2—O7112.21 (9)O9—Na2—P2—Na1ii108.11 (9)
P2i—Na1—Na2—O757.88 (10)O5—Na2—P2—Na1ii46.87 (9)
P1i—Na1—Na2—O7176.49 (13)O8—Na2—P2—Na1ii21.19 (8)
P1—Na1—Na2—O796.59 (9)O3—Na2—P2—Na1ii54.17 (5)
O1—Na1—Na2—P289.23 (6)O7—Na2—P2—Na1ii162.10 (9)
O7—Na1—Na2—P225.69 (8)Na1—Na2—P2—Na1ii134.41 (5)
O5i—Na1—Na2—P287.58 (8)O2—P1—O3—Na2172.90 (11)
O4i—Na1—Na2—P216.47 (13)O1—P1—O3—Na261.25 (14)
O3i—Na1—Na2—P2173.58 (8)C1—P1—O3—Na257.60 (14)
O8i—Na1—Na2—P2151.81 (7)Na1ii—P1—O3—Na290.48 (12)
Na2i—Na1—Na2—P2137.91 (4)Na1—P1—O3—Na227.57 (12)
P2i—Na1—Na2—P283.57 (7)O2—P1—O3—Na1ii82.42 (12)
P1i—Na1—Na2—P2157.82 (9)O1—P1—O3—Na1ii151.74 (9)
P1—Na1—Na2—P270.89 (3)C1—P1—O3—Na1ii32.88 (12)
O1—Na1—Na2—Na1ii47.13 (7)Na1—P1—O3—Na1ii118.06 (7)
O7—Na1—Na2—Na1ii67.79 (9)O9—Na2—O3—P196.78 (14)
O5i—Na1—Na2—Na1ii129.67 (7)O5—Na2—O3—P166.62 (12)
O4i—Na1—Na2—Na1ii25.62 (16)O8—Na2—O3—P1158.83 (14)
O3i—Na1—Na2—Na1ii131.49 (7)O7—Na2—O3—P17.99 (12)
O8i—Na1—Na2—Na1ii166.10 (7)P2—Na2—O3—P136.80 (11)
Na2i—Na1—Na2—Na1ii180.0Na1ii—Na2—O3—P1105.69 (13)
P2i—Na1—Na2—Na1ii125.67 (5)Na1—Na2—O3—P123.25 (11)
P1i—Na1—Na2—Na1ii115.73 (8)O9—Na2—O3—Na1ii157.53 (9)
P1—Na1—Na2—Na1ii28.80 (4)O5—Na2—O3—Na1ii39.07 (6)
O1—Na1—P1—O3108.55 (16)O8—Na2—O3—Na1ii53.15 (8)
O7—Na1—P1—O359.90 (11)O7—Na2—O3—Na1ii97.69 (7)
O5i—Na1—P1—O385.8 (2)P2—Na2—O3—Na1ii68.89 (5)
O4i—Na1—P1—O3172.47 (9)Na1—Na2—O3—Na1ii128.93 (7)
O3i—Na1—P1—O3102.40 (11)C2—C1—O4—Na1ii179.98 (18)
O8i—Na1—P1—O322.10 (10)P1—C1—O4—Na1ii59.34 (16)
C1i—Na1—P1—O3171.33 (10)P2—C1—O4—Na1ii61.49 (16)
Na2i—Na1—P1—O344.33 (11)O6—P2—O5—Na1ii114.91 (14)
P2i—Na1—P1—O3154.02 (11)O7—P2—O5—Na1ii117.25 (12)
P1i—Na1—P1—O3132.20 (8)C1—P2—O5—Na1ii1.06 (15)
Na2—Na1—P1—O316.80 (8)Na2—P2—O5—Na1ii89.53 (12)
O1—Na1—P1—O242.71 (19)O6—P2—O5—Na2155.56 (11)
O7—Na1—P1—O2148.85 (15)O7—P2—O5—Na227.72 (13)
O5i—Na1—P1—O2122.9 (2)C1—P2—O5—Na288.47 (11)
O4i—Na1—P1—O236.27 (14)Na1ii—P2—O5—Na289.53 (12)
O3i—Na1—P1—O248.86 (15)O10—Na2—O5—P2107.89 (10)
O8i—Na1—P1—O2129.15 (13)O9—Na2—O5—P242.2 (2)
C1i—Na1—P1—O220.07 (16)O8—Na2—O5—P2157.75 (10)
Na2i—Na1—P1—O2106.93 (14)O3—Na2—O5—P272.59 (9)
P2i—Na1—P1—O254.73 (17)O7—Na2—O5—P216.69 (8)
P1i—Na1—P1—O219.06 (15)Na1ii—Na2—O5—P2115.31 (11)
Na2—Na1—P1—O2168.05 (13)Na1—Na2—O5—P21.08 (8)
O7—Na1—P1—O1168.45 (17)O10—Na2—O5—Na1ii136.80 (9)
O5i—Na1—P1—O1165.7 (3)O9—Na2—O5—Na1ii73.13 (17)
O4i—Na1—P1—O178.98 (15)O8—Na2—O5—Na1ii42.44 (8)
O3i—Na1—P1—O16.15 (15)O3—Na2—O5—Na1ii42.72 (7)
O8i—Na1—P1—O186.44 (15)O7—Na2—O5—Na1ii132.00 (8)
C1i—Na1—P1—O162.78 (16)P2—Na2—O5—Na1ii115.31 (11)
Na2i—Na1—P1—O164.22 (16)Na1—Na2—O5—Na1ii116.39 (6)
P2i—Na1—P1—O197.43 (17)O6—P2—O7—Na198.0 (2)
P1i—Na1—P1—O123.65 (14)O5—P2—O7—Na1134.67 (18)
Na2—Na1—P1—O1125.35 (15)C1—P2—O7—Na117.7 (2)
O1—Na1—P1—C1147.12 (17)Na2—P2—O7—Na1110.6 (2)
O7—Na1—P1—C144.44 (11)Na1ii—P2—O7—Na191.8 (2)
O5i—Na1—P1—C118.5 (2)O6—P2—O7—Na2151.35 (11)
O4i—Na1—P1—C168.14 (10)O5—P2—O7—Na224.04 (11)
O3i—Na1—P1—C1153.27 (11)C1—P2—O7—Na292.90 (10)
O8i—Na1—P1—C1126.44 (10)Na1ii—P2—O7—Na218.79 (9)
C1i—Na1—P1—C184.34 (11)O1—Na1—O7—P243.9 (2)
Na2i—Na1—P1—C1148.66 (11)O5i—Na1—O7—P2131.35 (19)
P2i—Na1—P1—C149.68 (13)O4i—Na1—O7—P257.6 (2)
P1i—Na1—P1—C1123.47 (9)O3i—Na1—O7—P2159.0 (2)
Na2—Na1—P1—C187.54 (9)O8i—Na1—O7—P2147.1 (2)
O1—Na1—P1—Na1ii156.35 (14)C1i—Na1—O7—P282.8 (2)
O7—Na1—P1—Na1ii12.10 (10)Na2i—Na1—O7—P2175.16 (16)
O5i—Na1—P1—Na1ii38.0 (2)P2i—Na1—O7—P2114.49 (18)
O4i—Na1—P1—Na1ii124.67 (6)P1i—Na1—O7—P286.0 (3)
O3i—Na1—P1—Na1ii150.20 (5)P1—Na1—O7—P239.78 (18)
O8i—Na1—P1—Na1ii69.91 (8)Na2—Na1—O7—P2101.0 (2)
C1i—Na1—P1—Na1ii140.87 (7)O1—Na1—O7—Na257.13 (9)
Na2i—Na1—P1—Na1ii92.13 (9)O5i—Na1—O7—Na2127.63 (9)
P2i—Na1—P1—Na1ii106.22 (9)O4i—Na1—O7—Na2158.58 (8)
P1i—Na1—P1—Na1ii180.0O3i—Na1—O7—Na258.0 (3)
Na2—Na1—P1—Na1ii31.00 (5)O8i—Na1—O7—Na246.13 (8)
O3—P1—O1—Na182.48 (15)C1i—Na1—O7—Na2176.21 (9)
O2—P1—O1—Na1150.80 (13)Na2i—Na1—O7—Na283.83 (9)
C1—P1—O1—Na134.59 (17)P2i—Na1—O7—Na2144.49 (6)
Na1ii—P1—O1—Na141.5 (2)P1i—Na1—O7—Na2173.0 (3)
O7—Na1—O1—P110.61 (15)P1—Na1—O7—Na261.24 (6)
O4i—Na1—O1—P1106.12 (14)O10—Na2—O7—P2119.08 (11)
O3i—Na1—O1—P1174.63 (13)O9—Na2—O7—P2135.63 (9)
O8i—Na1—O1—P198.93 (14)O5—Na2—O7—P216.59 (8)
C1i—Na1—O1—P1128.87 (13)O8—Na2—O7—P25.64 (19)
Na2i—Na1—O1—P1137.51 (11)O3—Na2—O7—P266.74 (9)
P2i—Na1—O1—P1124.99 (14)Na1ii—Na2—O7—P216.03 (8)
P1i—Na1—O1—P1159.35 (13)Na1—Na2—O7—P2133.59 (12)
Na2—Na1—O1—P145.62 (12)O10—Na2—O7—Na1107.33 (11)
O3—P1—C1—O466.06 (19)O9—Na2—O7—Na12.04 (11)
O2—P1—C1—O453.58 (19)O5—Na2—O7—Na1150.18 (10)
O1—P1—C1—O4172.86 (16)O8—Na2—O7—Na1139.24 (16)
Na1ii—P1—C1—O440.69 (15)O3—Na2—O7—Na166.85 (9)
Na1—P1—C1—O4169.05 (17)P2—Na2—O7—Na1133.59 (12)
O3—P1—C1—C2172.34 (19)Na1ii—Na2—O7—Na1117.56 (8)
O2—P1—C1—C268.0 (2)N1—C3—C4—N2177.6 (2)
O1—P1—C1—C251.3 (2)O10—Na2—O8—Na1ii140.24 (10)
Na1ii—P1—C1—C2162.3 (2)O9—Na2—O8—Na1ii115.80 (8)
Na1—P1—C1—C269.34 (18)O5—Na2—O8—Na1ii34.81 (7)
O3—P1—C1—P247.21 (16)O3—Na2—O8—Na1ii46.77 (6)
O2—P1—C1—P2166.84 (12)O7—Na2—O8—Na1ii25.51 (17)
O1—P1—C1—P273.87 (16)P2—Na2—O8—Na1ii22.26 (8)
Na1ii—P1—C1—P272.58 (12)Na1—Na2—O8—Na1ii52.3 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O70.92 (3)1.80 (3)2.689 (3)160 (3)
O11—H11B···O10.86 (3)1.99 (3)2.804 (3)158 (3)
N1—H1A···O5i0.89 (3)1.90 (3)2.768 (3)163 (3)
N1—H1B···O6iii0.89 (4)1.98 (4)2.850 (4)165 (3)
N2—H2A···O2iv0.91 (4)1.76 (4)2.669 (3)177 (3)
N2—H2B···O1v0.90 (3)1.91 (3)2.781 (3)163 (3)
N2—H2C···O8vi0.89 (4)2.54 (4)3.199 (4)131 (3)
O4—H4···O11vii0.86 (4)1.83 (4)2.686 (3)172 (3)
O8—H8A···O9ii0.85 (2)2.04 (3)2.869 (3)165 (3)
O8—H8B···O6viii0.85 (2)1.83 (2)2.664 (3)165 (3)
O9—H9B···O2ix0.86 (3)1.80 (3)2.653 (3)175 (3)
O10—H10A···O6viii0.84 (3)2.25 (2)2.957 (4)143 (3)
O10—H10B···O6iii0.85 (3)2.31 (2)3.099 (4)155 (3)
O11—H11A···O3i0.85 (2)1.88 (3)2.668 (3)154 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+3/2, z; (vi) x+3/2, y+1/2, z1/2; (vii) x+1, y+1, z1/2; (viii) x+3/2, y1/2, z+1/2; (ix) x+1, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2Na+·C2H4O7P24·4H2O
Mr382.16
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)20.966 (7), 5.8928 (18), 11.871 (4)
V3)1466.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5700, 2203, 2021
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.06
No. of reflections2203
No. of parameters236
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.31
Absolute structureFlack (1983), 1217 Friedel pairs
Absolute structure parameter0.10 (10)

Computer programs: SMART (Siemens, 1996), SMART, SHELXTL (Sheldrick, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Na1—O12.312 (2)P1—O21.5231 (19)
Na1—O72.316 (2)P1—O11.5247 (19)
Na1—O5i2.348 (2)P1—C11.855 (3)
Na1—O4i2.414 (3)C1—O41.452 (3)
Na1—O3i2.553 (2)C1—C21.522 (4)
Na2—O102.269 (3)C1—P21.862 (3)
Na2—O92.351 (2)P2—O61.514 (2)
Na2—O52.386 (2)P2—O71.518 (2)
Na2—O82.399 (3)P2—O51.5188 (19)
Na2—O32.418 (2)N1—C31.477 (4)
Na2—O72.706 (3)N2—C41.485 (4)
P1—O31.5219 (19)C3—C41.521 (4)
O3—P1—O2112.43 (11)O4—C1—P2102.90 (16)
O3—P1—O1112.36 (11)C2—C1—P2110.51 (19)
O2—P1—O1110.82 (11)P1—C1—P2114.33 (14)
O3—P1—C1105.93 (11)O6—P2—O7113.40 (15)
O2—P1—C1105.97 (12)O6—P2—O5112.44 (13)
O1—P1—C1108.95 (11)O7—P2—O5110.53 (14)
O4—C1—C2111.7 (2)O6—P2—C1105.57 (12)
O4—C1—P1107.07 (17)O7—P2—C1106.62 (11)
C2—C1—P1110.14 (18)O5—P2—C1107.83 (11)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O70.92 (3)1.80 (3)2.689 (3)160 (3)
O11—H11B···O10.86 (3)1.99 (3)2.804 (3)158 (3)
N1—H1A···O5i0.89 (3)1.90 (3)2.768 (3)163 (3)
N1—H1B···O6ii0.89 (4)1.98 (4)2.850 (4)165 (3)
N2—H2A···O2iii0.91 (4)1.76 (4)2.669 (3)177 (3)
N2—H2B···O1iv0.90 (3)1.91 (3)2.781 (3)163 (3)
N2—H2C···O8v0.89 (4)2.54 (4)3.199 (4)131 (3)
O4—H4···O11vi0.86 (4)1.83 (4)2.686 (3)172 (3)
O8—H8A···O9vii0.85 (2)2.04 (3)2.869 (3)165 (3)
O8—H8B···O6viii0.85 (2)1.83 (2)2.664 (3)165 (3)
O9—H9B···O2ix0.86 (3)1.80 (3)2.653 (3)175 (3)
O10—H10A···O6viii0.84 (3)2.25 (2)2.957 (4)143 (3)
O10—H10B···O6ii0.85 (3)2.31 (2)3.099 (4)155 (3)
O11—H11A···O3i0.85 (2)1.88 (3)2.668 (3)154 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+3/2, z; (v) x+3/2, y+1/2, z1/2; (vi) x+1, y+1, z1/2; (vii) x, y1, z; (viii) x+3/2, y1/2, z+1/2; (ix) x+1, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds