research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, X-ray crystal structure, Hirshfeld surface analysis and DFT studies of (E)-N′-(2-bromo­benzyl­­idene)-4-methylbenzohydrazide

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, bPG & Research Department of Physics, Periyar E.V.R. College (Autonomous), Tiruchirappalli 620 023, Tamil Nadu, India, and cPG & Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: arunasuba03@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 12 November 2018; accepted 19 December 2018; online 4 January 2019)

The title mol­ecule, C15H13BrN2O, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the bromo- and methyl-substituted benzene rings is 16.1 (3)°. In the crystal, mol­ecules are connected by N—H⋯O and weak C—H⋯O hydrogen bonds, forming R21(6) ring motifs and generating chains along the a–axis direction. The optimized structure generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations renders good support to the experimental data. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical_context

Hydrazones are a class of organic compounds that possess an R1R2C=NNH2 structural motif. They are related to ketones and aldehydes in which oxygen has been replaced with an NNH2 group (Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, G. S. (2007). Molecules, 12, 1910-1939.]). Azomethines, –NHN=CH–, constitute an important class of compounds for new drug development. The reaction of a hydrazine or hydrazide with aldehydes and ketones yields hydrazones. Hydrazones are important in drug design as they act as ligands for metal complexes, organocatalysis and the synthesis of organic compounds. The C=N bond of the hydrazone and the terminal nitro­gen atom containing a lone pair of electron is responsible for the physical and chemical properties. The C atom in the hydrazone unit has both electrophilic and nucleophilic character and both the N atoms are nucleophilic, although the amino-type nitro­gen is more reactive. As a result of these properties, hydrazones are widely used in organic synthesis. Owing to their ease of preparation and diverse pharmacological potential, much work on hydrazones has been carried out by medicinal chemists to develop agents with better activity and low toxicity profiles. Hydrazones are known to possess diverse biological activities such as anti­microbial, anti–inflammatory, anti­cancer and anti­malarial (Yousef et al., 2003[Yousef, E. A., Zaki, A. & Megahed, M. G. (2003). Heterocycl. Commun. 9, 293-298.]; Trepanier et al., 1966[Trepanier, D. L., Wagner, E. R., Harris, G. & Rudzik, A. D. (1966). J. Med. Chem. 9, 881-885.]) and have been evaluated for inhibition of PDE10A, a phospho­diesterase responsible for neurological and psychological disorders such as Parkinson's, schizophrenia and Huntington's disease (Gage et al., 2011[Gage, J. L., Onrust, R., Johnston, D., Osnowski, A., MacDonald, W., Mitchell, L., Ürögdi, L., Rohde, A., Harbol, K., Gragerov, S., Dormán, G., Wheeler, T., Florio, V. & Cutshall, N. S. (2011). Bioorg. Med. Chem. Lett. 21, 4155-4159.]). The anti­convulsant potential of some hydrazone derivatives having long duration and rapid onset of action have been reported (Kaushik et al., 2010[Kaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943-3949.]), as has their anti-depressant activity (de Oliveira et al., 2011[Oliveira, K. N. de, Costa, P., Santin, J. R., Mazzambani, L., Bürger, C., Mora, C., Nunes, R. J. & de Souza, M. M. (2011). Bioorg. Med. Chem. 19, 4295-4306.]).

Schiff bases are used widely in the field of coordination chemistry and have inter­esting properties (Morshedi et al., 2009[Morshedi, M., Amirnasr, M., Triki, S. & Khalaji, A. D. (2009). Inorg. Chim. Acta, 362, 1637-1640.]; Zhou et al., 2006[Zhou, X. H., Wu, T. & Li, D. (2006). Inorg. Chim. Acta, 359, 1442-1448.]; Khanmohammadi et al., 2009[Khanmohammadi, H., Salehifard, M. & Abnosi, M. H. (2009). J. Iran. Chem. Soc. 6, 300-309.]). These compounds are synthesized by condensation of carbonyl compounds with amines (van den Ancker et al., 2006[Ancker, T. R. van den, Cave, G. W. V. & Raston, C. L. (2006). Green Chem. 8, 50-53.]; Hamaker et al., 2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]). In addition, free Schiff base compounds are reported to possess anti­microbial (Aslantas et al., 2009[Aslantaş, M., Kendi, E., Demir, N., Şabik, A. E., Tümer, M. & Kertmen, M. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 617-624.]) and non-linear optical (Karakaş et al., 2008[Karakaş, A., Ünver, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152-157.]) properties. Our previous work on (E)-4-bromo-N′ -(2,4-di­hydroxy­benzyl­idene)benzohydrazide and (E)-4-toluic -N′-(2,4-di­hydroxy­benzyl­idene)benzohydrazide have been recently reported (Arunagiri et al., 2018a[Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018a). J. Mol. Struct. 1163, 368-378.],b[Arunagiri, C., Anitha, A. G., Subashini, A., Selvakumar, S. & Lokanath, N. K. (2018b). Chem. Data Collect. 17-18, 169-177.]). This work has been a guide for the development of the new Schiff base title compound, which possesses electronic and non-linear properties. As part of our inter­est in the identification of bioactive compounds, we report herein on its crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link](a). The mol­ecule adopts an (E) configuration across the C=N bond, joining the hydrazide group and the benzene ring. In the crystal, the dihedral angle between the bromo- and methyl-substituted benzene rings is 16.1 (3)°. The structure was optimized with the Gaussian09W software (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]) using the DFT–B3LYP/6–311G(d,p) method, providing information about the geometry of the mol­ecule. The optimized structure is shown in Fig. 1[link](b). The geometrical parameters (Table 1[link]) are mostly within normal ranges, the slight deviations of the theoretical values from those determined experimentally are due to the fact that the optimization is performed in isolated conditions, whereas the crystal environment and hydrogen-bonding inter­actions affect the results of the X-ray structure (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]).

Table 1
Selected geometric parameters (Å,°) for the experimental and DFT structures

  XRD DFT
Br1—C11 1.891 (6) 1.925
O1—C8 1.225 (6) 1.219
N1—N2 1.379 (5) 1.364
N1—C8 1.351 (6) 1.383
N2—C9 1.270 (6) 1.285
N1—H1 0.837 (19) 1.006
C1—C8 1.485 (6) 1.501
C9—C10 1.470 (8) 1.470
C9—H9 0.930 1.082
     
N2—N1—C8 119.2 (4) 120.00
C8—N1—H1 123 (4) 117.84
N2—N1—H1 117 (4) 111.31
N1—C8—C1 116.6 (4) 114.46
O1—C8—C1 121.6 (4) 122.20
O1—C8—N1 121.7 (4) 123.33
N2—C9—C10 120.1 (4) 118.62
N2—C9—H9 120.00 122.79
     
C8—N1—N2—C9 −173.3 (5) −179.68
N2—N1—C8—O1 −3.5 (7) 2.54
N2—N1—C8—C1 174.64) −178.45
C2—C1—C8—O1 24.6 (7) 22.94
C2—C1—C8—N1 −153.6 (5) −156.06
N2—C9—C10—C11 161.4 (5) −179.93
N2—C9—C10—C15 −19.2 (7) −0.14
C6—C1—C8—N1 26.3 (7) 25.79
[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. (b) The optimized structure of the title compound.

The hydrazide unit (N1/N2/C1/C8–C10) is essentially planar, with a maximum deviation from the least-squares plane of 0.099 (4) Å for atom C10. The O1=C8 bond length [1.225 (6) and 1.219 Å for XRD and B3LYP, respectively] indicates single-bond character. The N1—N2 bond length [1.379 (5) Å for XRD and 1.364 Å for B3LYP] is in good agreement with other experimental values (Sivajeyanthi et al., 2017[Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Collect. 11-12, 220-231.]). The C—N bond lengths range from a typical single bond [C8—N1 = 1.351 (6) Å] to a double bond [C9=N2 = 1.270 (6) Å (Sivajeyanthi et al., 2017[Sivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Collect. 11-12, 220-231.]; Arunagiri et al., 2018a[Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018a). J. Mol. Struct. 1163, 368-378.],b[Arunagiri, C., Anitha, A. G., Subashini, A., Selvakumar, S. & Lokanath, N. K. (2018b). Chem. Data Collect. 17-18, 169-177.]).

3. Supra­molecular features

In the crystal, N1—H1⋯O1i and C9—H9⋯O1i hydrogen bonds (Table 2[link]) connect symmetry-related mol­ecules through classical N—H⋯O and weak C—H⋯O hydrogen bonds, forming [R_{2}^{1}](6) ring motifs and generating [100] chains (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (3) 1.96 (3) 2.785 (5) 167 (5)
C9—H9⋯O1i 0.93 2.38 3.166 (6) 142
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Part of the crystal structure with hydrogen bonds shown as dashed lines.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) along with decomposed 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.], 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) mapped over dnorm, shape-index and curvedness were used to visualize and qu­antify the inter­molecular inter­actions. The Hirshfeld surface (HS) and fingerprint plots were generated based on the di and de distances using Crystal Explorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia, Perth, Australia.]) where di is the distance from the nearest atom inside the surface, while de is the distance from the HS to the nearest atom outside the surface. In the dnorm surfaces, large circular depressions (deep red) are the indicators of hydrogen-bonding contacts whereas other visible spots are due to H⋯H contacts. The dominant H⋯O inter­action in the title compound is evident as a bright-red area in Fig. 3[link] while the light-red spots are due to N—H⋯O and C—H⋯O inter­actions. The shape-index surface [Fig. 4[link](a)] conveys information about each donor–acceptor pair and while the curvedness surface [Fig. 4[link](b)] is effectively divided into sets of patches, respectively. The tiny extent of area and light colour on the surface indicates weaker and longer contacts other than hydrogen bonds. The 2D fingerprint plots in Fig. 5[link] shows the relative contributions from the various inter­molecular contacts (O⋯H, H⋯H, C⋯H, C⋯C, N⋯H, N⋯N, O.·Br and C.·Br) in the crystal structure. The H⋯H contacts (36%) make the largest contribution, followed by C⋯H/H⋯C (28.2%), O⋯H/H⋯O (10.2%) and N⋯H/H⋯N (7.5%), the latter inter­actions being represented by blue spikes on both sides at the bottom of the plot.

[Figure 3]
Figure 3
The three-dimensional dnorm surface of the title compound. add contouring levels
[Figure 4]
Figure 4
Hirshfeld surfaces mapped over (a) shape-index and (b) curvedness for the title compound.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots with the relative contributions of the various inter­actions.

5. Frontier mol­ecular orbitals and Mol­ecular electrostatic potential analysis

The highest-occupied mol­ecular orbital (HOMO), which acts as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), which acts as an electron acceptor, are very important parameters for quantum chemistry. If the energy gap is small, then the mol­ecule is highly polarizable and has high chemical reactivity. The energy levels were computed by the DFTB3LYP/6-311G(d,p) method (Becke et al., 1993[Becke, A. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN09W (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6[link]. The mol­ecular orbital of HOMO contain both σ and π electron-density character, whereas the LUMO is mainly composed of π-orbital density. The energy band gap (ΔE) of the mol­ecule is about 4.42 eV.

[Figure 6]
Figure 6
The energy band gap of the compound.

The Gauss-Sum2.2 program (O'Boyle et al., 2008[O'Boyle, N. M., Tenderholt, A. L. & Langner, K. M. (2008). J. Comput. Chem. 29, 839-845.]) was used to calculate group contributions to the mol­ecular orbitals (HOMO and LUMO) and prepare the density of states (DOS) spectrum shown in Fig. 7[link]. The DOS spectrum was formed by convoluting the mol­ecular orbital information with GAUSSIAN curves of unit height. The green and red lines in the DOS spectrum indicate the HOMO and LUMO levels. The DOS spectrum supports the energy gap calculated by HOMO–LUMO analysis. A mol­ecule with a large energy gap is described as hard while one having a small energy gap is known as a soft mol­ecule. Hard mol­ecules are not more polarizable than the soft ones because they require immense excitation energy (Karabacak & Yilan, 2012[Karabacak, M. & Yilan, E. (2012). Spectrochim. Acta A, 87, 273-285.]).

[Figure 7]
Figure 7
The density of states (DOS) spectrum of the compound.

The mol­ecular electrostatic potential is related to the electron density and mol­ecular electrostatic potential (MESP) maps are very useful descriptors for understanding reactive sites for electrophilic and nucleophilic reactions as well as hydrogen-bonding inter­actions (Sebastian & Sundaraganesan, 2010[Sebastian, S. & Sundaraganesan, N. (2010). Spectrochim. Acta A, 75, 941-952.]; Luque et al., 2000[Luque, E. J., López, J. M. & Orozco, M. (2000). Theor. Chem. Acc. 103, 343-345.]). Different values of the electrostatic potential are represented by different colours: red represents regions of the most electronegative electrostatic potential, blue represents regions of the most positive electrostatic potential and green represents regions of zero potential. The potential increases in the following order: red < orange < yellow < green < blue. Herein, MEP was calculated at the DFT–B3LYP/6–311(d,p) level of theory that was used for optimization. The MESP map for the title mol­ecule is shown in Fig. 8[link] with a colour range from −0.053 (red) to 0.053 a.u. (blue). The most electrostatically positive region (blue colour) is located in the mol­ecular plane (N–bonded hydrogen atoms of toluic hydrazide), thus explaining N1—H1⋯O1i hydrogen bond observed in the crystal structure. The map clearly shows that the electron-rich (red) region is spread around the carbonyl oxygen atom whereas the hydrogen atom attached to nitro­gen is positively charged (blue).

[Figure 8]
Figure 8
The mol­ecular electrostatic potential map for the title compound.

6. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed closely related compounds that differ in the donor substit­uents: N′-(4-chloro­benzyl­idene)-2-hy­droxy­benzohydrazide (Zhang et al., 2009[Zhang, S.-P., Qiao, R. & Shao, S.-C. (2009). Acta Cryst. E65, o84.]), (E)-N′-[(pyridin-2-yl)methyl­ene]benzo­hydrazide (Ramesh Babu et al., 2014[Ramesh Babu, N., Subashchandrabose, S., Padusha, M. S. A., Saleem, H., Manivannan, V. & Erdoğdu, Y. (2014). J. Mol. Struct. 1072, 84-93.]), (E)-N′-(4-meth­oxy­benzyl­idene)pyridine-3-carbohydrazide dihydrate (Gov­indarasu et al., 2015[Govindarasu, K., Kavitha, E., Sundaraganesan, N., Suresh, M. & Syed Ali Padusha, M. (2015). Spectrochim. Acta A, 135, 1123-1136.]), (E)-4-bromo-N′-(4-meth­oxy­benzyl­idene)benzo­hydrazide(Balasubramani et al., 2018[Balasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500-1503.]), (E)-3-(1H-indol-2-yl)-1-(4-nitro­phen­yl)prop-2-en-1-one hemihydrate (Zaini et al., 2018[Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589-1594.]); (E)-4-bromo-N′-(2,4-di­hydroxy­benzyl­idene)benzo­hydrazide and (E)-4-toluic-N′-(2,4-di­hydroxy­benzyl­idene)benzohydrazide (Arunagiri et al., 2018a[Arunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018a). J. Mol. Struct. 1163, 368-378.],b[Arunagiri, C., Anitha, A. G., Subashini, A., Selvakumar, S. & Lokanath, N. K. (2018b). Chem. Data Collect. 17-18, 169-177.]). In our studies of analagous hydrazide dervatives (with Cl or Br replacing the methyl group of the title compound, we have observed similar types of Intramolecular S(6) and intermolecular N—H⋯O hydrogen bonds (between the amide hydrogen and the carbonyl oxygen atoms).

7. Synthesis and crystallization

The title compound was synthesized by the condensation of 4-toluic hydrazide and 2-bromo­benzaldehyde (Fig. 9[link]). An ethanol solution (10ml) of 4-toluic hydrazide (0.25 mol) was mixed with ethanol solution of 2-bromo­benzaldehyde (10 ml, 0.25 mol) and the reaction mixture was heated at 323 K for half an hour with constant stirring before being was filtered and kept for crystallization. After a period of one week, brown block-shaped crystals of the title compound were obtained.

[Figure 9]
Figure 9
Reaction scheme.

8. X-ray crystallography and refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atom on N1 (H1) was located in a difference-Fourier map and freely refined. C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) =1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C15H13BrN2O
Mr 317.18
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 9.6002 (10), 11.5584 (13), 12.5823 (12)
V3) 1396.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.94
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.473, 0.591
No. of measured, independent and observed [I > 2σ(I)] reflections 17816, 2744, 1837
Rint 0.035
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.10
No. of reflections 2744
No. of parameters 176
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.47
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-4-Methyl-N'-(2-bromobenzylidene)benzohydrazide top
Crystal data top
C15H13BrN2OF(000) = 640
Mr = 317.18Dx = 1.509 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6594 reflections
a = 9.6002 (10) Åθ = 2.4–26.0°
b = 11.5584 (13) ŵ = 2.94 mm1
c = 12.5823 (12) ÅT = 296 K
V = 1396.2 (3) Å3Block, brown
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube1837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.473, Tmax = 0.591k = 1414
17816 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0208P)2 + 2.2419P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27412 (5)0.49846 (5)0.50267 (12)0.06555 (18)
O10.7807 (3)0.1961 (4)0.2048 (3)0.0633 (11)
N10.5643 (4)0.2641 (4)0.2337 (3)0.0430 (10)
N20.5965 (5)0.2925 (4)0.3373 (3)0.0464 (11)
C10.6174 (5)0.1750 (4)0.0649 (3)0.0390 (10)
C20.6886 (5)0.0846 (4)0.0191 (5)0.0529 (14)
H20.76320.05140.05510.064*
C30.6512 (7)0.0427 (5)0.0791 (5)0.0632 (15)
H30.70000.01930.10800.076*
C40.5433 (6)0.0907 (5)0.1352 (4)0.0546 (14)
C50.4721 (6)0.1827 (5)0.0902 (4)0.0526 (13)
H50.39870.21650.12710.063*
C60.5085 (4)0.2251 (4)0.0089 (5)0.0446 (10)
H60.45990.28720.03780.054*
C70.4998 (11)0.0447 (6)0.2424 (6)0.0834 (19)
H7C0.42300.08940.26890.125*
H7A0.47230.03480.23560.125*
H7B0.57660.05030.29100.125*
C80.6621 (5)0.2130 (4)0.1724 (4)0.0429 (11)
C90.4964 (5)0.3296 (4)0.3937 (4)0.0446 (12)
H90.40930.34130.36320.053*
C100.5182 (5)0.3543 (3)0.5071 (5)0.0435 (10)
C110.4290 (6)0.4236 (4)0.5651 (4)0.0530 (13)
C120.4514 (8)0.4419 (5)0.6726 (4)0.0726 (19)
H120.39080.48820.71150.087*
C130.5642 (9)0.3908 (6)0.7213 (5)0.082 (2)
H130.58070.40390.79310.098*
C140.6504 (9)0.3224 (6)0.6660 (5)0.083 (2)
H140.72390.28570.70040.100*
C150.6313 (7)0.3059 (5)0.5591 (4)0.0608 (15)
H150.69510.26170.52100.073*
H10.480 (3)0.268 (5)0.217 (4)0.051 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0673 (3)0.0624 (3)0.0669 (3)0.0056 (3)0.0118 (6)0.0006 (3)
O10.0301 (18)0.111 (3)0.049 (2)0.006 (2)0.0069 (16)0.001 (2)
N10.033 (2)0.061 (3)0.035 (2)0.001 (2)0.0091 (19)0.003 (2)
N20.045 (3)0.058 (3)0.035 (2)0.000 (2)0.009 (2)0.002 (2)
C10.035 (2)0.049 (3)0.033 (2)0.004 (2)0.001 (2)0.003 (2)
C20.046 (3)0.058 (3)0.055 (4)0.011 (2)0.003 (3)0.006 (3)
C30.067 (4)0.059 (3)0.063 (4)0.002 (3)0.008 (3)0.008 (3)
C40.061 (3)0.062 (3)0.041 (3)0.013 (3)0.005 (3)0.007 (3)
C50.052 (3)0.066 (3)0.040 (3)0.001 (3)0.013 (2)0.001 (3)
C60.038 (2)0.055 (3)0.041 (2)0.0026 (19)0.005 (3)0.003 (3)
C70.097 (4)0.095 (5)0.058 (3)0.016 (6)0.009 (3)0.021 (5)
C80.029 (2)0.059 (3)0.040 (3)0.003 (2)0.000 (2)0.008 (2)
C90.049 (3)0.046 (3)0.039 (3)0.003 (2)0.013 (2)0.002 (2)
C100.057 (3)0.041 (2)0.033 (2)0.008 (2)0.006 (3)0.002 (3)
C110.070 (4)0.045 (3)0.043 (3)0.014 (3)0.000 (3)0.002 (2)
C120.116 (6)0.059 (4)0.042 (4)0.021 (4)0.016 (4)0.006 (3)
C130.152 (7)0.059 (4)0.034 (3)0.030 (4)0.021 (4)0.003 (3)
C140.117 (6)0.082 (5)0.050 (4)0.001 (5)0.043 (4)0.002 (4)
C150.075 (4)0.054 (3)0.053 (3)0.002 (3)0.020 (3)0.003 (3)
Geometric parameters (Å, º) top
Br1—C111.891 (6)C6—H60.9300
O1—C81.225 (6)C7—H7C0.9600
N1—C81.351 (6)C7—H7A0.9600
N1—N21.379 (5)C7—H7B0.9600
N1—H10.837 (19)C9—C101.470 (8)
N2—C91.270 (6)C9—H90.9300
C1—C21.375 (7)C10—C111.381 (7)
C1—C61.389 (6)C10—C151.386 (7)
C1—C81.485 (6)C11—C121.385 (7)
C2—C31.375 (8)C12—C131.378 (10)
C2—H20.9300C12—H120.9300
C3—C41.371 (8)C13—C141.340 (10)
C3—H30.9300C13—H130.9300
C4—C51.386 (7)C14—C151.370 (8)
C4—C71.508 (9)C14—H140.9300
C5—C61.384 (8)C15—H150.9300
C5—H50.9300
C8—N1—N2119.2 (4)H7C—C7—H7B109.5
C8—N1—H1123 (4)H7A—C7—H7B109.5
N2—N1—H1117 (4)O1—C8—N1121.7 (4)
C9—N2—N1116.0 (4)O1—C8—C1121.6 (4)
C2—C1—C6118.6 (5)N1—C8—C1116.6 (4)
C2—C1—C8117.6 (4)N2—C9—C10120.1 (4)
C6—C1—C8123.8 (5)N2—C9—H9120.0
C1—C2—C3121.0 (5)C10—C9—H9120.0
C1—C2—H2119.5C11—C10—C15118.1 (5)
C3—C2—H2119.5C11—C10—C9122.5 (5)
C4—C3—C2121.2 (5)C15—C10—C9119.4 (5)
C4—C3—H3119.4C10—C11—C12120.5 (6)
C2—C3—H3119.4C10—C11—Br1122.2 (4)
C3—C4—C5118.2 (5)C12—C11—Br1117.2 (5)
C3—C4—C7121.8 (6)C13—C12—C11119.4 (6)
C5—C4—C7120.0 (6)C13—C12—H12120.3
C6—C5—C4121.1 (5)C11—C12—H12120.3
C6—C5—H5119.5C14—C13—C12120.5 (6)
C4—C5—H5119.5C14—C13—H13119.8
C5—C6—C1120.0 (5)C12—C13—H13119.8
C5—C6—H6120.0C13—C14—C15120.6 (7)
C1—C6—H6120.0C13—C14—H14119.7
C4—C7—H7C109.5C15—C14—H14119.7
C4—C7—H7A109.5C14—C15—C10120.8 (6)
H7C—C7—H7A109.5C14—C15—H15119.6
C4—C7—H7B109.5C10—C15—H15119.6
C8—N1—N2—C9173.3 (5)C6—C1—C8—N126.3 (7)
C6—C1—C2—C31.5 (7)N1—N2—C9—C10175.7 (4)
C8—C1—C2—C3178.4 (5)N2—C9—C10—C11161.4 (5)
C1—C2—C3—C41.0 (8)N2—C9—C10—C1519.2 (7)
C2—C3—C4—C50.2 (8)C15—C10—C11—C121.2 (7)
C2—C3—C4—C7179.2 (6)C9—C10—C11—C12178.2 (5)
C3—C4—C5—C60.1 (8)C15—C10—C11—Br1178.1 (4)
C7—C4—C5—C6178.9 (6)C9—C10—C11—Br12.5 (6)
C4—C5—C6—C10.3 (8)C10—C11—C12—C130.4 (8)
C2—C1—C6—C51.1 (7)Br1—C11—C12—C13178.9 (5)
C8—C1—C6—C5178.8 (5)C11—C12—C13—C141.1 (10)
N2—N1—C8—O13.5 (7)C12—C13—C14—C152.8 (11)
N2—N1—C8—C1174.6 (4)C13—C14—C15—C103.6 (10)
C2—C1—C8—O124.6 (7)C11—C10—C15—C142.8 (8)
C6—C1—C8—O1155.5 (5)C9—C10—C15—C14176.6 (6)
C2—C1—C8—N1153.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.84 (3)1.96 (3)2.785 (5)167 (5)
C9—H9···O1i0.932.383.166 (6)142
Symmetry code: (i) x1/2, y+1/2, z.
Selected geometric parameters of XRD and DFT (Å,°) top
XRDDFT
Br1—C111.891 (6)1.925
O1—C81.225 (6)1.219
N1—N21.379 (5)1.364
N1—C81.351 (6)1.383
N2—C91.270 (6)1.285
N1—H10.837 (19)1.006
C1—C81.485 (6)1.501
C9—C101.470 (8)1.470
C9—H90.9301.082
N2—N1—C8119.2 (4)120.00
C8—N1—H1123 (4)117.84
N2—N1—H1117 (4)111.31
N1—C8—C1116.6 (4)114.46
O1—C8—C1121.6 (4)122.20
O1—C8—N1121.7 (4)123.33
N2—C9—C10120.1 (4)118.62
N2—C9—H9120.00122.79
C8—N1—N2—C9-173.3 (5)-179.68
N2—N1—C8—O1-3.5 (7)2.54
N2—N1—C8—C1174.64)-178.45
C2—C1—C8—O124.6 (7)22.94
C2—C1—C8—N1-153.6 (5)-156.06
N2—C9—C10—C11161.4 (5)-179.93
N2—C9—C10—C15-19.2 (7)-0.14
C6—C1—C8—N126.3 (7)25.79
 

Funding information

AGA thanks the University Grants Commission (UGC), New Delhi, India, for the award of a Research Fellowship under the Faculty Development Programme (FDP).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAncker, T. R. van den, Cave, G. W. V. & Raston, C. L. (2006). Green Chem. 8, 50–53.  Google Scholar
First citationArunagiri, C., Anitha, A. G., Subashini, A. & Selvakumar, S. (2018a). J. Mol. Struct. 1163, 368–378.  CrossRef CAS Google Scholar
First citationArunagiri, C., Anitha, A. G., Subashini, A., Selvakumar, S. & Lokanath, N. K. (2018b). Chem. Data Collect. 17-18, 169-177.  CrossRef Google Scholar
First citationAslantaş, M., Kendi, E., Demir, N., Şabik, A. E., Tümer, M. & Kertmen, M. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 74, 617–624.  Google Scholar
First citationBalasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500–1503.  CrossRef IUCr Journals Google Scholar
First citationBecke, A. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SAINT, APEX2, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGage, J. L., Onrust, R., Johnston, D., Osnowski, A., MacDonald, W., Mitchell, L., Ürögdi, L., Rohde, A., Harbol, K., Gragerov, S., Dormán, G., Wheeler, T., Florio, V. & Cutshall, N. S. (2011). Bioorg. Med. Chem. Lett. 21, 4155–4159.  CrossRef CAS Google Scholar
First citationGovindarasu, K., Kavitha, E., Sundaraganesan, N., Suresh, M. & Syed Ali Padusha, M. (2015). Spectrochim. Acta A, 135, 1123–1136.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CrossRef CAS Google Scholar
First citationKarabacak, M. & Yilan, E. (2012). Spectrochim. Acta A, 87, 273–285.  CrossRef CAS Google Scholar
First citationKarakaş, A., Ünver, H. & Elmali, A. (2008). J. Mol. Struct. 877, 152–157.  Google Scholar
First citationKaushik, D., Khan, S. A., Chawla, G. & Kumar, S. (2010). Eur. J. Med. Chem. 45, 3943–3949.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhanmohammadi, H., Salehifard, M. & Abnosi, M. H. (2009). J. Iran. Chem. Soc. 6, 300–309.  Web of Science CrossRef CAS Google Scholar
First citationLuque, E. J., López, J. M. & Orozco, M. (2000). Theor. Chem. Acc. 103, 343–345.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorshedi, M., Amirnasr, M., Triki, S. & Khalaji, A. D. (2009). Inorg. Chim. Acta, 362, 1637–1640.  CrossRef CAS Google Scholar
First citationO'Boyle, N. M., Tenderholt, A. L. & Langner, K. M. (2008). J. Comput. Chem. 29, 839–845.  PubMed CAS Google Scholar
First citationOliveira, K. N. de, Costa, P., Santin, J. R., Mazzambani, L., Bürger, C., Mora, C., Nunes, R. J. & de Souza, M. M. (2011). Bioorg. Med. Chem. 19, 4295–4306.  PubMed Google Scholar
First citationRamesh Babu, N., Subashchandrabose, S., Padusha, M. S. A., Saleem, H., Manivannan, V. & Erdoğdu, Y. (2014). J. Mol. Struct. 1072, 84–93.  CrossRef CAS Google Scholar
First citationRollas, S. & Küçükgüzel, G. S. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebastian, S. & Sundaraganesan, N. (2010). Spectrochim. Acta A, 75, 941–952.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivajeyanthi, P., Jeevaraj, M., Balasubramani, K., Viswanathan, V. & Velmurugan, D. (2017). Chem. Data Collect. 11–12, 220–231.  CrossRef Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTrepanier, D. L., Wagner, E. R., Harris, G. & Rudzik, A. D. (1966). J. Med. Chem. 9, 881–885.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia, Perth, Australia.  Google Scholar
First citationYousef, E. A., Zaki, A. & Megahed, M. G. (2003). Heterocycl. Commun. 9, 293–298.  CrossRef CAS Google Scholar
First citationZaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594.  CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  Web of Science CrossRef CAS Google Scholar
First citationZhang, S.-P., Qiao, R. & Shao, S.-C. (2009). Acta Cryst. E65, o84.  CrossRef IUCr Journals Google Scholar
First citationZhou, X. H., Wu, T. & Li, D. (2006). Inorg. Chim. Acta, 359, 1442–1448.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds