organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1141-o1142

Crystal structure of (5R)-5-[(1S)-1,2-di­hy­droxy­eth­yl]-4-meth­­oxy-3-phenyl-2,5-di­hydro­furan-2-one

aDepartment of Chemistry, Post Graduate School for Biological Studies, Ahmednagar College, Ahmednagar 414 001, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: srthopate@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 15 September 2014; accepted 26 September 2014; online 30 September 2014)

In the title compound, C13H14O5, the furan ring is essentially planar [maximum deviation = 0.031 (3) Å] with a stereogenic center (R) at the sp3 hybridized C atom. The C atom bearing the dihy­droxy ethyl group is S. The absolute configuration is based on the precursor in the synthesis. The two O—H groups are in an anti conformation with respect to each other. The mean plane of the furan­one group is twisted by 8.2 (4)° from that of the phenyl ring. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds involving furan­one C=O groups and symmetry-related hy­droxy groups, forming a two-dimensional network parallel to (001). Weak C—H⋯O hydrogen bonds are observed within the two-dimensional network.

1. Related literature

For the biological activity of 5,6-O-modified and 2,3-di-O-alkyl derivatives of L-ascorbic acid, see: Tanuma et al. (1993[Tanuma, S., Shiokawa, D., Tanimoto, Y., Ikekita, M., Sakagami, H., Takeda, M., Fukuda, S. & Kochi, M. (1993). Biochem. Biophys. Res. Commun. 194, 29-35.]); Gazivoda et al. (2007[Gazivoda, T., Raić-Malić, S., Marjanović, M., Kralj, M., Pavelić, K., Balzarini, J., De Clercq, E. & Mintas, M. (2007). Bioorg. Med. Chem. 15, 749-758.]); Wittine et al. (2012[Wittine, K., Stipković Babić, M., Makuc, D., Plavec, J., Kraljević Pavelić, S., Sedić, M., Pavelić, K., Leyssen, P., Neyts, J., Balzarini, J. & Mintas, M. (2012). Bioorg. Med. Chem. 20, 3675-3685.]); Kote et al. (2014[Kote, S. R., Mishra, R., Khan, A. A. & Thopate, S. R. (2014). Med. Chem. Res. 23, 1257-1266.]). For related structures, see: Koo & McDonald (2005[Koo, B. & McDonald, F. E. (2005). Org. Lett. 7, 3621-3624.]); Tanaka et al. (1986[Tanaka, T., Nonaka, G., Nishioka, I., Miyahara, K. & Kawasaki, T. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 369-376.]); Sugimura (1990[Sugimura, H. (1990). Tetrahedron Lett. 31, 5909-5912.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H14O5

  • Mr = 250.24

  • Monoclinic, P 21

  • a = 7.5110 (5) Å

  • b = 4.9298 (3) Å

  • c = 16.6625 (16) Å

  • β = 93.268 (6)°

  • V = 615.97 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.4 × 0.3 × 0.08 mm

2.2. Data collection

  • Agilent Xcalibur, Ruby, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.714, Tmax = 1.000

  • 8346 measured reflections

  • 1243 independent reflections

  • 655 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.126

  • S = 1.05

  • 1243 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.89 2.707 (5) 178
O5—H5⋯O1ii 0.82 1.94 2.741 (6) 165
C12—H12B⋯O4iii 0.97 2.58 3.365 (8) 139
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

5,6-O-modified L-ascorbic acid derivatives have been found to be effective anti-tumor agents for various human cancers, and induce apoptosis in tumor cells (Tanuma et al., 1993; Gazivoda et al., 2007; Wittine et al., 2012). We have recently reported that 2,3-di-O-alkyl derivatives of 5,6-O-iso­propyl­idene-L-ascorbic acid exhibit anti­cancer activity against human breast cancer cell line (MCF-7), leukemic cell line (HL-60) and cervical cell line (HeLa) (Kote et al., 2014). A search of the Cambridge Structural Database (Version 5.35, updates to November 2013, Allen, 2002) revealed the crystal structures of four related compounds, viz. di­methyl-2',3,3', 3a',4,4a,5',6',6a',9a-deca­hydro-6'-hy­droxy-1,3a',7,8,9a-penta­meth­oxy-2',10- dioxo-1,4-ethano-1H-pyrano(3,4-b)benzo­furan-3-spiro-3'-furo(3,2-b)furan-4,5- di­carboxyl­ate (Tanaka et al., 1986); 2,2-di­methyl-7-meth­oxy-1,3,6- trioxa-8-phenyl-4-(2,2-di­methyl-1,3-dioxa­cyclo­propan-4-yl)bi­cyclo­(4.3.0)nonane (Sugimura, 1990); 3,6-di­hydroxy-7-meth­oxy-5-methyl-3-phenyl­hexa­hydro-2H-furo (3,2-b)pyran-2-one methanol solvate and 3,6,7-tri­hydroxy-5-methyl-3-phenyl- hexa­hydro-2H-furo(3,2-b)pyran-2-one (Koo & McDonald, 2005). In view of the importance of the title compound, (I), herein we report its synthesis and crystal structure.

In the title compound (Fig. 2) the furan­one ring is essentially planar [maximum atomic deviation = 0.031 (3) Å] with a stereogenic center (R) at atom C9 and (S) at atom C11, which bears the di­hydroxy ethyl group. The two O—H groups are in an anti conformation with respect to each other, as reflected by torsion angles O5—C12—C11—C9 of 170.5 (6)° and O4—C11—C12—O5 of -69.4 (6)°. The C—C, Caromatic—Caromatic, C—O and CO bond lengths in (I) are within their normal ranges. The mean plane of the furan ring (C7/C8/O2/C9/C10) is twisted by 8.2 (4)° from that of the phenyl ring (C1–C6). In the crystal, molecules are linked by inter­molecular O—H···O hydrogen bonds involving furan­one CO groups and symmetry-related hy­droxy groups (Fig. 3, Table 1) to form a two-dimensional network paralllel to (001). Weak C—H···O hydrogen bonds are observed within the two-dimensional network.

Experimental top

Referring to Fig. 1, to a solution of (R)-5-((S)-2,2-di­methyl-1,3-dioxolan- 4-yl)-4-meth­oxy-3-phenyl­furan-2-(5H)-one (0.570 g) in 5.0 mL THF was added 2.00 mL of 20% H2SO4 at room temperature. The reaction mixture was stirred for 6 h at room temperature before it was quenched with NaHCO3 solution. The organic layer was extracted with ethyl acetate (3 × 10 mL), combined organic layer was dried over anhydrous Na2SO4, concentrated under vacuum and eluted through a silica column using a mixture of hexane and ethyl acetate (2:3) as an eluent to afford a white solid. Yield: 0.447 g (91%); HRMS: m/z = 251.0919 (calculated), m/z = 251.0927 [MH+] (found). 1H NMR (DMSO-d6 + CDCl3): δ [ppm] = 6.90 (d, J = 7.2 Hz, 2H, Ar—H), 6.71 (m, 3H, Ar—H), 4.44 (s, 1H, C4—H), 4.14 (d, J = 6.0 Hz, 1H, C6—H), 3.95 (t, J = 6 Hz, 1H, C6—H), 3.43 (m, 1H, C5—H), 3.21 (s, 3H, -OCH3). 13C NMR (DMSO-d6 + CDCl3): δ [ppm] = 168.5, 168.4, 125.4, 125.0, 123.3, 123.0, 100.1, 72.4, 65.2, 58.2, 55.4. IR (KBr): 3349, 3268, 2958, 2920, 1713, 1628, 1465, 1312, 980, 781 cm-1. [α]D25 +2.43° (c 0.28, MeOH). X-ray quality crystals were grown by slow evaporation of a solution of the title compound in a mixture of ethyl acetate and hexane.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93–0.98 Å, O—H = 0.82Å and with Uiso(H) = 1.2–1.5 Ueq(C). In the absence of anomalous dispersion effects the Friedel pairs were merged before refinement. The absolute configuration is based on the precursor in the synthesis.

Related literature top

For the biological activity of 5,6-O-modified and 2,3-di-O-alkyl derivatives of L-ascorbic acid, see: Tanuma et al. (1993); Gazivoda et al. (2007); Wittine et al. (2012); Kote et al. (2014). For related structures, see: Koo & McDonald (2005); Tanaka et al. (1986); Sugimura (1990). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Scheme showing the synthesis of the title compound.
[Figure 2] Fig. 2. The molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. The molecular packing of the title compound, viewed along the b-axis, showing two-dimensional network parallel to (001). Dashed lines indicate hydrogen bonds.
(5R)-5-[(1S)-1,2-dihydroxyethyl]-4-methoxy-3-phenyl-2,5-dihydrofuran-2-one top
Crystal data top
C13H14O5F(000) = 264
Mr = 250.24Dx = 1.349 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.5110 (5) ÅCell parameters from 613 reflections
b = 4.9298 (3) Åθ = 3.6–28.4°
c = 16.6625 (16) ŵ = 0.10 mm1
β = 93.268 (6)°T = 293 K
V = 615.97 (8) Å3Plate, colorless
Z = 20.4 × 0.3 × 0.08 mm
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
1243 independent reflections
Radiation source: Enhance (Mo) X-ray Source655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.5081 pixels mm-1θmax = 25.3°, θmin = 3.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 05
Tmin = 0.714, Tmax = 1.000l = 019
8346 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.039P)2]
where P = (Fo2 + 2Fc2)/3
1243 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C13H14O5V = 615.97 (8) Å3
Mr = 250.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5110 (5) ŵ = 0.10 mm1
b = 4.9298 (3) ÅT = 293 K
c = 16.6625 (16) Å0.4 × 0.3 × 0.08 mm
β = 93.268 (6)°
Data collection top
Agilent Xcalibur, Ruby, Gemini
diffractometer
1243 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
655 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 1.000Rint = 0.034
8346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.13 e Å3
1243 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1330 (5)0.1548 (13)0.2979 (3)0.0999 (17)
O20.9642 (4)0.4569 (9)0.3574 (3)0.0705 (13)
O30.5525 (5)0.4727 (10)0.2375 (3)0.0830 (14)
O40.6722 (4)0.1838 (8)0.4222 (3)0.0727 (13)
H40.56830.13860.42720.109*
O50.6695 (4)0.5242 (11)0.5641 (2)0.0776 (14)
H50.71730.58750.60540.116*
C10.8238 (8)0.0846 (12)0.1705 (4)0.0609 (16)
C20.6797 (10)0.0982 (15)0.1143 (5)0.090 (2)
H2A0.58880.22150.12250.108*
C30.6670 (12)0.0633 (19)0.0476 (5)0.107 (3)
H3A0.56860.04820.01140.128*
C40.7970 (13)0.2454 (16)0.0338 (5)0.098 (3)
H4A0.78830.35610.01140.117*
C50.9404 (11)0.2637 (16)0.0873 (6)0.100 (3)
H5A1.03010.38820.07830.120*
C60.9552 (9)0.1003 (15)0.1549 (5)0.085 (2)
H6A1.05510.11540.19030.102*
C70.8339 (7)0.2571 (12)0.2420 (4)0.0565 (17)
C80.9895 (8)0.2716 (15)0.2967 (4)0.071 (2)
C90.7819 (6)0.5560 (13)0.3479 (4)0.0609 (16)
H90.78140.75410.34280.073*
C100.7144 (7)0.4319 (12)0.2723 (4)0.0602 (17)
C110.6847 (7)0.4704 (14)0.4227 (4)0.0584 (16)
H11A0.56400.54690.41890.070*
C120.7805 (7)0.5703 (14)0.4989 (4)0.0681 (18)
H12A0.89250.47420.50810.082*
H12B0.80610.76240.49440.082*
C130.4443 (8)0.6955 (16)0.2630 (4)0.094 (2)
H13A0.36700.75540.21860.142*
H13B0.52010.84240.28120.142*
H13C0.37390.63660.30600.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.061 (2)0.158 (5)0.081 (4)0.027 (3)0.005 (2)0.004 (3)
O20.054 (2)0.090 (3)0.068 (3)0.011 (2)0.003 (2)0.000 (3)
O30.071 (2)0.092 (3)0.083 (4)0.024 (3)0.018 (2)0.017 (3)
O40.066 (2)0.060 (3)0.094 (4)0.006 (2)0.016 (2)0.002 (2)
O50.060 (2)0.113 (4)0.061 (3)0.005 (2)0.011 (2)0.006 (3)
C10.069 (4)0.056 (4)0.058 (5)0.000 (3)0.007 (4)0.001 (4)
C20.109 (5)0.084 (6)0.077 (6)0.017 (5)0.000 (5)0.015 (5)
C30.125 (6)0.104 (7)0.090 (7)0.010 (6)0.008 (5)0.019 (6)
C40.148 (7)0.077 (6)0.070 (7)0.009 (6)0.025 (6)0.011 (5)
C50.110 (6)0.086 (6)0.107 (8)0.013 (5)0.039 (6)0.014 (6)
C60.079 (4)0.087 (6)0.091 (6)0.014 (4)0.015 (4)0.005 (5)
C70.053 (3)0.056 (4)0.061 (5)0.001 (3)0.007 (3)0.007 (4)
C80.063 (4)0.087 (6)0.064 (5)0.003 (4)0.012 (4)0.004 (4)
C90.056 (3)0.058 (4)0.068 (5)0.002 (3)0.001 (3)0.006 (4)
C100.054 (3)0.062 (4)0.063 (5)0.004 (4)0.002 (3)0.006 (4)
C110.051 (3)0.056 (4)0.068 (5)0.005 (3)0.007 (3)0.002 (4)
C120.061 (3)0.077 (4)0.066 (5)0.009 (3)0.007 (3)0.002 (4)
C130.077 (4)0.097 (6)0.109 (7)0.025 (5)0.001 (4)0.004 (5)
Geometric parameters (Å, º) top
O1—C81.221 (7)C4—H4A0.9300
O2—C81.384 (8)C5—C61.384 (10)
O2—C91.454 (6)C5—H5A0.9300
O3—C101.332 (6)C6—H6A0.9300
O3—C131.445 (7)C7—C101.362 (7)
O4—C111.416 (7)C7—C81.442 (8)
O4—H40.8200C9—C101.464 (8)
O5—C121.424 (6)C9—C111.539 (7)
O5—H50.8200C9—H90.9800
C1—C61.379 (8)C11—C121.507 (8)
C1—C21.392 (8)C11—H11A0.9800
C1—C71.462 (8)C12—H12A0.9700
C2—C31.367 (10)C12—H12B0.9700
C2—H2A0.9300C13—H13A0.9600
C3—C41.355 (10)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.362 (9)
C8—O2—C9108.0 (5)O2—C9—C10103.4 (5)
C10—O3—C13120.1 (5)O2—C9—C11107.8 (5)
C11—O4—H4109.5C10—C9—C11115.1 (5)
C12—O5—H5109.5O2—C9—H9110.1
C6—C1—C2116.3 (6)C10—C9—H9110.1
C6—C1—C7122.3 (6)C11—C9—H9110.1
C2—C1—C7121.5 (6)O3—C10—C7122.6 (6)
C3—C2—C1122.3 (7)O3—C10—C9125.1 (5)
C3—C2—H2A118.8C7—C10—C9112.3 (5)
C1—C2—H2A118.8O4—C11—C12111.0 (5)
C4—C3—C2120.4 (8)O4—C11—C9107.7 (5)
C4—C3—H3A119.8C12—C11—C9111.5 (5)
C2—C3—H3A119.8O4—C11—H11A108.8
C3—C4—C5118.9 (8)C12—C11—H11A108.8
C3—C4—H4A120.5C9—C11—H11A108.8
C5—C4—H4A120.5O5—C12—C11108.6 (4)
C4—C5—C6121.2 (7)O5—C12—H12A110.0
C4—C5—H5A119.4C11—C12—H12A110.0
C6—C5—H5A119.4O5—C12—H12B110.0
C1—C6—C5120.8 (7)C11—C12—H12B110.0
C1—C6—H6A119.6H12A—C12—H12B108.4
C5—C6—H6A119.6O3—C13—H13A109.5
C10—C7—C8105.2 (6)O3—C13—H13B109.5
C10—C7—C1131.7 (6)H13A—C13—H13B109.5
C8—C7—C1123.1 (6)O3—C13—H13C109.5
O1—C8—O2117.1 (6)H13A—C13—H13C109.5
O1—C8—C7132.0 (7)H13B—C13—H13C109.5
O2—C8—C7110.8 (5)
C6—C1—C2—C30.5 (10)C8—O2—C9—C105.6 (6)
C7—C1—C2—C3179.3 (6)C8—O2—C9—C11116.8 (5)
C1—C2—C3—C40.1 (12)C13—O3—C10—C7168.3 (5)
C2—C3—C4—C50.3 (12)C13—O3—C10—C914.6 (8)
C3—C4—C5—C60.0 (12)C8—C7—C10—O3179.8 (5)
C2—C1—C6—C50.8 (9)C1—C7—C10—O30.7 (9)
C7—C1—C6—C5179.0 (6)C8—C7—C10—C92.4 (6)
C4—C5—C6—C10.6 (11)C1—C7—C10—C9178.2 (5)
C6—C1—C7—C10173.2 (6)O2—C9—C10—O3177.6 (5)
C2—C1—C7—C106.6 (9)C11—C9—C10—O365.0 (8)
C6—C1—C7—C87.5 (8)O2—C9—C10—C75.0 (6)
C2—C1—C7—C8172.7 (6)C11—C9—C10—C7112.4 (6)
C9—O2—C8—O1175.9 (5)O2—C9—C11—O466.2 (6)
C9—O2—C8—C74.6 (6)C10—C9—C11—O448.7 (6)
C10—C7—C8—O1179.2 (7)O2—C9—C11—C1255.9 (7)
C1—C7—C8—O11.4 (10)C10—C9—C11—C12170.7 (5)
C10—C7—C8—O21.4 (6)O4—C11—C12—O569.4 (6)
C1—C7—C8—O2178.1 (5)C9—C11—C12—O5170.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.892.707 (5)178
O5—H5···O1ii0.821.942.741 (6)165
C12—H12B···O4iii0.972.583.365 (8)139
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.892.707 (5)177.9
O5—H5···O1ii0.821.942.741 (6)165.4
C12—H12B···O4iii0.972.583.365 (8)138.5
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi, India (No. SR/S1/OC-19/2007). SRK thanks the DST for the award of a JRF. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to thank the USIEF for the award of a Fulbright–Nehru Senior Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGazivoda, T., Raić-Malić, S., Marjanović, M., Kralj, M., Pavelić, K., Balzarini, J., De Clercq, E. & Mintas, M. (2007). Bioorg. Med. Chem. 15, 749–758.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoo, B. & McDonald, F. E. (2005). Org. Lett. 7, 3621–3624.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKote, S. R., Mishra, R., Khan, A. A. & Thopate, S. R. (2014). Med. Chem. Res. 23, 1257–1266.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSugimura, H. (1990). Tetrahedron Lett. 31, 5909–5912.  CSD CrossRef CAS Web of Science Google Scholar
First citationTanaka, T., Nonaka, G., Nishioka, I., Miyahara, K. & Kawasaki, T. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 369–376.  CSD CrossRef Web of Science Google Scholar
First citationTanuma, S., Shiokawa, D., Tanimoto, Y., Ikekita, M., Sakagami, H., Takeda, M., Fukuda, S. & Kochi, M. (1993). Biochem. Biophys. Res. Commun. 194, 29–35.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWittine, K., Stipković Babić, M., Makuc, D., Plavec, J., Kraljević Pavelić, S., Sedić, M., Pavelić, K., Leyssen, P., Neyts, J., Balzarini, J. & Mintas, M. (2012). Bioorg. Med. Chem. 20, 3675–3685.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 10| October 2014| Pages o1141-o1142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds