metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydro­thermal synthesis and crystal structure of a new lanthanum(III) coordination polymer with fumaric acid

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 31 March 2015; accepted 7 April 2015; online 22 April 2015)

The title compound, poly[di­aqua­tris­(μ4-but-2-enedioato)(μ2-but-2-enedioic acid)dilanthanum(III)], [La2(C4H2O4)3(C4H4O4)(H2O)2]n, was synthesized by the reaction of lanthanum chloride penta­hydrate with fumaric acid under hydro­thermal conditions. The asymmetric unit comprises an LaIII cation, one and a half fumarate dianions (L2−), one a half-mol­ecule of fumaric acid (H2L) and one coordinated water mol­ecule. Each LaIII cation has the same nine-coordinate environment and is surrounded by eight O atoms from seven distinct fumarate moieties, including one proton­ated fumarate unit and one water mol­ecule in a distorted tricapped trigonal–prismatic environment. The LaO8(H2O) polyhedra centres are edge-shared through three carboxyl­ate bridges of the fumarate ligand, forming chains in three dimensions to construct the MOF. The crystal structure is stabilized by O—H⋯O hydrogen-bond inter­actions between the coordin­ated water mol­ecule and the carboxyl­ate O atoms, and also between oxygen atoms of fumaric acid

1. Related literature

For general background to metal coordination polymers, see: Fujita et al. (1994[Fujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151-1152.]); Bénard et al. (2000[Bénard, S. Yu. P., Yu, P., Audière, J. P., Rivière, E., Clément, R., Guilhem, J., Tchertanov, L. & Nakatani, K. (2000). J. Am. Chem. Soc. 122, 9444-9454.]); Zhang et al. (2000[Zhang, X. X., Chui, S. S. Y. & Williams, I. D. (2000). J. Appl. Phys. 87, 6007-6009.]). For structures involving fumarate ligands and transition metals, see: Dalai et al. (2002[Dalai, S., Mukherjee, P. S., Zangrando, E., Lioret, F. & Chaudhuri, N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 822-823.]); Xie et al. (2003[Xie, H. Z., Zheng, Y. Q. & Shou, K. Q. (2003). J. Coord. Chem. 56, 1291-1297.]); Devereux et al. (2000[Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205-1211.]). For rare earth fumarates, see: Zhang et al. (2006[Zhang, G. & Yang, G. Ma. J. S. (2006). Cryst. Growth Des. 6, 934-939.]); Li & Zou (2006[Li, X. & Zou, Y.-Q. (2006). J. Coord. Chem. 59, 1131-1138.]); Liu et al. (2011[Liu, P., Cao, W., Wang, J., Zeng, R. & Zeng, Z. (2011). Acta Cryst. E67, m1433-m1434.]). For reported La—O distances, see: Dan et al. (2005[Dan, M., Cottereau, G. & Rao, C. R. (2005). Solid State Sci. 7, 437-443.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [La2(C4H2O4)3(C4H4O4)(H2O)2]

  • Mr = 386.05

  • Monoclinic, P 21 /c

  • a = 8.4299 (5) Å

  • b = 14.6789 (8) Å

  • c = 8.8096 (5) Å

  • β = 103.318 (3)°

  • V = 1060.80 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.07 mm−1

  • T = 295 K

  • 0.12 × 0.11 × 0.08 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 0.796

  • 17677 measured reflections

  • 4523 independent reflections

  • 3901 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.043

  • S = 1.02

  • 4523 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.06 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O8i 0.80 (3) 2.06 (3) 2.7995 (19) 154 (3)
O1W—H2W⋯O4ii 0.75 (3) 2.17 (3) 2.8913 (18) 163 (3)
O5—H5⋯O2iii 0.82 1.85 2.655 (2) 167
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Coordination polymers of metal cations with organic multifunctional ligands have been received increasing interest, for these coordination polymers have one-, two-, three dimensional structures as well as potential applications as catalysts, magnetic and porous materials (Fujita et al., 1994; Bénard et al., 2000; Zhang et al., 2000). Multi-carboxyle ligands are useful to construct unique architectures of metal-coordination polymers. The synthesis of novel lanthanide polymers and studies on luminescent, electric and magnetic properties of the compounds are of interest. Some metal coordination polymers using fumaric acid as ligand have been reported in the literature containing transition metals Cu (Dalai et al., 2002), Zn (Xie et al., 2003), and Mn (Devereux et al., 2000). A series of rare earth fumarate complexes have also been reported (Zhang et al., 2006; Li & Zou., 2006; Liu et al., 2011). Hydrothermal synthesis has some advantages over conventional methods for the formation of a polymer framework with higher dimensions. Fumaric acid was used to synthesize a new lanthanum (III) coordination polymer, [La2(C4H2O4)3(C4H4O4)(H2O)2]n, (I), by using hydrothermal synthesis method and the crystal structure is reported in the present article.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises a LaIII cation, 1.5 fumarate dianions (L2-), 0.5 fumaric acid (H2L) and one water ligand. Overall there are three types of La—O bridging modes in (I), the fumarate dianion exhibits full monodentate and µ2-oxo-bridged chelating patterns, respectively, whereas the fumaric acid shows a double monodentate coordination mode. The LaIII cation is sited within a distorted tricapped trigonal prism defined by nine O atoms derived from seven different bridging ligands and a coordinated water molecule. One of the carboxylate groups, derived from L2-, is chelating, and the remaining six carboxylates coordinate in a monodentate mode. The average La—O bond distance of LaO8(H2O) polyhedra is 2.56 Å; the shortest La—O separation is 2.4510 (12) Å, resulting from the La1—O1 bond of a bridging carboxylate, and the longest is 2.7696 (12) Å for La1—O7 from the edge-sharing La—O bond. Other distances of La—O(fum) vary in the range of 2.4963 (12)–2.6117 (13) Å, comparable to the usual La—O(carboxylate) bonds reported (Dan et al., 2005). The LaO8(H2O) coordination polyhedra are edge-shared through one monodentate carboxylate O atoms (O7) and two bidentate carboxylate groups (O3—C4—O4 and O1—C1—O2) to generate infinite lanthanum-oxygen chains (Fig. 2). The adjacent lanthanum (III) centres have a general separation of 4.739 Å. Furthermore, the one-dimensional infinite chains are linked together with monodentate fumarate ligands to form a two-dimensional layered paralell to the crystallographic (100) (Fig.2), and the shortest interlayer distance of La···La is 8.430 Å (calculated between the two lanthanum atom centres). This type of organic-inorganic layered structure has been reported of the lanthanide fumarates: [Ln2(fum)3(H2fum)(H2O)2 (Ln: Ce or Nd)] (Zhang et al., 2006). Finally, the two-dimensional layered structure is further constructed into a three-dimensional open framework by the ligands (Fig.3). The crystal is stabilized by hydrogen bond interactions between the coordinated water and carboxylate O atoms.

Related literature top

For general background to metal coordination polymers, see: Fujita et al. (1994); Bénard et al. (2000); Zhang et al. (2000). For structures involving fumarate ligands and transition metals, see: Dalai et al. (2002); Xie et al. (2003); Devereux et al. (2000). For rare earth fumarates, see: Zhang et al. (2006); Li & Zou (2006); Liu et al. (2011). For reported La—O distances, see: Dan et al. (2005).

Experimental top

All chemicals were purchased from commercial sources and used as received without further purification. The title compound, was synthesized by using a hydrothermal method. Typically mixtures of fumaric acid (1 mmol, 0.116 g), lanthanum (III) chloride pentahydrate (0.5 mmol, 0.185 g) were suspended in H2O (ca 10 ml). The mixture was then placed in a Teflon lined autoclave, sealed and heated to 413 K for 2 days. The reactor was cooled to room temperature over a period of 1 h. The light brown crystals suitable for X-ray diffraction were filtered, washed with water and dried in air.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. The remaining H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C and O atoms) with C—H = 0.93 Å and O—H = 0.82 Å with Uiso(H) = 1.2 or 1.5Ueq(C,O). H atoms of the water molecule were located in difference Fourier maps and refined isotropically.

Structure description top

Coordination polymers of metal cations with organic multifunctional ligands have been received increasing interest, for these coordination polymers have one-, two-, three dimensional structures as well as potential applications as catalysts, magnetic and porous materials (Fujita et al., 1994; Bénard et al., 2000; Zhang et al., 2000). Multi-carboxyle ligands are useful to construct unique architectures of metal-coordination polymers. The synthesis of novel lanthanide polymers and studies on luminescent, electric and magnetic properties of the compounds are of interest. Some metal coordination polymers using fumaric acid as ligand have been reported in the literature containing transition metals Cu (Dalai et al., 2002), Zn (Xie et al., 2003), and Mn (Devereux et al., 2000). A series of rare earth fumarate complexes have also been reported (Zhang et al., 2006; Li & Zou., 2006; Liu et al., 2011). Hydrothermal synthesis has some advantages over conventional methods for the formation of a polymer framework with higher dimensions. Fumaric acid was used to synthesize a new lanthanum (III) coordination polymer, [La2(C4H2O4)3(C4H4O4)(H2O)2]n, (I), by using hydrothermal synthesis method and the crystal structure is reported in the present article.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises a LaIII cation, 1.5 fumarate dianions (L2-), 0.5 fumaric acid (H2L) and one water ligand. Overall there are three types of La—O bridging modes in (I), the fumarate dianion exhibits full monodentate and µ2-oxo-bridged chelating patterns, respectively, whereas the fumaric acid shows a double monodentate coordination mode. The LaIII cation is sited within a distorted tricapped trigonal prism defined by nine O atoms derived from seven different bridging ligands and a coordinated water molecule. One of the carboxylate groups, derived from L2-, is chelating, and the remaining six carboxylates coordinate in a monodentate mode. The average La—O bond distance of LaO8(H2O) polyhedra is 2.56 Å; the shortest La—O separation is 2.4510 (12) Å, resulting from the La1—O1 bond of a bridging carboxylate, and the longest is 2.7696 (12) Å for La1—O7 from the edge-sharing La—O bond. Other distances of La—O(fum) vary in the range of 2.4963 (12)–2.6117 (13) Å, comparable to the usual La—O(carboxylate) bonds reported (Dan et al., 2005). The LaO8(H2O) coordination polyhedra are edge-shared through one monodentate carboxylate O atoms (O7) and two bidentate carboxylate groups (O3—C4—O4 and O1—C1—O2) to generate infinite lanthanum-oxygen chains (Fig. 2). The adjacent lanthanum (III) centres have a general separation of 4.739 Å. Furthermore, the one-dimensional infinite chains are linked together with monodentate fumarate ligands to form a two-dimensional layered paralell to the crystallographic (100) (Fig.2), and the shortest interlayer distance of La···La is 8.430 Å (calculated between the two lanthanum atom centres). This type of organic-inorganic layered structure has been reported of the lanthanide fumarates: [Ln2(fum)3(H2fum)(H2O)2 (Ln: Ce or Nd)] (Zhang et al., 2006). Finally, the two-dimensional layered structure is further constructed into a three-dimensional open framework by the ligands (Fig.3). The crystal is stabilized by hydrogen bond interactions between the coordinated water and carboxylate O atoms.

For general background to metal coordination polymers, see: Fujita et al. (1994); Bénard et al. (2000); Zhang et al. (2000). For structures involving fumarate ligands and transition metals, see: Dalai et al. (2002); Xie et al. (2003); Devereux et al. (2000). For rare earth fumarates, see: Zhang et al. (2006); Li & Zou (2006); Liu et al. (2011). For reported La—O distances, see: Dan et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I), showing the two-dimensional layered framework structure.
[Figure 3] Fig. 3. A packing diagram of (I), showing the three-dimensional open-framework structure.
Poly[diaquatris(µ4-but-2-enedioato)(µ2-but-2-enedioic acid)dilanthanum(III)] top
Crystal data top
[La2(C4H2O4)3(C4H4O4)(H2O)2]F(000) = 736
Mr = 386.05Dx = 2.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7844 reflections
a = 8.4299 (5) Åθ = 2.8–34.5°
b = 14.6789 (8) ŵ = 4.07 mm1
c = 8.8096 (5) ÅT = 295 K
β = 103.318 (3)°Prism, brown
V = 1060.80 (11) Å30.12 × 0.11 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
CCD rotation images, thin slices scansθmax = 34.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1313
Tmin = 0.677, Tmax = 0.796k = 2322
17677 measured reflectionsl = 1414
4523 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.4033P]
where P = (Fo2 + 2Fc2)/3
4523 reflections(Δ/σ)max = 0.003
171 parametersΔρmax = 2.06 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[La2(C4H2O4)3(C4H4O4)(H2O)2]V = 1060.80 (11) Å3
Mr = 386.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4299 (5) ŵ = 4.07 mm1
b = 14.6789 (8) ÅT = 295 K
c = 8.8096 (5) Å0.12 × 0.11 × 0.08 mm
β = 103.318 (3)°
Data collection top
Bruker APEXII
diffractometer
4523 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3901 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.796Rint = 0.027
17677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 2.06 e Å3
4523 reflectionsΔρmin = 0.67 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91794 (19)0.17630 (11)0.3525 (2)0.0094 (3)
C21.09547 (19)0.16975 (12)0.3538 (2)0.0116 (3)
H21.16770.15280.44610.014*
C31.1551 (2)0.18705 (11)0.22925 (19)0.0104 (3)
H31.08420.20060.13440.012*
C41.33672 (18)0.18480 (11)0.24064 (19)0.0091 (3)
C50.9759 (2)0.43916 (12)0.3056 (2)0.0136 (3)
C61.0339 (2)0.50146 (12)0.4385 (2)0.0137 (3)
H61.11730.54260.43660.016*
C70.53342 (19)0.10280 (11)0.12552 (19)0.0100 (3)
C80.5242 (2)0.04320 (11)0.0094 (2)0.0115 (3)
H80.55330.06720.10980.014*
O10.81442 (14)0.18896 (8)0.22694 (15)0.0121 (2)
O20.88376 (15)0.16822 (9)0.48504 (15)0.0135 (2)
O1W0.68340 (16)0.47790 (9)0.02557 (17)0.0140 (2)
O31.38637 (14)0.22346 (9)0.13278 (15)0.0128 (2)
O41.42800 (14)0.14400 (8)0.35629 (14)0.0113 (2)
O51.05314 (17)0.44700 (11)0.19286 (17)0.0232 (3)
H51.01520.41070.12320.035*
O60.86412 (16)0.38537 (9)0.30246 (15)0.0165 (3)
O70.59366 (15)0.18252 (8)0.09912 (15)0.0106 (2)
O80.48750 (15)0.07304 (9)0.26313 (14)0.0145 (2)
La10.631512 (10)0.309568 (6)0.097101 (10)0.00675 (3)
H1W0.656 (3)0.4969 (19)0.062 (4)0.030 (7)*
H2W0.651 (3)0.513 (2)0.071 (4)0.036 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0093 (6)0.0092 (7)0.0107 (7)0.0008 (5)0.0044 (5)0.0017 (5)
C20.0082 (6)0.0166 (8)0.0099 (7)0.0000 (5)0.0019 (5)0.0009 (6)
C30.0115 (6)0.0117 (7)0.0090 (6)0.0008 (5)0.0045 (5)0.0017 (6)
C40.0075 (6)0.0111 (7)0.0088 (6)0.0007 (5)0.0021 (5)0.0002 (5)
C50.0131 (7)0.0166 (8)0.0108 (7)0.0010 (6)0.0021 (6)0.0006 (6)
C60.0142 (7)0.0153 (8)0.0113 (7)0.0037 (6)0.0021 (6)0.0020 (6)
C70.0113 (6)0.0107 (7)0.0088 (7)0.0007 (5)0.0036 (5)0.0001 (5)
C80.0170 (7)0.0099 (7)0.0085 (7)0.0018 (6)0.0046 (6)0.0000 (5)
O10.0097 (5)0.0139 (6)0.0117 (5)0.0015 (4)0.0005 (4)0.0016 (5)
O20.0118 (5)0.0187 (6)0.0117 (6)0.0027 (4)0.0063 (4)0.0031 (5)
O1W0.0171 (6)0.0110 (6)0.0141 (6)0.0019 (4)0.0040 (5)0.0016 (5)
O30.0105 (5)0.0175 (6)0.0113 (6)0.0030 (4)0.0043 (4)0.0025 (5)
O40.0095 (5)0.0133 (6)0.0102 (5)0.0009 (4)0.0006 (4)0.0002 (4)
O50.0213 (7)0.0347 (8)0.0161 (6)0.0129 (6)0.0094 (5)0.0119 (6)
O60.0180 (6)0.0191 (7)0.0118 (6)0.0075 (5)0.0024 (5)0.0026 (5)
O70.0138 (5)0.0082 (5)0.0108 (5)0.0019 (4)0.0051 (4)0.0010 (4)
O80.0218 (6)0.0138 (6)0.0086 (5)0.0061 (5)0.0051 (5)0.0017 (5)
La10.00657 (4)0.00743 (4)0.00650 (4)0.00024 (3)0.00204 (3)0.00044 (3)
Geometric parameters (Å, º) top
C1—O11.255 (2)C8—H80.93
C1—O21.271 (2)O1W—H1W0.80 (3)
C1—C21.497 (2)O1W—H2W0.75 (3)
C2—C31.332 (2)O3—La1iv2.5032 (11)
C2—H20.93O4—La1v2.4963 (12)
C3—C41.512 (2)O5—H50.82
C3—H30.93La1—C7vi3.0398 (15)
C4—O31.2583 (19)O6—La12.5926 (13)
C4—O41.276 (2)O7—La12.5127 (12)
C5—O61.225 (2)O1—La12.4510 (12)
C5—O51.312 (2)O1W—La12.6117 (13)
C5—C61.477 (2)O2—La1vi2.5631 (11)
C6—C6i1.338 (3)O7—La1ii2.7696 (12)
C6—H60.93O8—La1ii2.5784 (12)
C7—O81.263 (2)La1—O4vii2.4963 (12)
C7—O71.2755 (19)La1—O3viii2.5032 (11)
C7—C81.492 (2)La1—O2ii2.5631 (11)
C7—La1ii3.0398 (15)La1—O8vi2.5784 (12)
C8—C8iii1.331 (3)La1—O7vi2.7696 (12)
O1—C1—O2124.39 (15)O1—La1—O775.61 (4)
O1—C1—C2120.47 (14)O4vii—La1—O770.40 (4)
O2—C1—C2115.14 (15)O3viii—La1—O774.57 (4)
C3—C2—C1123.19 (16)O1—La1—O2ii77.47 (4)
C3—C2—H2118.4O4vii—La1—O2ii96.12 (4)
C1—C2—H2118.4O3viii—La1—O2ii153.47 (4)
C2—C3—C4120.64 (15)O7—La1—O2ii79.32 (4)
C2—C3—H3119.7O1—La1—O8vi125.08 (4)
C4—C3—H3119.7O4vii—La1—O8vi85.20 (4)
O3—C4—O4124.78 (14)O3viii—La1—O8vi77.55 (4)
O3—C4—C3116.62 (14)O7—La1—O8vi145.63 (4)
O4—C4—C3118.60 (13)O2ii—La1—O8vi128.50 (4)
O6—C5—O5123.56 (17)O1—La1—O672.00 (4)
O6—C5—C6121.97 (15)O4vii—La1—O6137.48 (4)
O5—C5—C6114.46 (15)O3viii—La1—O6129.99 (4)
C6i—C6—C5119.8 (2)O7—La1—O6138.97 (4)
C6i—C6—H6120.1O2ii—La1—O669.69 (4)
C5—C6—H6120.1O8vi—La1—O675.14 (4)
O8—C7—O7120.91 (15)O1—La1—O1W132.35 (4)
O8—C7—C8120.09 (15)O4vii—La1—O1W69.95 (4)
O7—C7—C8118.95 (15)O3viii—La1—O1W134.19 (4)
O8—C7—La1ii56.95 (8)O7—La1—O1W122.55 (4)
O7—C7—La1ii65.65 (8)O2ii—La1—O1W65.59 (4)
C8—C7—La1ii164.17 (11)O8vi—La1—O1W66.82 (4)
C8iii—C8—C7122.0 (2)O6—La1—O1W67.70 (4)
C8iii—C8—H8119O1—La1—O7vi77.26 (4)
C7—C8—H8119O4vii—La1—O7vi126.88 (4)
C1—O1—La1138.87 (11)O3viii—La1—O7vi67.52 (4)
C1—O2—La1vi136.53 (11)O7—La1—O7vi132.16 (3)
La1—O1W—H1W122 (2)O2ii—La1—O7vi131.09 (4)
La1—O1W—H2W116 (2)O8vi—La1—O7vi48.61 (4)
H1W—O1W—H2W102 (3)O6—La1—O7vi62.92 (4)
C4—O3—La1iv138.62 (11)O1W—La1—O7vi104.86 (4)
C4—O4—La1v136.10 (11)O1—La1—C7vi100.89 (4)
C5—O5—H5109.5O4vii—La1—C7vi107.86 (4)
C5—O6—La1138.30 (12)O3viii—La1—C7vi74.18 (4)
C7—O7—La1142.04 (10)O7—La1—C7vi148.44 (4)
C7—O7—La1ii89.54 (9)O2ii—La1—C7vi131.24 (4)
La1—O7—La1ii127.52 (4)O8vi—La1—C7vi24.23 (4)
C7—O8—La1ii98.82 (10)O6—La1—C7vi63.86 (4)
O1—La1—O4vii146.01 (4)O1W—La1—C7vi83.41 (4)
O1—La1—O3viii91.46 (4)O7vi—La1—C7vi24.81 (4)
O4vii—La1—O3viii79.57 (4)
O1—C1—C2—C38.0 (3)C1—O1—La1—O622.16 (15)
O2—C1—C2—C3171.99 (16)C1—O1—La1—O1W55.44 (17)
C1—C2—C3—C4176.25 (15)C1—O1—La1—O7vi43.17 (16)
C2—C3—C4—O3162.53 (16)C1—O1—La1—C7vi35.55 (16)
C2—C3—C4—O418.0 (2)C7—O7—La1—O170.34 (18)
O6—C5—C6—C6i1.5 (3)La1ii—O7—La1—O1124.25 (6)
O5—C5—C6—C6i178.9 (2)C7—O7—La1—O4vii109.49 (18)
O8—C7—C8—C8iii3.3 (3)La1ii—O7—La1—O4vii55.92 (6)
O7—C7—C8—C8iii174.2 (2)C7—O7—La1—O3viii25.29 (17)
La1ii—C7—C8—C8iii71.3 (5)La1ii—O7—La1—O3viii140.12 (7)
O2—C1—O1—La170.6 (2)C7—O7—La1—O2ii150.00 (18)
C2—C1—O1—La1109.40 (17)La1ii—O7—La1—O2ii44.59 (6)
O1—C1—O2—La1vi9.9 (3)C7—O7—La1—O8vi62.2 (2)
C2—C1—O2—La1vi170.08 (11)La1ii—O7—La1—O8vi103.23 (7)
O4—C4—O3—La1iv33.2 (3)C7—O7—La1—O6109.01 (17)
C3—C4—O3—La1iv147.30 (13)La1ii—O7—La1—O685.58 (8)
O3—C4—O4—La1v72.1 (2)C7—O7—La1—O1W158.26 (17)
C3—C4—O4—La1v108.47 (15)La1ii—O7—La1—O1W7.15 (8)
O5—C5—O6—La130.8 (3)C7—O7—La1—O7vi13.0 (2)
C6—C5—O6—La1148.76 (14)La1ii—O7—La1—O7vi178.394 (15)
O8—C7—O7—La1154.08 (13)C7—O7—La1—C7vi17.1 (2)
C8—C7—O7—La128.5 (3)La1ii—O7—La1—C7vi148.33 (6)
La1ii—C7—O7—La1168.47 (17)C5—O6—La1—O1117.06 (19)
O8—C7—O7—La1ii14.40 (15)C5—O6—La1—O4vii42.3 (2)
C8—C7—O7—La1ii163.03 (13)C5—O6—La1—O3viii166.68 (17)
O7—C7—O8—La1ii15.68 (17)C5—O6—La1—O777.5 (2)
C8—C7—O8—La1ii161.72 (12)C5—O6—La1—O2ii34.12 (18)
C1—O1—La1—O4vii176.91 (14)C5—O6—La1—O8vi107.59 (19)
C1—O1—La1—O3viii109.72 (16)C5—O6—La1—O1W36.94 (18)
C1—O1—La1—O7176.62 (16)C5—O6—La1—O7vi158.3 (2)
C1—O1—La1—O2ii94.61 (16)C5—O6—La1—C7vi130.57 (19)
C1—O1—La1—O8vi33.94 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x1, y+1/2, z1/2; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8ix0.80 (3)2.06 (3)2.7995 (19)154 (3)
O1W—H2W···O4x0.75 (3)2.17 (3)2.8913 (18)163 (3)
O5—H5···O2ii0.821.852.655 (2)167
Symmetry codes: (ii) x, y+1/2, z1/2; (ix) x+1, y+1/2, z1/2; (x) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8i0.80 (3)2.06 (3)2.7995 (19)154 (3)
O1W—H2W···O4ii0.75 (3)2.17 (3)2.8913 (18)163 (3)
O5—H5···O2iii0.82001.85002.655 (2)167.00
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Professor Mhamed Boudraa, Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1 Algeria, for his technical assistance with the single-crystal X-ray data collection.

References

First citationBénard, S. Yu. P., Yu, P., Audière, J. P., Rivière, E., Clément, R., Guilhem, J., Tchertanov, L. & Nakatani, K. (2000). J. Am. Chem. Soc. 122, 9444–9454.  Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDalai, S., Mukherjee, P. S., Zangrando, E., Lioret, F. & Chaudhuri, N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 822–823.  CSD CrossRef Google Scholar
First citationDan, M., Cottereau, G. & Rao, C. R. (2005). Solid State Sci. 7, 437–443.  CSD CrossRef CAS Google Scholar
First citationDevereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFujita, M., Kwon, Y. J., Washizu, S. & Ogura, K. (1994). J. Am. Chem. Soc. 116, 1151–1152.  CSD CrossRef CAS Web of Science Google Scholar
First citationLi, X. & Zou, Y.-Q. (2006). J. Coord. Chem. 59, 1131–1138.  CSD CrossRef Google Scholar
First citationLiu, P., Cao, W., Wang, J., Zeng, R. & Zeng, Z. (2011). Acta Cryst. E67, m1433–m1434.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, H. Z., Zheng, Y. Q. & Shou, K. Q. (2003). J. Coord. Chem. 56, 1291–1297.  CSD CrossRef CAS Google Scholar
First citationZhang, X. X., Chui, S. S. Y. & Williams, I. D. (2000). J. Appl. Phys. 87, 6007–6009.  CrossRef CAS Google Scholar
First citationZhang, G. & Yang, G. Ma. J. S. (2006). Cryst. Growth Des. 6, 934–939.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds