Download citation
Download citation
link to html
In the title compound, [Sn2(CH2)(CH3)4Cl2]·C6H18N3OP, the mol­ecule lies on a mirror plane. The two pentacoordinated Sn atoms are part of a planar four-membered —C—Sn...Cl—Sn— ring [Sn—C 2.103 (4) and 2.093 (4), Sn—Cl 2.6333 (11) and Sn...Cl 3.0369 (12) Å; Sn—C—Sn 115.8 (2)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021001/lh6014sup1.cif
Contains datablocks I, ccd1801

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021001/lh6014Isup2.hkl
Contains datablock I

CCDC reference: 202294

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](N-C) = 0.004 Å
  • R factor = 0.027
  • wR factor = 0.063
  • Data-to-parameter ratio = 25.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Although bis(chlorodimethylstannyl)methane is a potential acceptor for either one or two monodentate ligands, only 1:1 adducts have so far been described. Two types of coordination are known: either both Sn atoms undergo bonding in such a way that the ligand bridges the two Sn atoms, as in the case of dimethyl sulfoxide (Mandolesi et al., 2001), both Sn atoms thus increasing coordination number to five, or only one Sn atom undergoes coordination, as in the case of pyridine (Austin et al., 1987). In the title compound, HMPA bonds via O to give a structure completely analogous to the 1:1 adduct formed by the nitrogen donor pyridine. The ligand is complexed to one Sn atom site to form an almost perfect trigonal bipyramid. Cl1 does however interact with Sn2, the distance between these atoms being 3.0369 (12) Å [pyridine: 3.009 (3) Å], so that Sn2 also has a distorted trigonal bipyramidal geometry (angle Cl1—Sn2—Cl2 176.98 (4) ° [pyridine 176.3 (1) °]). The Sn—Cl bond lengths are very different {Sn2—Cl2 2.4403 (12) Å [pyridine 2.468 (2) Å and Sn1—Cl1 2.6333 (11) Å [pyridine 2.638 (3) Å]}. A further similaritie between (I) and the pyridine adduct, is the bond angle O1—Sn1—Cl1 [176.27 (8)° in (I) cf. 175.4 (2)° in pyridine]. Atoms Sn1, Cl1, C3, Sn2, Cl2, O1, P1 and N1 lie on a mirror plane.

Experimental top

0.3 g (0.73 mmol) of 2,2-bis(chlorodimethylstannyl)propane (Austin et al., 1987; Karol et al., 1983) was dissolved in 2 ml of dry HMPA and the mixture stirred for 30 min. The solution was left overnight at 287–288 K. The crystals were separated and dried very carefully to remove the solvent from their surface; m.p. 407–410 K, yield 56%.

Refinement top

H atoms were placed in calculated positions, with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl-H and 1.2 times Ueq for the remaining H atoms. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995), PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. : View of the title compound, showing the labelling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted. [Symmetry code: (i) x, 1/2 − y, z.]
(I) top
Crystal data top
[Sn2(CH2)(CH3)4Cl2]·C6H18N3OPF(000) = 1104
Mr = 561.65Dx = 1.637 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 14378 reflections
a = 12.7116 (3) Åθ = 3.2–27.5°
b = 12.4934 (3) ŵ = 2.50 mm1
c = 14.3478 (3) ÅT = 291 K
V = 2278.59 (9) Å3Block, colourless
Z = 40.19 × 0.13 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
1915 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 19 vertical, 18 horizontal pixels mm-1h = 1616
200 frames via ω–rotation (Δω=1°) and two times 20 s per frame (two sets at different κ–angles) scansk = 1616
14378 measured reflectionsl = 1818
2727 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0298P)2]
where P = (Fo2 + 2Fc2)/3
2727 reflections(Δ/σ)max < 0.001
108 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Sn2(CH2)(CH3)4Cl2]·C6H18N3OPV = 2278.59 (9) Å3
Mr = 561.65Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.7116 (3) ŵ = 2.50 mm1
b = 12.4934 (3) ÅT = 291 K
c = 14.3478 (3) Å0.19 × 0.13 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
1915 reflections with I > 2σ(I)
14378 measured reflectionsRint = 0.031
2727 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 0.96Δρmax = 0.40 e Å3
2727 reflectionsΔρmin = 0.40 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.21628 (2)0.25000.077044 (17)0.05681 (11)
Sn20.06152 (2)0.25000.048315 (19)0.06293 (12)
Cl10.08251 (9)0.25000.21718 (8)0.1145 (6)
Cl20.16903 (10)0.25000.09260 (8)0.1054 (5)
P10.42450 (7)0.25000.09331 (7)0.0471 (2)
O10.3201 (2)0.25000.04734 (18)0.0765 (8)
N10.43418 (17)0.13894 (19)0.15287 (17)0.0675 (7)
N20.5279 (2)0.25000.0270 (2)0.0540 (7)
C10.2817 (3)0.1031 (4)0.1193 (3)0.1417 (19)
H1A0.22680.05660.14090.213*
H1B0.33110.11530.16880.213*
H1C0.31720.07050.06750.213*
C20.1172 (5)0.1057 (5)0.1036 (4)0.190 (3)
H2B0.05870.06180.12180.285*
H2C0.15810.06890.05740.285*
H2D0.16030.12020.15710.285*
C30.0870 (3)0.25000.0145 (3)0.0933 (18)
H3A0.09220.31260.05430.112*0.50
H3B0.09220.18740.05430.112*0.50
C110.5271 (3)0.1143 (3)0.2078 (3)0.1061 (12)
H11A0.53790.03820.20870.159*
H11B0.58730.14860.18070.159*
H11C0.51740.13970.27040.159*
C120.3403 (3)0.0817 (3)0.1832 (2)0.1040 (13)
H12A0.35390.00620.18290.156*
H12B0.32190.10400.24510.156*
H12C0.28320.09730.14160.156*
C130.5671 (2)0.1525 (3)0.0171 (3)0.0819 (10)
H13A0.64170.14740.00800.123*
H13B0.53330.09150.01030.123*
H13C0.55190.15470.08270.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04825 (18)0.0723 (2)0.04984 (16)0.0000.00032 (11)0.000
Sn20.04753 (18)0.0853 (2)0.05598 (18)0.0000.00816 (12)0.000
Cl10.0819 (9)0.2134 (19)0.0481 (6)0.0000.0139 (6)0.000
Cl20.0661 (8)0.1812 (15)0.0689 (7)0.0000.0077 (6)0.000
P10.0431 (5)0.0543 (6)0.0440 (5)0.0000.0021 (4)0.000
O10.0479 (16)0.121 (3)0.0610 (16)0.0000.0094 (13)0.000
N10.0754 (17)0.0616 (16)0.0654 (14)0.0044 (12)0.0048 (12)0.0120 (13)
N20.0511 (18)0.053 (2)0.0578 (17)0.0000.0083 (15)0.000
C10.140 (4)0.139 (4)0.146 (4)0.057 (3)0.044 (3)0.077 (3)
C20.177 (5)0.214 (6)0.179 (5)0.106 (5)0.062 (4)0.113 (4)
C30.047 (2)0.171 (6)0.062 (3)0.0000.000 (2)0.000
C110.128 (3)0.097 (3)0.094 (2)0.032 (3)0.022 (2)0.023 (2)
C120.135 (3)0.080 (3)0.097 (3)0.034 (2)0.037 (2)0.0062 (19)
C130.072 (2)0.087 (3)0.086 (2)0.0040 (17)0.0198 (17)0.021 (2)
Geometric parameters (Å, º) top
Sn1—C32.103 (4)C1—H1A0.9600
Sn1—C1i2.104 (4)C1—H1B0.9600
Sn1—C12.104 (4)C1—H1C0.9600
Sn1—O12.220 (3)C2—H2B0.9600
Sn1—Cl12.6333 (11)C2—H2C0.9600
Sn2—C2i2.092 (5)C2—H2D0.9600
Sn2—C22.092 (5)C3—H3A0.9700
Sn2—C32.093 (4)C3—H3B0.9700
Sn2—Cl22.4403 (12)C11—H11A0.9600
Sn2—Cl13.0369 (12)C11—H11B0.9600
P1—O11.482 (3)C11—H11C0.9600
P1—N21.623 (3)C12—H12A0.9600
P1—N11.634 (2)C12—H12B0.9600
P1—N1i1.634 (2)C12—H12C0.9600
N1—C111.453 (4)C13—H13A0.9600
N1—C121.458 (4)C13—H13B0.9600
N2—C13i1.459 (3)C13—H13C0.9600
N2—C131.459 (3)
C3—Sn1—C1i119.27 (15)Sn1—C1—H1B109.5
C3—Sn1—C1119.27 (15)H1A—C1—H1B109.5
C1i—Sn1—C1121.4 (3)Sn1—C1—H1C109.5
C3—Sn1—O187.84 (13)H1A—C1—H1C109.5
C1i—Sn1—O189.81 (12)H1B—C1—H1C109.5
C1—Sn1—O189.81 (12)Sn2—C2—H2B109.5
C3—Sn1—Cl188.42 (12)Sn2—C2—H2C109.5
C1i—Sn1—Cl192.02 (12)H2B—C2—H2C109.5
C1—Sn1—Cl192.02 (12)Sn2—C2—H2D109.5
O1—Sn1—Cl1176.27 (8)H2B—C2—H2D109.5
C2i—Sn2—C2118.9 (4)H2C—C2—H2D109.5
C2i—Sn2—C3117.9 (2)Sn2—C3—Sn1115.8 (2)
C2—Sn2—C3117.9 (2)Sn2—C3—H3A108.3
C2i—Sn2—Cl297.17 (14)Sn1—C3—H3A108.3
C2—Sn2—Cl297.17 (14)Sn2—C3—H3B108.3
C3—Sn2—Cl298.54 (12)Sn1—C3—H3B108.3
C2i—Sn2—Cl184.33 (14)H3A—C3—H3B107.4
C2—Sn2—Cl184.33 (14)N1—C11—H11A109.5
C3—Sn2—Cl178.44 (12)N1—C11—H11B109.5
Cl2—Sn2—Cl1176.98 (4)H11A—C11—H11B109.5
Sn1—Cl1—Sn277.30 (3)N1—C11—H11C109.5
O1—P1—N2117.66 (17)H11A—C11—H11C109.5
O1—P1—N1107.47 (10)H11B—C11—H11C109.5
N2—P1—N1104.22 (10)N1—C12—H12A109.5
O1—P1—N1i107.47 (10)N1—C12—H12B109.5
N2—P1—N1i104.22 (10)H12A—C12—H12B109.5
N1—P1—N1i116.21 (18)N1—C12—H12C109.5
P1—O1—Sn1152.92 (17)H12A—C12—H12C109.5
C11—N1—C12113.5 (3)H12B—C12—H12C109.5
C11—N1—P1121.7 (2)N2—C13—H13A109.5
C12—N1—P1120.7 (2)N2—C13—H13B109.5
C13i—N2—C13113.1 (3)H13A—C13—H13B109.5
C13i—N2—P1122.02 (17)N2—C13—H13C109.5
C13—N2—P1122.02 (17)H13A—C13—H13C109.5
Sn1—C1—H1A109.5H13B—C13—H13C109.5
C3—Sn1—Cl1—Sn20.0N2—P1—N1—C12148.8 (2)
C1i—Sn1—Cl1—Sn2119.23 (15)N1i—P1—N1—C1297.2 (3)
C1—Sn1—Cl1—Sn2119.23 (15)O1—P1—N2—C13i79.7 (3)
C2i—Sn2—Cl1—Sn1120.0 (2)N1—P1—N2—C13i161.4 (3)
C2—Sn2—Cl1—Sn1120.0 (2)N1i—P1—N2—C13i39.1 (3)
C3—Sn2—Cl1—Sn10.0O1—P1—N2—C1379.7 (3)
N2—P1—O1—Sn10.0N1—P1—N2—C1339.1 (3)
N1—P1—O1—Sn1117.12 (10)N1i—P1—N2—C13161.4 (3)
N1i—P1—O1—Sn1117.12 (10)C2i—Sn2—C3—Sn177.14 (18)
C3—Sn1—O1—P1180.0C2—Sn2—C3—Sn177.14 (18)
C1i—Sn1—O1—P160.70 (15)Cl2—Sn2—C3—Sn1180.0
C1—Sn1—O1—P160.70 (15)Cl1—Sn2—C3—Sn10.0
O1—P1—N1—C11179.1 (3)C1i—Sn1—C3—Sn291.43 (15)
N2—P1—N1—C1155.4 (3)C1—Sn1—C3—Sn291.43 (15)
N1i—P1—N1—C1158.7 (3)O1—Sn1—C3—Sn2180.0
O1—P1—N1—C1223.2 (3)Cl1—Sn1—C3—Sn20.0
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Sn2(CH2)(CH3)4Cl2]·C6H18N3OP
Mr561.65
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)291
a, b, c (Å)12.7116 (3), 12.4934 (3), 14.3478 (3)
V3)2278.59 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.19 × 0.13 × 0.13
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14378, 2727, 1915
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.063, 0.96
No. of reflections2727
No. of parameters108
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.40

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1991), SHELXL97, PARST95 (Nardelli, 1995), PLATON (Spek, 2001).

Selected geometric parameters (Å, º) top
Sn1—C32.103 (4)Sn2—C22.092 (5)
Sn1—C12.104 (4)Sn2—C32.093 (4)
Sn1—O12.220 (3)Sn2—Cl22.4403 (12)
Sn1—Cl12.6333 (11)Sn2—Cl13.0369 (12)
C3—Sn1—C1119.27 (15)C2i—Sn2—C2118.9 (4)
C1i—Sn1—C1121.4 (3)C2—Sn2—C3117.9 (2)
C3—Sn1—O187.84 (13)C2—Sn2—Cl297.17 (14)
C1—Sn1—O189.81 (12)C3—Sn2—Cl298.54 (12)
C3—Sn1—Cl188.42 (12)C3—Sn2—Cl178.44 (12)
C1—Sn1—Cl192.02 (12)Cl2—Sn2—Cl1176.98 (4)
O1—Sn1—Cl1176.27 (8)Sn2—C3—Sn1115.8 (2)
Symmetry code: (i) x, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds