Download citation
Download citation
link to html
A reaction of cis-PtCl2(DMSO)2 (DMSO = di­methyl sulfoxide, C2H6OS) with 2,3,5,6-tetrakis(2-pyridyl)­pyrazine (tpp, C24H16N6) gave the title salt, [Pt2Cl2(μ-tpp)][PtCl3(DMSO)]2. The compound consists of a dinuclear Pt cation, [Pt2Cl2(μ-tpp)]2+, and two [PtCl3(DMSO)] anions. The two Pt atoms within the cation are separated by a distance of 6.4792 (17) Å, and their coordination planes are canted at an angle of 19.6 (9)°. The shortest intermolecular Pt...Pt distance is 4.5726 (16) Å. Metal–metal interactions are unimportant in the crystal structure, and the packing is stabilized by extensive π–π interactions between the tpp moieties, in addition to ionic interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803011541/lh6065sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803011541/lh6065Isup2.hkl
Contains datablock I

CCDC reference: 217354

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.040 Å
  • R factor = 0.079
  • wR factor = 0.117
  • Data-to-parameter ratio = 12.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
THETM_01 Alert B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5559
Author response: See Experimental

Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(5) - C(6) = 1.56 Ang.
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Attempts have been made thus far to develop new types of one-dimensional platinum compounds in our laboratory (Sakai et al., 2002). We were hoping to obtain systems involving relatively large aromatic systems and recently started exploring the coordination chemistry of platinum and 2,3,5,6-tetrakis(2-pyridyl)pyrazine (tpp). The title compound was obtained during efforts to synthesize tetravalent dimer cations of hexadentate tpp, such as [Pt2(NH3)2(µ-tpp)]4+, even though the preparation of such compounds have been unsuccessful so far. Here we report on the crystal structure of an unprecedented double salt obtained for the Pt-tpp family, [Pt2Cl2(µ-tpp)][PtCl3(DMSO)]2, (I).

Up until now, at least 34 tpp complexes have been structurally analyzed by X-ray diffraction (see CCDC), and at least eight kinds of coordination modes have been characterized. These compounds involve mono-, di-, and trinuclear complexes, but there have been no structures of mixed-metal complexes determined. Among them, 12 complexes possess a structure in which tpp bridges two metal centers with two tridentate moieties in a mer fashion. As for Pt, only one compound, namely [Pt2(PEt3)2Cl2(µ-tpp)][Pt(SnCl3)4(PEt3)] (Teles et al., 2000), has been structurally characterized, where tpp binds to two Pt atoms with two bidentate moieties while the two N donors of the pyrazine ring do not take part in the coordination. In this context, this is the first example of a Pt–tpp complex in which tpp bridges two Pt centers in a fully ligated form with two chelates in a mer fashion.

As shown in Fig. 1, a dinuclear cation and two mononuclear anions are found in the asymmetric unit of (I). Displacement parameters of DMSO C and O atoms are relatively large, reflecting the rotational flexibility about the Pt—S axes. The tpp ligand is largely distorted from the planarity in order to avoid the steric contacts between the protons at the 3-position of pyridyl moieties. The twist originated at the tpp ligand is estimated to be ω(tpp) = 26.7 (2)° based on the best-plane calculations performed for two halves of the ligand (see Fig. 2), where 15-atom r.m.s. deviations are 0.102 and 0.117 Å. The twist angle estimated based on the dihedral cant between two Pt coordination planes is ω(Pt1/Pt2) = 19.6 (9)°, where four-atom r.m.s. deviations are 0.008 and 0.014 Å. These values are quite similar to those reported for [Pd2(NO3)2(µ-tpp)](NO3)2·0.5H2O [ω(tpp) = 29.1° and ω(Pd1/Pd2) = 21.9°; Yamada et al., 2000]. On the other hand, Ni complexes are reported to have relatively large twists compared to those discussed above [ω(tpp) = 38.3° and ω(Ni1/Ni2) = 31.9° for [Ni2(acetato)4(H2O)2(µ-tpp)]·CH2O (Koman et al., 1998), and ω(tpp) = 34.6° and ω(Ni1/Ni2) = 25.1° for [Ni2(H2O)6(µ-tpp)](NO3)4·2.5H2O (Graf et al., 1997)].

Shifts of Pt1 and Pt2 atoms from their coordination planes are estimated as 0.020 and 0.003 Å, respectively. The former is clearly relevant to the effective d–π interaction achieved between the Pt atom and the neighbouring tpp moiety [Pt1—C24ii = 3.40 (3) Å; symmetry code: (ii) −x, 1 − y, 1 − z]. However, face-to-face interactions between the tpp ligands appear to dominate the stabilization of crystal packing of (I). The intermolecular Pt···Pt distances listed in Table 1 indicate that Pt···Pt interactions are not enhanced in this system.

Finally, it should be noted that the Pt—Cl distances within the dimer unit [2.278 (7) and 2.268 (7) Å] are effectively shorter than those in [PtCl3(DMSO)] [2.294 (8)–2.320 (7) Å], presumably due to the relatively strong back-donation promoted by the tpp ligand.

Experimental top

A solution of tpp (0.050 mmol, 0.020 g; Goodwin & Lions, 1959) and cis-PtCl2(DMSO)2 (0.10 mmol, 0.042 g; Price et al., 1972) in methanol (15 ml) was reacted within a pressure-resistant sealed tube at 393 K for 12 h. After the solution was cooled down to room temperature, orange prisms of (I) were collected by filtration.

Refinement top

All H atoms were located at their idealized positions as riding atoms (C—H = 0.96 Å for the methyl protons of DMSO and C—H = 0.93 Å for the aromatic protons of tpp). In the final difference Fourier synthesis, 33 residual peaks in the range 1.0–1.55 e Å−3 were observed within ca 1.3 Å of the Pt atoms. Initially, data were collected to θmax of 27.5°, but upon inspection, the data above θmax of 23.3° were essentially unobserved. The the data above 23.3° were discarded for the refinement of the structure. This resulted in 57% of the unique data being having I > 2σ(I).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: KENX (Sakai, 2002); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 1999), KENX and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The structures of the three independent complex ions in (I), showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. A view along the Cl1—Pt1···Pt2—Cl2 axis, showing a twist of the tpp ligand.
[µ-2,3,5,6-Tetrakis(2-pyridyl)pyrazine]bis[chloroplatinum(II)] bis[trichloro(dimethylsulfoxide-κS)platinate(II)] top
Crystal data top
[Pt2Cl2(C24H16N6)][PtCl3(C2H6OS)]2Z = 2
Mr = 1608.64F(000) = 1468
Triclinic, P1Dx = 2.639 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0868 (11) ÅCell parameters from 818 reflections
b = 12.9476 (14) Åθ = 2.5–19.1°
c = 16.5057 (19) ŵ = 14.45 mm1
α = 94.085 (2)°T = 296 K
β = 105.321 (2)°Plate, orange
γ = 100.954 (2)°0.08 × 0.04 × 0.02 mm
V = 2024.3 (4) Å3
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
5638 independent reflections
Radiation source: fine-focus sealed tube3198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 8.366 pixels mm-1θmax = 23.3°, θmin = 1.3°
ω scansh = 1111
Absorption correction: gaussian
(XPREP in SAINT; Bruker, 2001)
k = 1414
Tmin = 0.511, Tmax = 0.868l = 1818
9820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2)]
5638 reflections(Δ/σ)max < 0.001
455 parametersΔρmax = 1.55 e Å3
516 restraintsΔρmin = 1.15 e Å3
Crystal data top
[Pt2Cl2(C24H16N6)][PtCl3(C2H6OS)]2γ = 100.954 (2)°
Mr = 1608.64V = 2024.3 (4) Å3
Triclinic, P1Z = 2
a = 10.0868 (11) ÅMo Kα radiation
b = 12.9476 (14) ŵ = 14.45 mm1
c = 16.5057 (19) ÅT = 296 K
α = 94.085 (2)°0.08 × 0.04 × 0.02 mm
β = 105.321 (2)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
5638 independent reflections
Absorption correction: gaussian
(XPREP in SAINT; Bruker, 2001)
3198 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.868Rint = 0.088
9820 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.079516 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 0.91Δρmax = 1.55 e Å3
5638 reflectionsΔρmin = 1.15 e Å3
455 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.8512 (0.0614) x + 10.7782 (0.0468) y − 4.6091 (0.0679) z = 4.7019 (0.0552)

* −0.0096 (0.0106) N1 * 0.0078 (0.0089) N3 * 0.0081 (0.0090) N6 * −0.0063 (0.0071) Cl1 − 0.0196 (0.0083) Pt1

Rms deviation of fitted atoms = 0.0080

6.7517 (0.0537) x + 7.7647 (0.0739) y − 5.4038 (0.0664) z = 2.2118 (0.0535)

Angle to previous plane (with approximate e.s.d.) = 19.58 (0.85)

* −0.0174 (0.0110) N2 * 0.0141 (0.0090) N4 * 0.0143 (0.0091) N5 * −0.0110 (0.0070) Cl2 0.0027 (0.0085) Pt2

Rms deviation of fitted atoms = 0.0144

3.3898 (0.0167) x + 11.0993 (0.0136) y − 4.6873 (0.0827) z = 4.9330 (0.0381)

Angle to previous plane (with approximate e.s.d.) = 22.38 (0.64)

* −0.0105 (0.0183) N1 * 0.0871 (0.0181) N3 * −0.1101 (0.0188) N6 * 0.0365 (0.0205) C1 * −0.0240 (0.0214) C2 * −0.0626 (0.0226) C3 * −0.0518 (0.0214) C4 * 0.1188 (0.0233) C5 * 0.1497 (0.0199) C6 * −0.1659 (0.0210) C19 * −0.1668 (0.0232) C20 * 0.0856 (0.0214) C21 * 0.1365 (0.0223) C22 * 0.0584 (0.0219) C23 * −0.0808 (0.0216) C24 − 0.0425 (0.0072) Pt1 − 0.0572 (0.0194) Cl1

Rms deviation of fitted atoms = 0.1020

7.2953 (0.0133) x + 6.9817 (0.0221) y − 5.2481 (0.0901) z = 1.7046 (0.0209)

Angle to previous plane (with approximate e.s.d.) = 26.71 (0.23)

* −0.0382 (0.0178) N2 * −0.1742 (0.0199) N4 * 0.1241 (0.0197) N5 * −0.1906 (0.0205) C7 * −0.1263 (0.0230) C8 * 0.1002 (0.0215) C9 * 0.1777 (0.0233) C10 * 0.0254 (0.0231) C11 * −0.0830 (0.0220) C12 * 0.0913 (0.0226) C13 * −0.0244 (0.0215) C14 * −0.0999 (0.0221) C15 * −0.0354 (0.0210) C16 * 0.0798 (0.0224) C17 * 0.1734 (0.0208) C18 − 0.0395 (0.0082) Pt2 − 0.0770 (0.0212) Cl2

Rms deviation of fitted atoms = 0.1170

5.4325 (0.0793) x + 9.3310 (0.0831) y − 5.4008 (0.1234) z = 3.3613 (0.0742)

Angle to previous plane (with approximate e.s.d.) = 13.84 (0.93)

* −0.0112 (0.0158) N1 * −0.0151 (0.0154) N2 * −0.0994 (0.0160) C6 * 0.1107 (0.0159) C7 * −0.0912 (0.0166) C18 * 0.1063 (0.0168) C19

Rms deviation of fitted atoms = 0.0838

6.2140 (0.0183) x + 8.4965 (0.0225) y − 4.4550 (0.0398) z = 6.4807 (0.0222)

Angle to previous plane (with approximate e.s.d.) = 6.82 (1.00)

* 0.0294 (0.0039) Cl3 * −0.0294 (0.0039) Cl4 * 0.0297 (0.0039) Cl5 * −0.0297 (0.0040) S1 0.0232 (0.0041) Pt3

Rms deviation of fitted atoms = 0.0296

3.4853 (0.0242) x − 4.1967 (0.0373) y + 13.2509 (0.0260) z = 0.6451 (0.0234)

Angle to previous plane (with approximate e.s.d.) = 89.79 (0.21)

* 0.0537 (0.0045) Cl6 * −0.0548 (0.0046) Cl7 * 0.0560 (0.0047) Cl8 * −0.0550 (0.0046) S2 0.0046 (0.0050) Pt4

Rms deviation of fitted atoms = 0.0549

0.2069 (0.0242) x + 3.4467 (0.0613) y + 14.5238 (0.0262) z = 8.8818 (0.0304)

Angle to previous plane (with approximate e.s.d.) = 36.83 (0.23)

* 0.4305 (0.0215) C1 * 0.0729 (0.0195) C2 * 0.1073 (0.0209) C23 * 0.3803 (0.0229) C24 * −0.4378 (0.0186) N3 * −0.5121 (0.0190) N6 * −0.4305 (0.0215) C1_$1 * −0.0729 (0.0195) C2_$1 * −0.1073 (0.0209) C23_$1 * −0.3803 (0.0229) C24_$1 * 0.4378 (0.0185) N3_$1 * 0.5121 (0.0189) N6_$1

Rms deviation of fitted atoms = 0.3653

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.07386 (12)0.65039 (8)0.44332 (7)0.0288 (3)
Pt20.25499 (12)0.53161 (9)0.03547 (7)0.0334 (3)
Pt30.05194 (13)0.85989 (9)0.25251 (8)0.0382 (3)
Pt40.49029 (12)0.25699 (9)0.25938 (7)0.0322 (3)
Cl10.0098 (8)0.6901 (5)0.5869 (4)0.045 (2)
Cl20.3209 (8)0.4879 (6)0.1071 (4)0.056 (2)
Cl30.0695 (8)0.8785 (7)0.1172 (5)0.062 (3)
Cl40.1616 (8)0.7434 (6)0.1950 (5)0.053 (2)
Cl50.1785 (9)0.8377 (6)0.3852 (5)0.059 (2)
Cl60.6873 (9)0.2354 (6)0.3081 (6)0.066 (3)
Cl70.4423 (9)0.4365 (6)0.2991 (5)0.058 (2)
Cl80.2887 (7)0.2848 (6)0.2190 (5)0.050 (2)
S10.0597 (8)0.9645 (5)0.3081 (5)0.043 (2)
S20.5377 (10)0.0878 (7)0.2138 (7)0.071 (3)
O10.184 (2)0.9102 (14)0.3277 (13)0.062 (6)
O20.453 (2)0.0460 (16)0.1631 (16)0.084 (7)
N10.124 (2)0.6167 (15)0.3204 (13)0.023 (4)
N20.201 (2)0.5659 (15)0.1562 (13)0.023 (5)
N30.252 (2)0.7057 (14)0.4175 (13)0.025 (5)
N40.372 (2)0.6385 (16)0.0414 (14)0.040 (5)
N50.120 (2)0.4377 (16)0.0674 (14)0.037 (5)
N60.092 (2)0.5901 (15)0.4349 (13)0.026 (5)
C10.316 (3)0.7424 (18)0.4695 (16)0.030 (5)
H10.27040.75350.52730.036*
C20.446 (3)0.7649 (19)0.4414 (17)0.036 (6)
H20.48630.79240.48040.043*
C30.516 (3)0.749 (2)0.3603 (18)0.042 (6)
H30.60430.76500.34260.050*
C40.458 (3)0.7067 (19)0.3010 (18)0.036 (6)
H40.50720.68900.24400.044*
C50.317 (3)0.6929 (19)0.3338 (17)0.032 (5)
C60.235 (3)0.6468 (18)0.2775 (16)0.025 (5)
C70.265 (3)0.6354 (18)0.1881 (17)0.029 (5)
C80.352 (3)0.685 (2)0.1205 (17)0.032 (5)
C90.400 (3)0.7773 (19)0.1339 (17)0.036 (6)
H90.37880.81090.18890.043*
C100.477 (3)0.820 (2)0.0688 (18)0.043 (6)
H100.50890.88150.07850.051*
C110.507 (3)0.767 (2)0.0129 (19)0.051 (7)
H110.56470.78950.05910.061*
C120.447 (3)0.682 (2)0.0228 (18)0.044 (6)
H120.45920.65190.07790.052*
C130.097 (3)0.369 (2)0.014 (2)0.053 (7)
H130.13190.36970.04380.064*
C140.018 (3)0.292 (2)0.0439 (18)0.044 (6)
H140.00140.24320.00580.053*
C150.032 (3)0.292 (2)0.1270 (18)0.041 (6)
H150.08210.24080.14710.049*
C160.011 (3)0.3649 (19)0.1822 (18)0.038 (6)
H160.04720.36570.24030.046*
C170.066 (3)0.4385 (19)0.1512 (17)0.030 (5)
C180.101 (3)0.5257 (19)0.2015 (17)0.029 (5)
C190.045 (3)0.5659 (19)0.2905 (17)0.029 (5)
C200.086 (3)0.552 (2)0.3533 (18)0.035 (5)
C210.204 (3)0.5319 (19)0.3366 (18)0.038 (6)
H210.20690.52000.28090.045*
C220.318 (3)0.529 (2)0.4010 (19)0.043 (6)
H220.39530.50850.38930.052*
C230.321 (3)0.555 (2)0.4825 (19)0.043 (6)
H230.39910.55420.52720.052*
C240.207 (3)0.5835 (19)0.4963 (17)0.034 (6)
H240.20760.59950.55220.040*
C250.049 (3)1.041 (2)0.403 (2)0.082 (11)
H25A0.00241.09240.42080.122*
H25B0.13591.07660.39390.122*
H25C0.06960.99540.44600.122*
C260.098 (3)1.069 (2)0.248 (2)0.066 (10)
H26A0.18831.04600.20640.099*
H26B0.02691.08910.21960.099*
H26C0.10001.12940.28470.099*
C270.717 (3)0.040 (3)0.148 (2)0.084 (11)
H27A0.74120.08990.10900.125*
H27B0.77970.03300.18310.125*
H27C0.72550.02740.11690.125*
C280.549 (5)0.017 (3)0.297 (3)0.147 (18)
H28A0.61870.03720.32120.221*
H28B0.45950.03240.33890.221*
H28C0.57610.05720.27670.221*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0364 (8)0.0275 (7)0.0203 (7)0.0084 (6)0.0037 (6)0.0022 (5)
Pt20.0376 (8)0.0380 (7)0.0207 (7)0.0049 (6)0.0043 (6)0.0026 (6)
Pt30.0414 (8)0.0322 (7)0.0433 (9)0.0066 (6)0.0171 (7)0.0030 (6)
Pt40.0332 (8)0.0328 (7)0.0322 (8)0.0085 (6)0.0098 (6)0.0083 (6)
Cl10.059 (5)0.046 (5)0.027 (5)0.017 (4)0.002 (4)0.004 (4)
Cl20.067 (6)0.069 (6)0.018 (4)0.008 (5)0.001 (4)0.010 (4)
Cl30.054 (6)0.093 (6)0.039 (5)0.027 (5)0.007 (5)0.003 (5)
Cl40.069 (6)0.048 (5)0.051 (5)0.029 (4)0.021 (5)0.002 (4)
Cl50.080 (6)0.064 (5)0.046 (5)0.031 (5)0.024 (5)0.017 (4)
Cl60.055 (6)0.076 (6)0.078 (7)0.018 (5)0.036 (5)0.016 (5)
Cl70.072 (6)0.046 (5)0.061 (6)0.014 (4)0.024 (5)0.006 (4)
Cl80.029 (5)0.068 (5)0.050 (5)0.002 (4)0.014 (4)0.008 (4)
S10.043 (5)0.023 (4)0.066 (6)0.002 (4)0.025 (5)0.006 (4)
S20.070 (7)0.047 (5)0.109 (8)0.016 (5)0.049 (6)0.007 (5)
O10.049 (11)0.054 (11)0.082 (13)0.000 (9)0.026 (10)0.004 (10)
O20.082 (13)0.060 (12)0.112 (15)0.024 (10)0.030 (12)0.018 (11)
N10.014 (9)0.030 (9)0.025 (9)0.010 (8)0.001 (8)0.007 (8)
N20.013 (9)0.028 (9)0.023 (9)0.000 (8)0.004 (8)0.003 (8)
N30.028 (9)0.029 (9)0.019 (9)0.012 (8)0.002 (8)0.011 (8)
N40.048 (10)0.039 (10)0.025 (10)0.000 (9)0.003 (9)0.010 (8)
N50.045 (10)0.036 (10)0.029 (10)0.006 (8)0.014 (9)0.002 (9)
N60.021 (9)0.034 (9)0.025 (10)0.017 (8)0.002 (8)0.001 (8)
C10.032 (10)0.036 (10)0.022 (10)0.010 (9)0.010 (9)0.003 (9)
C20.035 (11)0.041 (10)0.033 (11)0.006 (9)0.015 (9)0.007 (10)
C30.043 (11)0.037 (10)0.040 (11)0.007 (9)0.003 (10)0.003 (10)
C40.036 (11)0.035 (10)0.035 (11)0.008 (9)0.006 (9)0.003 (9)
C50.025 (9)0.031 (9)0.034 (10)0.003 (8)0.002 (8)0.001 (9)
C60.022 (9)0.021 (9)0.026 (9)0.008 (8)0.005 (8)0.010 (8)
C70.028 (9)0.022 (9)0.030 (9)0.007 (8)0.002 (8)0.010 (8)
C80.034 (10)0.027 (9)0.033 (10)0.005 (8)0.003 (9)0.015 (8)
C90.043 (11)0.031 (10)0.033 (11)0.016 (9)0.001 (9)0.019 (9)
C100.046 (11)0.042 (11)0.037 (11)0.020 (9)0.003 (10)0.021 (10)
C110.056 (12)0.053 (11)0.036 (11)0.011 (10)0.001 (10)0.019 (10)
C120.053 (11)0.046 (11)0.030 (11)0.010 (10)0.007 (10)0.005 (10)
C130.052 (11)0.057 (12)0.048 (11)0.007 (10)0.014 (10)0.004 (10)
C140.046 (11)0.044 (11)0.043 (11)0.004 (10)0.019 (10)0.003 (10)
C150.043 (11)0.042 (11)0.041 (11)0.008 (9)0.018 (10)0.006 (10)
C160.047 (11)0.035 (11)0.036 (11)0.004 (9)0.025 (9)0.002 (9)
C170.032 (9)0.029 (9)0.031 (9)0.002 (8)0.015 (8)0.000 (9)
C180.023 (9)0.028 (9)0.032 (9)0.003 (8)0.007 (8)0.007 (8)
C190.024 (9)0.025 (9)0.036 (10)0.006 (8)0.003 (8)0.013 (8)
C200.029 (9)0.034 (9)0.043 (10)0.006 (8)0.009 (9)0.012 (9)
C210.030 (11)0.041 (10)0.045 (11)0.005 (9)0.016 (9)0.016 (9)
C220.034 (11)0.044 (11)0.049 (12)0.015 (9)0.001 (10)0.015 (10)
C230.043 (11)0.043 (11)0.042 (11)0.015 (9)0.001 (10)0.026 (10)
C240.037 (11)0.042 (10)0.029 (11)0.020 (9)0.011 (9)0.009 (9)
C250.097 (19)0.068 (17)0.075 (19)0.036 (15)0.010 (15)0.012 (14)
C260.066 (17)0.065 (16)0.072 (18)0.031 (14)0.011 (14)0.023 (14)
C270.072 (18)0.081 (17)0.090 (19)0.012 (14)0.016 (15)0.000 (14)
C280.16 (2)0.13 (2)0.15 (2)0.037 (17)0.042 (18)0.025 (17)
Geometric parameters (Å, º) top
Pt1—N11.95 (2)N2—C181.31 (3)
Pt1—N62.008 (18)N2—C71.36 (3)
Pt1—N32.017 (19)N3—C11.31 (3)
Pt1—Cl12.278 (7)N3—C51.35 (3)
Pt2—N21.92 (2)N4—C81.35 (3)
Pt2—N51.99 (2)N4—C121.36 (3)
Pt2—N41.99 (2)N5—C131.30 (3)
Pt2—Cl22.268 (7)N5—C171.34 (3)
Pt3—S12.212 (7)N6—C241.35 (3)
Pt3—Cl52.294 (8)N6—C201.38 (3)
Pt3—Cl32.300 (8)C1—C21.37 (3)
Pt3—Cl42.320 (7)C2—C31.32 (3)
Pt4—S22.184 (8)C3—C41.39 (3)
Pt4—Cl82.276 (7)C4—C51.43 (3)
Pt4—Cl72.292 (7)C5—C61.56 (3)
Pt4—Cl62.310 (8)C6—C71.42 (3)
Pt1—Pt26.4792 (17)C7—C81.49 (3)
Pt1—Pt34.5726 (16)C8—C91.40 (3)
Pt2—Pt2i4.662 (2)C9—C101.37 (3)
Pt1—Pt1ii4.760 (2)C10—C111.40 (4)
Pt2—Pt35.2396 (16)C11—C121.37 (3)
Pt2—Pt2iii5.758 (2)C13—C141.42 (3)
Pt2—Pt45.9359 (16)C14—C151.33 (3)
Pt1—Pt45.9778 (16)C15—C161.36 (3)
Pt1—C24ii3.40 (3)C16—C171.38 (3)
S1—O11.445 (18)C17—C181.50 (3)
S1—C251.76 (3)C18—C191.45 (3)
S1—C261.78 (3)C19—C201.50 (3)
S2—O21.49 (2)C20—C211.36 (3)
S2—C281.72 (4)C21—C221.35 (3)
S2—C271.81 (3)C22—C231.36 (3)
N1—C191.29 (3)C23—C241.33 (3)
N1—C61.30 (3)
N1—Pt1—N681.2 (8)C1—N3—Pt1129.5 (18)
N1—Pt1—N383.4 (8)C5—N3—Pt1111.8 (16)
N6—Pt1—N3164.6 (8)C8—N4—C12117 (2)
N1—Pt1—Cl1178.6 (6)C8—N4—Pt2113.7 (18)
N6—Pt1—Cl197.6 (6)C12—N4—Pt2128.7 (19)
N3—Pt1—Cl197.8 (6)C13—N5—C17120 (2)
N1—Pt1—Pt1ii106.0 (6)C13—N5—Pt2124 (2)
N6—Pt1—Pt1ii50.9 (6)C17—N5—Pt2114.8 (17)
N3—Pt1—Pt1ii136.5 (5)C24—N6—C20116 (2)
Cl1—Pt1—Pt1ii73.60 (17)C24—N6—Pt1129.5 (17)
N2—Pt2—N580.5 (9)C20—N6—Pt1114.1 (17)
N2—Pt2—N482.1 (9)N3—C1—C2122 (3)
N5—Pt2—N4162.5 (9)C3—C2—C1121 (3)
N2—Pt2—Cl2179.0 (6)C2—C3—C4120 (3)
N5—Pt2—Cl299.1 (7)C3—C4—C5116 (3)
N4—Pt2—Cl298.4 (7)N3—C5—C4122 (2)
N2—Pt2—Pt2i102.7 (6)N3—C5—C6114 (2)
N5—Pt2—Pt2i132.4 (6)C4—C5—C6123 (2)
N4—Pt2—Pt2i53.2 (6)N1—C6—C7118 (2)
Cl2—Pt2—Pt2i76.8 (2)N1—C6—C5114 (2)
S1—Pt3—Cl590.6 (3)C7—C6—C5128 (2)
S1—Pt3—Cl391.6 (3)N2—C7—C6114 (2)
Cl5—Pt3—Cl3177.7 (3)N2—C7—C8112 (2)
S1—Pt3—Cl4177.3 (3)C6—C7—C8134 (2)
Cl5—Pt3—Cl489.0 (3)N4—C8—C9121 (2)
Cl3—Pt3—Cl488.7 (3)N4—C8—C7114 (2)
S2—Pt4—Cl891.7 (3)C9—C8—C7125 (3)
S2—Pt4—Cl7176.6 (4)C10—C9—C8122 (3)
Cl8—Pt4—Cl787.0 (3)C9—C10—C11117 (3)
S2—Pt4—Cl690.9 (3)C12—C11—C10118 (3)
Cl8—Pt4—Cl6176.5 (3)N4—C12—C11125 (3)
Cl7—Pt4—Cl690.6 (3)N5—C13—C14121 (3)
O1—S1—C25106.2 (14)C15—C14—C13119 (3)
O1—S1—C26110.3 (13)C14—C15—C16120 (3)
C25—S1—C2698.9 (15)C15—C16—C17119 (3)
O1—S1—Pt3114.9 (8)N5—C17—C16121 (2)
C25—S1—Pt3111.9 (11)N5—C17—C18112 (2)
C26—S1—Pt3113.2 (11)C16—C17—C18127 (3)
O2—S2—C28111.9 (18)N2—C18—C19118 (2)
O2—S2—C27103.5 (16)N2—C18—C17112 (2)
C28—S2—C2798.0 (18)C19—C18—C17130 (2)
O2—S2—Pt4119.8 (10)N1—C19—C18114 (2)
C28—S2—Pt4108.8 (15)N1—C19—C20116 (2)
C27—S2—Pt4112.6 (11)C18—C19—C20130 (2)
C19—N1—C6127 (2)C21—C20—N6119 (3)
C19—N1—Pt1116.8 (18)C21—C20—C19127 (3)
C6—N1—Pt1116.2 (16)N6—C20—C19111 (2)
C18—N2—C7125 (2)C22—C21—C20120 (3)
C18—N2—Pt2118.4 (17)C21—C22—C23121 (3)
C7—N2—Pt2116.9 (17)C24—C23—C22118 (3)
C1—N3—C5118 (2)C23—C24—N6125 (3)
Cl5—Pt3—S1—O187.0 (11)Pt1—N1—C6—C57 (3)
Cl3—Pt3—S1—O193.3 (11)N3—C5—C6—N17 (3)
Cl5—Pt3—S1—C2534.2 (12)C4—C5—C6—N1164 (2)
Cl3—Pt3—S1—C25145.6 (12)N3—C5—C6—C7172 (2)
Cl5—Pt3—S1—C26144.9 (12)C4—C5—C6—C716 (4)
Cl3—Pt3—S1—C2634.8 (12)C18—N2—C7—C611 (3)
Cl8—Pt4—S2—O29.2 (13)Pt2—N2—C7—C6172.1 (15)
Cl6—Pt4—S2—O2173.2 (13)C18—N2—C7—C8168 (2)
Cl8—Pt4—S2—C28121.2 (16)Pt2—N2—C7—C89 (3)
Cl6—Pt4—S2—C2856.3 (16)N1—C6—C7—N219 (3)
Cl8—Pt4—S2—C27131.3 (14)C5—C6—C7—N2162 (2)
Cl6—Pt4—S2—C2751.2 (14)N1—C6—C7—C8160 (3)
N6—Pt1—N1—C196.1 (18)C5—C6—C7—C819 (4)
N3—Pt1—N1—C19175.4 (19)C12—N4—C8—C94 (4)
Pt1ii—Pt1—N1—C1938.8 (19)Pt2—N4—C8—C9165.2 (19)
N6—Pt1—N1—C6174.7 (18)C12—N4—C8—C7178 (2)
N3—Pt1—N1—C63.8 (17)Pt2—N4—C8—C79 (3)
Pt1ii—Pt1—N1—C6140.4 (16)N2—C7—C8—N411 (3)
N5—Pt2—N2—C185.8 (18)C6—C7—C8—N4170 (3)
N4—Pt2—N2—C18173.3 (19)N2—C7—C8—C9162 (2)
Pt2i—Pt2—N2—C18137.4 (17)C6—C7—C8—C917 (4)
N5—Pt2—N2—C7177.5 (18)N4—C8—C9—C105 (4)
N4—Pt2—N2—C73.3 (17)C7—C8—C9—C10179 (2)
Pt2i—Pt2—N2—C746.0 (17)C8—C9—C10—C110 (4)
N1—Pt1—N3—C1175 (2)C9—C10—C11—C125 (4)
N6—Pt1—N3—C1180 (3)C8—N4—C12—C111 (4)
Cl1—Pt1—N3—C16 (2)Pt2—N4—C12—C11169 (2)
Pt1ii—Pt1—N3—C168 (2)C10—C11—C12—N46 (4)
N1—Pt1—N3—C50.5 (17)C17—N5—C13—C142 (4)
N6—Pt1—N3—C56 (4)Pt2—N5—C13—C14168.7 (18)
Cl1—Pt1—N3—C5179.9 (16)N5—C13—C14—C150 (4)
Pt1ii—Pt1—N3—C5105.8 (16)C13—C14—C15—C162 (4)
N2—Pt2—N4—C83.4 (18)C14—C15—C16—C171 (4)
N5—Pt2—N4—C81 (4)C13—N5—C17—C162 (4)
Cl2—Pt2—N4—C8177.6 (17)Pt2—N5—C17—C16169.5 (18)
Pt2i—Pt2—N4—C8115.9 (19)C13—N5—C17—C18178 (2)
N2—Pt2—N4—C12171 (2)Pt2—N5—C17—C1811 (3)
N5—Pt2—N4—C12169 (2)C15—C16—C17—N50 (4)
Cl2—Pt2—N4—C1210 (2)C15—C16—C17—C18180 (2)
Pt2i—Pt2—N4—C1276 (2)C7—N2—C18—C197 (4)
N2—Pt2—N5—C13174 (2)Pt2—N2—C18—C19169.9 (16)
N4—Pt2—N5—C13177 (2)C7—N2—C18—C17171 (2)
Cl2—Pt2—N5—C135 (2)Pt2—N2—C18—C1713 (3)
Pt2i—Pt2—N5—C1376 (2)N5—C17—C18—N215 (3)
N2—Pt2—N5—C173.5 (17)C16—C17—C18—N2165 (2)
N4—Pt2—N5—C176 (4)N5—C17—C18—C19168 (2)
Cl2—Pt2—N5—C17175.5 (17)C16—C17—C18—C1912 (4)
Pt2i—Pt2—N5—C1795.1 (18)C6—N1—C19—C1810 (4)
N1—Pt1—N6—C24176 (2)Pt1—N1—C19—C18169.0 (16)
N3—Pt1—N6—C24170 (2)C6—N1—C19—C20173 (2)
Cl1—Pt1—N6—C244 (2)Pt1—N1—C19—C208 (3)
Pt1ii—Pt1—N6—C2465 (2)N2—C18—C19—N117 (3)
N1—Pt1—N6—C203.0 (17)C17—C18—C19—N1159 (2)
N3—Pt1—N6—C209 (4)N2—C18—C19—C20166 (2)
Cl1—Pt1—N6—C20177.7 (16)C17—C18—C19—C2017 (4)
Pt1ii—Pt1—N6—C20116.0 (19)C24—N6—C20—C2113 (4)
C5—N3—C1—C22 (4)Pt1—N6—C20—C21165.2 (19)
Pt1—N3—C1—C2171.8 (18)C24—N6—C20—C19179 (2)
N3—C1—C2—C31 (4)Pt1—N6—C20—C190 (3)
C1—C2—C3—C40 (4)N1—C19—C20—C21159 (3)
C2—C3—C4—C55 (4)C18—C19—C20—C2125 (4)
C1—N3—C5—C47 (4)N1—C19—C20—N65 (3)
Pt1—N3—C5—C4167.6 (19)C18—C19—C20—N6171 (2)
C1—N3—C5—C6179 (2)N6—C20—C21—C2213 (4)
Pt1—N3—C5—C64 (3)C19—C20—C21—C22175 (2)
C3—C4—C5—N39 (4)C20—C21—C22—C236 (4)
C3—C4—C5—C6180 (2)C21—C22—C23—C241 (4)
C19—N1—C6—C78 (4)C22—C23—C24—N62 (4)
Pt1—N1—C6—C7172.6 (16)C20—N6—C24—C238 (4)
C19—N1—C6—C5172 (2)Pt1—N6—C24—C23170 (2)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pt2Cl2(C24H16N6)][PtCl3(C2H6OS)]2
Mr1608.64
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.0868 (11), 12.9476 (14), 16.5057 (19)
α, β, γ (°)94.085 (2), 105.321 (2), 100.954 (2)
V3)2024.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)14.45
Crystal size (mm)0.08 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionGaussian
(XPREP in SAINT; Bruker, 2001)
Tmin, Tmax0.511, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
9820, 5638, 3198
Rint0.088
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.117, 0.91
No. of reflections5638
No. of parameters455
No. of restraints516
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.55, 1.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), KENX (Sakai, 2002), SHELXL97, TEXSAN (Molecular Structure Corporation, 1999), KENX and ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Pt1—N11.95 (2)Pt4—Cl82.276 (7)
Pt1—N62.008 (18)Pt4—Cl72.292 (7)
Pt1—N32.017 (19)Pt4—Cl62.310 (8)
Pt1—Cl12.278 (7)Pt1—Pt26.4792 (17)
Pt2—N21.92 (2)Pt1—Pt34.5726 (16)
Pt2—N51.99 (2)Pt2—Pt2i4.662 (2)
Pt2—N41.99 (2)Pt1—Pt1ii4.760 (2)
Pt2—Cl22.268 (7)Pt2—Pt35.2396 (16)
Pt3—S12.212 (7)Pt2—Pt2iii5.758 (2)
Pt3—Cl52.294 (8)Pt2—Pt45.9359 (16)
Pt3—Cl32.300 (8)Pt1—Pt45.9778 (16)
Pt3—Cl42.320 (7)Pt1—C24ii3.40 (3)
Pt4—S22.184 (8)
N1—Pt1—N681.2 (8)S1—Pt3—Cl590.6 (3)
N1—Pt1—N383.4 (8)S1—Pt3—Cl391.6 (3)
N6—Pt1—N3164.6 (8)Cl5—Pt3—Cl3177.7 (3)
N1—Pt1—Cl1178.6 (6)S1—Pt3—Cl4177.3 (3)
N6—Pt1—Cl197.6 (6)Cl5—Pt3—Cl489.0 (3)
N3—Pt1—Cl197.8 (6)Cl3—Pt3—Cl488.7 (3)
N2—Pt2—N580.5 (9)S2—Pt4—Cl891.7 (3)
N2—Pt2—N482.1 (9)S2—Pt4—Cl7176.6 (4)
N5—Pt2—N4162.5 (9)Cl8—Pt4—Cl787.0 (3)
N2—Pt2—Cl2179.0 (6)S2—Pt4—Cl690.9 (3)
N5—Pt2—Cl299.1 (7)Cl8—Pt4—Cl6176.5 (3)
N4—Pt2—Cl298.4 (7)Cl7—Pt4—Cl690.6 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds