organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o745-o746

Crystal structure of (2Z)-2-{(5Z)-5-[3-fluoro-2-(4-phenyl­piperidin-1-yl)benzyl­­idene]-4-oxo-3-(p-tol­yl)-1,3-thia­zolidin-2-yl­­idene}-N-(p-tol­yl)ethane­thio­amide di­methyl sulfoxide monosolvate

CROSSMARK_Color_square_no_text.svg

aUral Federal University, 19 Mira Str., Ekaterinburg 620002, Russian Federation, and bI. Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovalevskoy Str., Ekaterinburg 620990, Russian Federation
*Correspondence e-mail: lili.khamidullina@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 18 August 2015; accepted 8 September 2015; online 12 September 2015)

The title compound, C37H34FN3OS2·C2H6OS, was obtained by the Knoevenagel condensation. The thia­zolidine ring is essentially planar (r.m.s. deviation = 0.025 Å) and forms dihedral angles of 4.2 (3), 68.60 (14) and 39.57 (15)° with the attached thio­amide group, p-tolyl group benzene ring and fluoro-substituted benzene ring, respectively. The exocyclic double bonds are in a Z configuration. In the crystal, the dimethyl sulfoxide solvent mol­ecule is connected to the main mol­ecule via an N—H⋯O hydrogen bond. Weak C—H⋯O hydrogen bonds link the components of the structure into a two-dimensional network parallel to (10-1). Weak intra­molecular C—H⋯S hydrogen bonds are also observed. The crystal is an inversion twin with a ratio of twin components 0.78 (2):0.22 (6).

1. Related literature

For non-covalent inter­actions, see: Minkin & Minyaev (2001[Minkin, V. I. & Minyaev, R. M. (2001). Chem. Rev. 101, 1247-1266.]); Bjernemose et al. (2003[Bjernemose, J. K., Frandsen, E., Jensen, F. & Pedersen, C. Th. (2003). Tetrahedron, 59, 10255-10259.]). For the biological activity of thia­zolidines, see: Nazreen et al. (2015[Nazreen, S., Alam, M. S., Hamid, H., Yar, M. S., Dhulap, A., Alam, P., Pasha, M. A. Q., Bano, S., Alam, M. M., Haider, S., Kharbanda, C., Ali, Y. & Pillai, K. (2015). Arch. Pharm. 348, 421-432.]); Tripathi et al. (2014[Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52-77.]). For docking investigations of thia­zolidines, see: Sharma et al. (2015[Sharma, R. K., Younis, Y., Mugumbate, G., Njoroge, M., Gut, J., Rosenthal, P. J. & Chibale, K. (2015). Eur. J. Med. Chem. 90, 507-518.]); Miyata et al. (2013[Miyata, Y., Li, X., Lee, H.-F., Jinwal, U. K., Srinivasan, S. R., Seguin, S. P., Young, Z. T., Brodsky, J. L., Dickey, C. A., Sun, D. & Gestwicki, J. E. (2013). ACS Chem. Neurosci. 4, 930-939.]). For materials applications of thia­zolidines, see: Matsui et al. (2010[Matsui, M., Asamura, Y., Kubota, Y., Funabiki, K., Jin, J., Yoshida, T. & Miura, H. (2010). Tetrahedron, 66, 7405-7410.]). For the synthesis of related compounds, see: Obydennov et al. (2014[Obydennov, K. L., Golovko, N. A., Kosterina, M. F., Pospelova, T. A., Slepukhin, P. A. & Morzherin, Y. (2014). Russ. Chem. Bull. 63, 1330-1336.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C37H34FN3OS2·C2H6OS

  • Mr = 697.92

  • Monoclinic, P 21

  • a = 9.8539 (5) Å

  • b = 9.8671 (5) Å

  • c = 18.1633 (8) Å

  • β = 100.578 (5)°

  • V = 1736.01 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 K

  • 0.2 × 0.14 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.942, Tmax = 1.000

  • 9751 measured reflections

  • 7519 independent reflections

  • 5344 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.089

  • S = 1.00

  • 4992 reflections

  • 437 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2527 Friedel pairs

  • Absolute structure parameter: 0.22 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 1.97 2.806 (4) 164
C8—H8⋯S1 0.93 2.68 3.224 (3) 118
C19—H19B⋯O2i 0.97 2.53 3.398 (4) 149
C32—H32A⋯O3ii 0.96 2.54 3.423 (5) 152
C37—H37⋯S2 0.93 2.58 3.210 (4) 125
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]); software used to prepare material for publication: OLEX2 and publCIF.

Supporting information


Chemical context top

Thia­zolidines are an important class of heteroaromatic compounds and have widespread applications from ranging from pharmaceuticals (Tripathi et al., 2014; Nazreen et al., 2015) to materials (Matsui et al., 2010). The structure determined using X-ray crystallography is useful to perform a docking screen, which is frequently used to predict the binding orientation of potential ligands to their targets in order to in turn predict the affinity and activity of the ligands (Miyata et al., 2013; Sharma et al., 2015). Consequently, we have synthesized the title compound and its crystal structure is presented herein.

Structural commentary top

The molecular structure of the title compound is shown in Fig. 1. The thio­amide group is approximately in the plane of the thia­zolidine ring forming a short S1···S2 contact (Minkin & Minyaev, 2001) with a distance of 2.972 (1) Å. This contact is observed for similar compounds containing a five-membered quasi-ring involving S···S inter­actions (Bjernemose et al., 2003; Obydennov et al., 2014). The p-tolyl group benzene ring and thia­zolidine ring form a dihedral angle of 68.60 (14)°. The piperidine ring is in a chair conformation and both the aryl substituents are in equatorial positions. The sum of the bond angles around the thia­zolidine ring N3 atom (360.0°) indicates sp2 hybridization. The exocyclic double bonds are in a Z-configuration. In the crystal, the di­methyl­sulfoxide solvent molecule is connected to the main molecule via an N—H···O hydrogen bond. Weak C—H···O hydrogen bonds link the components of the structure into a two-dimensional network parallel to (101). Weak intra­molecular C—H···S hydrogen bonds are also observed.

Synthesis and crystallization top

\ (2Z)-2-[(5Z)-5-(3-fluoro-2-(4-phenyl­piperidin-1-yl)benzyl­idene)-\ 4-oxo-3-(p-tolyl)-1,3-thia­zolidin-2-yl­idene]-N-(p-\ tolyl)­ethane­thio­amide was prepared from (2Z)-N-(4-methyl­phenyl)-2-[3-(4-methyl­phenyl)-4-oxo-1,3-\ thia­zolidin-2-yl­idene]ethane­thio­amide by the Knoevenagel condensation. To a suspension of (2Z)-N-(4-methyl­phenyl)-2-[3-(4-methyl­phenyl)-4-oxo-1,3-\ thia­zolidin-2-yl­idene]ethane­thio­amide (248 mg, 0.7 mmol) in n-butanol (10 ml) were added 3-fluoro-2-(4-phenyl­piperidin-1-yl)benzaldehyde (397 mg, 1.4 mmol) and piperidine (0.06 ml, 0.7 mmol) at room temperature. The mixture was stirred at refluxe for 12 h. After cooling to 255K the crude product was filtered off, recrystallized from ethanol, washed by cooled ethanol and dried in vacuo. Yield: 126 mg (29%). 1H NMR (400 MHz, DMSO-d6, δ, p.p.m.): 1.68–1.92 (4H, br.m., CH2), 2.26 (1H, s., Me), 2.43 (1H, s., Me), 2.70 (1H, br.m., CH), 3.02–3.20 (2H, br.m., CH2), 3.20–3.32 (2H, br.m., CH2), 6.19 (1H, s., CH=), 7.04–7.66 (15H, m., ArH + CH=), 8.04 (1H, s., ArH), 11.17 (1H, s., NH). Needle-like orange single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a di­methyl sulfoxide solution of the title compound at room temperature. M.p. 431-433 K.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å, N—H = 0.86 Å and included in a riding-model approximation Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C) for methyl H atoms.

Related literature top

For non-covalent interactions, see: Minkin & Minyaev (2001); Bjernemose et al. (2003). For the biological activity of thiazolidines, see: Nazreen et al. (2015); Tripathi et al. (2014). For docking investigations of thiazolidines, see: Sharma et al. (2015); Miyata et al. (2013). For materials applications of thiazolidines, see: Matsui et al. (2010). For the synthesis of related compounds, see: Obydennov et al. (2014).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007) and PLATON (Spek, 2009); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids.
(2Z)-2-{(5Z)-5-[3-Fluoro-2-(4-phenylpiperidin-1-yl)benzylidene]-4-oxo-3-(p-tolyl)-1,3-thiazolidin-2-ylidene}-N-(p-tolyl)ethanethioamide dimethyl sulfoxide monosolvate top
Crystal data top
C37H34FN3OS2·C2H6OSDx = 1.335 Mg m3
Mr = 697.92Melting point = 160–158 K
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.8539 (5) ÅCell parameters from 2519 reflections
b = 9.8671 (5) Åθ = 2.3–30.2°
c = 18.1633 (8) ŵ = 0.26 mm1
β = 100.578 (5)°T = 150 K
V = 1736.01 (14) Å3Block, orange
Z = 20.2 × 0.14 × 0.08 mm
F(000) = 736
Data collection top
Agilent Xcalibur Eos
diffractometer
7519 independent reflections
Radiation source: Enhance (Mo) X-ray Source5344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 15.9555 pixels mm-1θmax = 30.8°, θmin = 2.1°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1414
Tmin = 0.942, Tmax = 1.000l = 2525
9751 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4992 reflectionsΔρmax = 0.63 e Å3
437 parametersΔρmin = 0.48 e Å3
1 restraintAbsolute structure: Flack (1983), 2527 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.22 (6)
Crystal data top
C37H34FN3OS2·C2H6OSV = 1736.01 (14) Å3
Mr = 697.92Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.8539 (5) ŵ = 0.26 mm1
b = 9.8671 (5) ÅT = 150 K
c = 18.1633 (8) Å0.2 × 0.14 × 0.08 mm
β = 100.578 (5)°
Data collection top
Agilent Xcalibur Eos
diffractometer
7519 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
5344 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 1.000Rint = 0.029
9751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.63 e Å3
S = 1.00Δρmin = 0.48 e Å3
4992 reflectionsAbsolute structure: Flack (1983), 2527 Friedel pairs
437 parametersAbsolute structure parameter: 0.22 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53305 (8)0.25119 (8)0.25856 (4)0.02326 (18)
S30.80859 (11)0.72542 (12)0.55377 (5)0.0473 (3)
O20.5650 (2)0.5633 (2)0.13469 (12)0.0293 (5)
F10.15403 (19)0.03590 (19)0.04379 (10)0.0352 (5)
C70.4153 (3)0.1509 (3)0.08448 (17)0.0211 (7)
N20.2325 (2)0.2421 (3)0.01238 (13)0.0214 (5)
N10.6889 (3)0.3429 (3)0.50937 (15)0.0294 (7)
H10.71870.42500.51190.035*
C200.0297 (3)0.5866 (3)0.13326 (17)0.0220 (7)
C20.6082 (3)0.3936 (3)0.30804 (18)0.0201 (7)
C340.6393 (3)0.3019 (3)0.43872 (18)0.0268 (8)
C390.7442 (3)0.1644 (4)0.72440 (18)0.0252 (8)
C290.8222 (3)0.8738 (3)0.31806 (17)0.0245 (8)
C110.2678 (3)0.0075 (3)0.00875 (17)0.0245 (7)
C210.1030 (3)0.6112 (3)0.17432 (18)0.0278 (8)
H210.17430.55230.16920.033*
C120.3016 (3)0.1303 (3)0.02578 (17)0.0219 (7)
C190.1557 (3)0.2225 (3)0.08942 (16)0.0252 (7)
H19A0.06710.18080.08780.030*
H19B0.20700.16210.11640.030*
C260.6885 (3)0.6261 (3)0.28185 (16)0.0192 (7)
C100.3402 (3)0.1149 (3)0.04386 (18)0.0284 (8)
H100.31450.20320.02960.034*
C310.8311 (3)0.6293 (3)0.30665 (17)0.0255 (8)
H310.88220.54950.31090.031*
C330.6496 (3)0.4047 (3)0.38338 (18)0.0243 (7)
H330.68860.48700.40120.029*
C240.1034 (4)0.7911 (3)0.1875 (2)0.0329 (9)
H240.17240.85370.19110.040*
O30.8366 (3)0.5875 (3)0.52409 (16)0.0588 (8)
C380.7181 (4)0.0861 (4)0.6629 (2)0.0407 (10)
H380.71300.00730.66890.049*
C170.0588 (3)0.4582 (3)0.08805 (17)0.0234 (7)
H170.03050.41850.08350.028*
C300.8959 (3)0.7534 (4)0.32496 (16)0.0267 (7)
H300.99080.75550.34220.032*
C280.6801 (3)0.8663 (3)0.29401 (17)0.0245 (7)
H280.62830.94570.28970.029*
C180.1332 (3)0.3556 (3)0.12984 (17)0.0260 (7)
H18A0.07910.34080.17940.031*
H18B0.22180.39260.13570.031*
C150.1606 (3)0.3354 (3)0.02973 (17)0.0237 (7)
H15A0.21280.34550.08020.028*
H15B0.07060.29870.03310.028*
C60.4630 (3)0.2886 (3)0.10419 (17)0.0209 (7)
H60.45540.34980.06470.025*
N30.6215 (3)0.5000 (2)0.25863 (14)0.0207 (6)
C360.7022 (3)0.2793 (3)0.58018 (18)0.0248 (8)
C230.0257 (4)0.8094 (3)0.22808 (19)0.0303 (8)
H230.04360.88300.26040.036*
C220.1303 (3)0.7198 (4)0.22178 (18)0.0334 (8)
H220.21850.73290.24950.040*
C90.4511 (3)0.0914 (3)0.10031 (18)0.0282 (8)
H90.50140.16350.12450.034*
C250.1329 (3)0.6792 (3)0.14067 (17)0.0285 (8)
H250.22200.66620.11420.034*
C160.1431 (3)0.4732 (3)0.00841 (17)0.0249 (7)
H16A0.23300.51120.01070.030*
H16B0.09610.53440.02030.030*
C270.6140 (3)0.7448 (4)0.27641 (16)0.0236 (7)
H270.51870.74270.26080.028*
C40.5671 (3)0.4781 (3)0.18329 (17)0.0212 (7)
C410.7255 (3)0.3600 (3)0.64298 (18)0.0289 (8)
H410.72700.45370.63780.035*
C420.7674 (3)0.1067 (4)0.80330 (18)0.0376 (9)
H42A0.73680.01420.80160.056*
H42B0.71620.15880.83350.056*
H42C0.86390.11060.82470.056*
C50.5160 (3)0.3375 (3)0.17185 (17)0.0191 (7)
C370.6984 (4)0.1388 (4)0.5902 (2)0.0493 (11)
H370.68290.08110.54900.059*
C80.4869 (3)0.0401 (3)0.12070 (18)0.0273 (8)
H80.56070.05560.15970.033*
C400.7468 (4)0.3030 (4)0.71362 (19)0.0304 (8)
H400.76340.35960.75520.036*
C430.6849 (4)0.7983 (4)0.4815 (2)0.0515 (11)
H43A0.71390.78590.43430.077*
H43B0.67680.89340.49100.077*
H43C0.59720.75520.48020.077*
C320.8930 (4)1.0061 (3)0.33599 (19)0.0376 (9)
H32A0.96780.99490.37760.056*
H32B0.82851.07100.34870.056*
H32C0.92841.03770.29320.056*
S20.56650 (10)0.15033 (9)0.41505 (5)0.0337 (2)
C440.9535 (4)0.8225 (4)0.5416 (3)0.0622 (13)
H44A1.03150.79760.57900.093*
H44B0.93370.91700.54640.093*
H44C0.97380.80560.49270.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0272 (4)0.0181 (4)0.0226 (4)0.0025 (4)0.0007 (3)0.0005 (4)
S30.0589 (7)0.0459 (7)0.0323 (5)0.0111 (6)0.0045 (4)0.0061 (5)
O20.0355 (14)0.0227 (13)0.0269 (13)0.0079 (11)0.0017 (10)0.0060 (11)
F10.0356 (12)0.0279 (11)0.0369 (12)0.0098 (9)0.0068 (9)0.0063 (10)
C70.0237 (16)0.0191 (16)0.0204 (16)0.0005 (15)0.0037 (13)0.0021 (15)
N20.0234 (13)0.0218 (14)0.0178 (13)0.0016 (13)0.0006 (10)0.0025 (13)
N10.0438 (18)0.0172 (15)0.0239 (15)0.0033 (13)0.0025 (13)0.0005 (13)
C200.0260 (17)0.0236 (18)0.0174 (16)0.0007 (15)0.0063 (13)0.0060 (15)
C20.0161 (15)0.0152 (16)0.0278 (18)0.0022 (13)0.0010 (13)0.0025 (15)
C340.0283 (18)0.0236 (17)0.0261 (19)0.0015 (15)0.0019 (14)0.0015 (16)
C390.0192 (16)0.030 (2)0.0256 (18)0.0035 (16)0.0018 (13)0.0053 (17)
C290.0332 (19)0.0246 (19)0.0156 (16)0.0063 (15)0.0038 (14)0.0011 (16)
C110.0261 (18)0.0248 (19)0.0214 (17)0.0067 (15)0.0009 (14)0.0031 (16)
C210.0260 (18)0.028 (2)0.0291 (19)0.0013 (15)0.0045 (14)0.0018 (16)
C120.0230 (16)0.0230 (18)0.0202 (16)0.0000 (14)0.0056 (13)0.0017 (15)
C190.0303 (17)0.0243 (19)0.0187 (16)0.0038 (15)0.0013 (13)0.0080 (16)
C260.0219 (16)0.0203 (18)0.0142 (15)0.0052 (14)0.0000 (12)0.0002 (14)
C100.039 (2)0.0132 (16)0.033 (2)0.0067 (15)0.0070 (16)0.0013 (16)
C310.0233 (17)0.0248 (19)0.0282 (18)0.0055 (15)0.0043 (14)0.0000 (16)
C330.0238 (18)0.0196 (17)0.0277 (18)0.0025 (14)0.0001 (14)0.0026 (15)
C240.034 (2)0.027 (2)0.039 (2)0.0075 (16)0.0115 (17)0.0002 (18)
O30.0551 (18)0.0225 (15)0.086 (2)0.0061 (13)0.0216 (15)0.0003 (15)
C380.058 (3)0.0203 (19)0.036 (2)0.0052 (18)0.0114 (18)0.0069 (18)
C170.0219 (17)0.0264 (18)0.0206 (17)0.0001 (15)0.0007 (13)0.0021 (16)
C300.0173 (15)0.033 (2)0.0284 (17)0.0060 (16)0.0008 (12)0.0008 (18)
C280.0293 (19)0.0207 (18)0.0222 (17)0.0009 (15)0.0011 (14)0.0017 (15)
C180.0311 (18)0.0282 (19)0.0170 (16)0.0015 (15)0.0004 (14)0.0032 (15)
C150.0258 (18)0.0267 (19)0.0183 (16)0.0031 (15)0.0035 (13)0.0015 (15)
C60.0193 (16)0.0212 (18)0.0224 (17)0.0007 (13)0.0038 (13)0.0057 (15)
N30.0210 (13)0.0174 (14)0.0221 (14)0.0006 (11)0.0004 (11)0.0001 (12)
C360.0294 (18)0.0213 (19)0.0208 (17)0.0012 (14)0.0025 (13)0.0010 (15)
C230.033 (2)0.0235 (18)0.035 (2)0.0049 (16)0.0070 (16)0.0063 (16)
C220.0300 (18)0.039 (2)0.0292 (18)0.0072 (17)0.0002 (14)0.0059 (19)
C90.033 (2)0.0239 (19)0.0266 (19)0.0006 (16)0.0029 (15)0.0031 (16)
C250.0259 (18)0.030 (2)0.0282 (18)0.0019 (15)0.0018 (14)0.0015 (17)
C160.0289 (18)0.0191 (17)0.0261 (18)0.0022 (15)0.0034 (14)0.0020 (15)
C270.0194 (15)0.0254 (17)0.0245 (16)0.0014 (16)0.0002 (12)0.0009 (17)
C40.0154 (15)0.0242 (18)0.0226 (17)0.0004 (14)0.0000 (13)0.0011 (16)
C410.039 (2)0.0189 (18)0.0287 (19)0.0034 (16)0.0064 (16)0.0031 (16)
C420.035 (2)0.042 (2)0.036 (2)0.0032 (17)0.0043 (17)0.009 (2)
C50.0170 (15)0.0185 (17)0.0212 (17)0.0024 (13)0.0022 (12)0.0019 (14)
C370.082 (3)0.030 (2)0.029 (2)0.011 (2)0.009 (2)0.008 (2)
C80.0299 (19)0.0206 (18)0.0283 (19)0.0017 (15)0.0030 (15)0.0034 (16)
C400.040 (2)0.0290 (19)0.0216 (18)0.0070 (17)0.0050 (15)0.0071 (17)
C430.064 (3)0.041 (3)0.047 (3)0.011 (2)0.001 (2)0.008 (2)
C320.048 (2)0.029 (2)0.035 (2)0.0099 (17)0.0035 (18)0.0025 (18)
S20.0512 (6)0.0236 (5)0.0245 (5)0.0075 (5)0.0020 (4)0.0012 (4)
C440.060 (3)0.044 (3)0.075 (3)0.020 (2)0.006 (2)0.002 (3)
Geometric parameters (Å, º) top
S1—C21.757 (3)C24—H240.9300
S1—C51.771 (3)C38—C371.399 (5)
S3—O31.508 (3)C38—H380.9300
S3—C441.766 (4)C17—C181.531 (4)
S3—C431.771 (4)C17—C161.537 (4)
O2—C41.217 (3)C17—H170.9800
F1—C111.361 (3)C30—H300.9300
C7—C81.398 (4)C28—C271.374 (4)
C7—C121.413 (4)C28—H280.9300
C7—C61.460 (4)C18—H18A0.9700
N2—C121.410 (4)C18—H18B0.9700
N2—C151.461 (4)C15—C161.521 (4)
N2—C191.476 (3)C15—H15A0.9700
N1—C341.349 (4)C15—H15B0.9700
N1—C361.416 (4)C6—C51.334 (4)
N1—H10.8600C6—H60.9300
C20—C251.392 (4)N3—C41.392 (4)
C20—C211.402 (4)C36—C411.376 (4)
C20—C171.509 (4)C36—C371.400 (5)
C2—C331.358 (4)C23—C221.378 (4)
C2—N31.402 (4)C23—H230.9300
C34—C331.444 (4)C22—H220.9300
C34—S21.680 (3)C9—C81.377 (4)
C39—C381.344 (5)C9—H90.9300
C39—C401.382 (4)C25—H250.9300
C39—C421.520 (4)C16—H16A0.9700
C29—C301.387 (4)C16—H16B0.9700
C29—C281.390 (4)C27—H270.9300
C29—C321.487 (4)C4—C51.477 (4)
C11—C101.368 (4)C41—C401.381 (4)
C11—C121.420 (4)C41—H410.9300
C21—C221.370 (4)C42—H42A0.9600
C21—H210.9300C42—H42B0.9600
C19—C181.501 (4)C42—H42C0.9600
C19—H19A0.9700C37—H370.9300
C19—H19B0.9700C8—H80.9300
C26—C271.376 (4)C40—H400.9300
C26—C311.395 (4)C43—H43A0.9600
C26—N31.436 (4)C43—H43B0.9600
C10—C91.374 (4)C43—H43C0.9600
C10—H100.9300C32—H32A0.9600
C31—C301.393 (5)C32—H32B0.9600
C31—H310.9300C32—H32C0.9600
C33—H330.9300C44—H44A0.9600
C24—C231.361 (5)C44—H44B0.9600
C24—C251.391 (4)C44—H44C0.9600
C2—S1—C591.86 (15)C19—C18—C17112.1 (2)
O3—S3—C44103.86 (19)C19—C18—H18A109.2
O3—S3—C43104.35 (17)C17—C18—H18A109.2
C44—S3—C4398.6 (2)C19—C18—H18B109.2
C8—C7—C12120.3 (3)C17—C18—H18B109.2
C8—C7—C6120.0 (3)H18A—C18—H18B107.9
C12—C7—C6119.6 (3)N2—C15—C16110.5 (2)
C12—N2—C15118.2 (2)N2—C15—H15A109.6
C12—N2—C19118.7 (3)C16—C15—H15A109.6
C15—N2—C19111.4 (2)N2—C15—H15B109.6
C34—N1—C36133.5 (3)C16—C15—H15B109.6
C34—N1—H1113.3H15A—C15—H15B108.1
C36—N1—H1113.3C5—C6—C7128.0 (3)
C25—C20—C21117.5 (3)C5—C6—H6116.0
C25—C20—C17122.3 (3)C7—C6—H6116.0
C21—C20—C17120.0 (3)C4—N3—C2116.7 (3)
C33—C2—N3122.6 (3)C4—N3—C26119.8 (3)
C33—C2—S1126.9 (2)C2—N3—C26123.5 (3)
N3—C2—S1110.6 (2)C41—C36—C37118.0 (3)
N1—C34—C33113.1 (3)C41—C36—N1118.0 (3)
N1—C34—S2125.0 (2)C37—C36—N1123.9 (3)
C33—C34—S2121.9 (3)C24—C23—C22120.6 (3)
C38—C39—C40117.2 (3)C24—C23—H23119.7
C38—C39—C42122.7 (3)C22—C23—H23119.7
C40—C39—C42120.0 (3)C21—C22—C23119.3 (3)
C30—C29—C28117.6 (3)C21—C22—H22120.3
C30—C29—C32121.0 (3)C23—C22—H22120.3
C28—C29—C32121.4 (3)C10—C9—C8119.3 (3)
F1—C11—C10117.3 (3)C10—C9—H9120.4
F1—C11—C12118.7 (3)C8—C9—H9120.4
C10—C11—C12124.0 (3)C24—C25—C20120.4 (3)
C22—C21—C20121.8 (3)C24—C25—H25119.8
C22—C21—H21119.1C20—C25—H25119.8
C20—C21—H21119.1C15—C16—C17109.8 (3)
N2—C12—C7120.2 (3)C15—C16—H16A109.7
N2—C12—C11124.7 (3)C17—C16—H16A109.7
C7—C12—C11115.1 (3)C15—C16—H16B109.7
N2—C19—C18110.7 (3)C17—C16—H16B109.7
N2—C19—H19A109.5H16A—C16—H16B108.2
C18—C19—H19A109.5C28—C27—C26120.1 (3)
N2—C19—H19B109.5C28—C27—H27119.9
C18—C19—H19B109.5C26—C27—H27119.9
H19A—C19—H19B108.1O2—C4—N3123.9 (3)
C27—C26—C31119.8 (3)O2—C4—C5125.9 (3)
C27—C26—N3120.4 (3)N3—C4—C5110.1 (3)
C31—C26—N3119.7 (3)C36—C41—C40120.5 (3)
C11—C10—C9119.5 (3)C36—C41—H41119.7
C11—C10—H10120.3C40—C41—H41119.7
C9—C10—H10120.3C39—C42—H42A109.5
C30—C31—C26119.2 (3)C39—C42—H42B109.5
C30—C31—H31120.4H42A—C42—H42B109.5
C26—C31—H31120.4C39—C42—H42C109.5
C2—C33—C34126.7 (3)H42A—C42—H42C109.5
C2—C33—H33116.6H42B—C42—H42C109.5
C34—C33—H33116.6C6—C5—C4122.3 (3)
C23—C24—C25120.4 (3)C6—C5—S1127.0 (2)
C23—C24—H24119.8C4—C5—S1110.6 (2)
C25—C24—H24119.8C38—C37—C36119.3 (3)
C39—C38—C37122.9 (3)C38—C37—H37120.4
C39—C38—H38118.6C36—C37—H37120.4
C37—C38—H38118.6C9—C8—C7121.9 (3)
C20—C17—C18110.3 (2)C9—C8—H8119.1
C20—C17—C16116.6 (3)C7—C8—H8119.1
C18—C17—C16107.7 (2)C41—C40—C39122.1 (3)
C20—C17—H17107.3C41—C40—H40119.0
C18—C17—H17107.3C39—C40—H40119.0
C16—C17—H17107.3C29—C32—H32A109.5
C29—C30—C31121.5 (3)C29—C32—H32B109.5
C29—C30—H30119.3H32A—C32—H32B109.5
C31—C30—H30119.3C29—C32—H32C109.5
C27—C28—C29121.8 (3)H32A—C32—H32C109.5
C27—C28—H28119.1H32B—C32—H32C109.5
C29—C28—H28119.1
C5—S1—C2—C33178.6 (3)C33—C2—N3—C4176.1 (3)
C5—S1—C2—N31.4 (2)S1—C2—N3—C43.9 (3)
C36—N1—C34—C33179.1 (3)C33—C2—N3—C264.7 (4)
C36—N1—C34—S23.2 (5)S1—C2—N3—C26175.3 (2)
C25—C20—C21—C221.8 (4)C27—C26—N3—C466.9 (4)
C17—C20—C21—C22173.5 (3)C31—C26—N3—C4110.0 (3)
C15—N2—C12—C764.4 (4)C27—C26—N3—C2113.9 (3)
C19—N2—C12—C7155.6 (3)C31—C26—N3—C269.2 (4)
C15—N2—C12—C11117.2 (3)C34—N1—C36—C41164.0 (3)
C19—N2—C12—C1122.8 (4)C34—N1—C36—C3718.6 (6)
C8—C7—C12—N2177.8 (3)C25—C24—C23—C222.0 (5)
C6—C7—C12—N21.4 (4)C20—C21—C22—C231.6 (5)
C8—C7—C12—C110.7 (4)C24—C23—C22—C210.3 (5)
C6—C7—C12—C11177.1 (3)C11—C10—C9—C80.3 (5)
F1—C11—C12—N25.7 (4)C23—C24—C25—C201.8 (5)
C10—C11—C12—N2176.6 (3)C21—C20—C25—C240.1 (4)
F1—C11—C12—C7175.8 (2)C17—C20—C25—C24175.1 (3)
C10—C11—C12—C71.9 (5)N2—C15—C16—C1759.9 (3)
C12—N2—C19—C18159.8 (2)C20—C17—C16—C15178.9 (2)
C15—N2—C19—C1857.7 (3)C18—C17—C16—C1556.6 (3)
F1—C11—C10—C9176.3 (3)C29—C28—C27—C260.5 (4)
C12—C11—C10—C91.4 (5)C31—C26—C27—C281.2 (4)
C27—C26—C31—C300.5 (4)N3—C26—C27—C28175.7 (3)
N3—C26—C31—C30176.4 (3)C2—N3—C4—O2176.2 (3)
N3—C2—C33—C34179.5 (3)C26—N3—C4—O24.6 (4)
S1—C2—C33—C340.6 (5)C2—N3—C4—C54.8 (3)
N1—C34—C33—C2179.8 (3)C26—N3—C4—C5174.5 (2)
S2—C34—C33—C22.0 (4)C37—C36—C41—C401.1 (5)
C40—C39—C38—C372.0 (5)N1—C36—C41—C40176.5 (3)
C42—C39—C38—C37179.2 (3)C7—C6—C5—C4176.7 (3)
C25—C20—C17—C1873.6 (4)C7—C6—C5—S14.7 (5)
C21—C20—C17—C18101.5 (3)O2—C4—C5—C61.3 (5)
C25—C20—C17—C1649.6 (4)N3—C4—C5—C6177.7 (3)
C21—C20—C17—C16135.3 (3)O2—C4—C5—S1177.6 (2)
C28—C29—C30—C311.7 (4)N3—C4—C5—S13.5 (3)
C32—C29—C30—C31178.5 (3)C2—S1—C5—C6179.9 (3)
C26—C31—C30—C290.9 (4)C2—S1—C5—C41.2 (2)
C30—C29—C28—C271.0 (4)C39—C38—C37—C361.7 (6)
C32—C29—C28—C27179.2 (3)C41—C36—C37—C380.0 (6)
N2—C19—C18—C1756.4 (3)N1—C36—C37—C38177.4 (3)
C20—C17—C18—C19176.0 (3)C10—C9—C8—C71.4 (5)
C16—C17—C18—C1955.8 (3)C12—C7—C8—C90.9 (5)
C12—N2—C15—C16157.4 (3)C6—C7—C8—C9175.5 (3)
C19—N2—C15—C1659.9 (3)C36—C41—C40—C390.7 (6)
C8—C7—C6—C538.0 (5)C38—C39—C40—C410.8 (5)
C12—C7—C6—C5145.6 (3)C42—C39—C40—C41179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.972.806 (4)164
C8—H8···S10.932.683.224 (3)118
C19—H19B···O2i0.972.533.398 (4)149
C32—H32A···O3ii0.962.543.423 (5)152
C37—H37···S20.932.583.210 (4)125
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.972.806 (4)164
C8—H8···S10.932.683.224 (3)118
C19—H19B···O2i0.972.533.398 (4)149
C32—H32A···O3ii0.962.543.423 (5)152
C37—H37···S20.932.583.210 (4)125
Symmetry codes: (i) x+1, y1/2, z; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

We thank State task Ministry of Education and Science of the Russian Federation No. 4.560.2014-K

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBjernemose, J. K., Frandsen, E., Jensen, F. & Pedersen, C. Th. (2003). Tetrahedron, 59, 10255–10259.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatsui, M., Asamura, Y., Kubota, Y., Funabiki, K., Jin, J., Yoshida, T. & Miura, H. (2010). Tetrahedron, 66, 7405–7410.  CrossRef CAS Google Scholar
First citationMinkin, V. I. & Minyaev, R. M. (2001). Chem. Rev. 101, 1247–1266.  CrossRef PubMed CAS Google Scholar
First citationMiyata, Y., Li, X., Lee, H.-F., Jinwal, U. K., Srinivasan, S. R., Seguin, S. P., Young, Z. T., Brodsky, J. L., Dickey, C. A., Sun, D. & Gestwicki, J. E. (2013). ACS Chem. Neurosci. 4, 930–939.  CrossRef CAS PubMed Google Scholar
First citationNazreen, S., Alam, M. S., Hamid, H., Yar, M. S., Dhulap, A., Alam, P., Pasha, M. A. Q., Bano, S., Alam, M. M., Haider, S., Kharbanda, C., Ali, Y. & Pillai, K. (2015). Arch. Pharm. 348, 421–432.  CrossRef CAS Google Scholar
First citationObydennov, K. L., Golovko, N. A., Kosterina, M. F., Pospelova, T. A., Slepukhin, P. A. & Morzherin, Y. (2014). Russ. Chem. Bull. 63, 1330–1336.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSharma, R. K., Younis, Y., Mugumbate, G., Njoroge, M., Gut, J., Rosenthal, P. J. & Chibale, K. (2015). Eur. J. Med. Chem. 90, 507–518.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52–77.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 10| October 2015| Pages o745-o746
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds