organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-6-({2-[(3,5-di­chloro-2-hy­dr­oxy­benzyl­­idene)amino]­eth­yl}imino­meth­yl)phenol

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, cLaboratoire SONAS, E.A. 921, Faculte de Pharmacie, 16 Bd Daviers, 49045 ANGERS cedex 01, France, and dMOLTECH Anjou UMR-CNRS 6200, 2 Bd Lavoisier, 49045 Angers cedex, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 23 April 2012; accepted 5 May 2012; online 12 May 2012)

The title mol­ecule, C16H12Cl4N2O2, lies about an inversion center. The symmetry-unique part of the mol­ecule contains an intra­molecular O—H⋯N hydrogen bond. In the crystal, mol­ecules are arranged in corrugated layers parallel to (-101). Weak ππ stacking inter­actions, with a centroid–centroid diatance of 3.7923 (13) Å, are present.

Related literature

For the preparation of the title compound, see: Lu & Xia (2006[Lu, X.-H. & Xia, Q. H. (2006). J. Mol. Catal. A, 250, 62-69.]); Trivedi et al. (1992[Trivedi, B. M., Bhattacharya, P. K., Ganeshpure, P. A. & Satish, S. (1992). J. Mol. Catal. A, 75, 109-115.]). For the synthesis of similar compounds, see: Kadish et al. (1990[Kadish, K. M., Araullo, M. C., Han, M. M. & Franzen, B. C. (1990). J. Am. Chem. Soc. 112, 8364-8368.]); Taylor et al. (1991[Taylor, T. G., Byun, Y. S., Taylor, P. S., Battioni, P. & Mansuy, D. (1991). J. Am. Chem. Soc. 113, 7821-7823.]); Moutet & Ourari (1997[Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.]) Ourari et al. (2008b[Ourari, A., Ouari, K., khan, M. A. & Bouet, G. (2008b). J. Coord. Chem. 61, 3846-3859.], 2011[Ourari, A., Khelafi, M. K., Khan, M. A. & Bouet, G. (2011). Adv. Phys. Chem. 1-11.]). For their applications, see: Ourari et al. (2008a[Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008a). J. Electrochem. Commun. 10, 1736-1739.]); Kadish et al. (1990[Kadish, K. M., Araullo, M. C., Han, M. M. & Franzen, B. C. (1990). J. Am. Chem. Soc. 112, 8364-8368.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl4N2O2

  • Mr = 406.08

  • Monoclinic, P 21 /c

  • a = 7.529 (1) Å

  • b = 10.718 (2) Å

  • c = 10.759 (2) Å

  • β = 101.40 (2)°

  • V = 851.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 295 K

  • 0.50 × 0.23 × 0.19 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: gaussian (ABSGAUSS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.794, Tmax = 0.893

  • 8137 measured reflections

  • 1671 independent reflections

  • 1192 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 0.94

  • 1671 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯N2 0.82 1.84 2.562 (2) 147

Data collection: EXPOSE (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS-1 Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: SELECT and CELL (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS-1 Software. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS-1 Software. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis of new chelating agents such as Schiff bases became an extensive area of research owing to their high structural versatility. This is due to their high ability to coordinate transition metals leading to the corresponding complexes. This class of compounds may be involved in many applications as in coordination chemistry, biology, analysis, catalysis and electrocatalysis (Ourari et al., 2008a; Kadish et al., 1990). Herein, we report the preparation and crystal structure the of the title compound. These type of polyhalogenated ligands are endowed with high resistance towards oxidation reactions seeing that the chlorine atoms are adequately grafted at ortho and para-positions of the phenolic entities, preventing their further oxidation reactions as it was early reported for the porphyrinic complexes (Kadish et al., 1990; Taylor et al., 1991; Moutet et al., 1997). Some mononuclear complexes of Schiff base-Mn(III) compounds have been synthesized and used as catalysts towards epoxidation of olefins. This showed that the dihalogenated complexes behaved as the most efficient catalysts. Recently, we have as confirmed this observation when studying their analogues such as as those of iron(III) (Ourari et al., 2008b) and ruthenium(III) (Ourari et al., 2011) for the same oxidation reactions.

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit of the title compound, consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. The crystal packing can be described as corrugated layers paralel to (-101) (Fig. 2). Fig. 3 shows the crystal structure with helical chains of molecules as a result of the 21 screw axes. There are two intramolecular O—H···N hydrogen bonds in the molecule (Table 1, Fig. 2). Weak ππ stacking interactions with a centroid to centroid distance 3.7923 (13) Å are present between inversion related molecules.

Related literature top

For the preparation of the title compound, see: Lu & Xia (2006); Trivedi et al. (1992). For the synthesis of similar compounds, see: Kadish et al. (1990); Taylor et al. (1991); Moutet & Ourari (1997) Ourari et al. (2008b, 2011). For their applications, see: Ourari et al. (2008a); Kadish et al. (1990).

Experimental top

All reagents were AR grade, obtained from Alfa Aesar Chemical Company. 3, 5-Dichlorosalicylaldehyde, 1,2-diaminoethane and anhydrous ethanol were used without any further purification. The ligand prepared in this work was performed according the literature (Lu et al., 2006; Trivedi et al., 1992). Thus, a solution of 3, 5-dichlorosalicylaldehyde 382 mg (2.10-3 mole) in anhydrous ethanol (10 ml) was dropwise added to a stirring ethanolic solution (10 ml), containing 60 mg (1.10-3 mole) of ethylenediamine. The reaction mixture was refluxed for about 2 h leading to the formation of a yellow precipitate. This precipitate was collected by filtration, washed several times with ethanol and then dried on phosphoric anhydride (P2O5), its yield is of 90%. The resulting compound (I) was re-crystallized from a solvent mixture dichloromethane/acetone with the volume proportions 90 and 10, respectively. Under the slow evaporation, suitable crystals for X-ray diffraction were obtained.

Refinement top

H atoms were located in difference Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and O) with C—H = 0.93 Å (methine, aromatic), 0.97 Å (methylene) and O—H = 0.82 Å (hydroxyl) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: EXPOSE (Stoe & Cie, 1999); cell refinement: SELECT and CELL (Stoe & Cie, 1999); data reduction: INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoid drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (i)-x+1, -y, -z
[Figure 2] Fig. 2. Layers of molecules paralel to (-101). Dash lines indicate hydrogen bonds.
[Figure 3] Fig. 3. A projection of part of the crystal structure along [001].
2,4-Dichloro-6-({2-[(3,5-dichloro-2- hydroxybenzylidene)amino]ethyl}iminomethyl)phenol top
Crystal data top
C16H12Cl4N2O2F(000) = 412
Mr = 406.08Dx = 1.585 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4871 reflections
a = 7.529 (1) Åθ = 2.7–25.9°
b = 10.718 (2) ŵ = 0.71 mm1
c = 10.759 (2) ÅT = 295 K
β = 101.40 (2)°Prism, yellow
V = 851.1 (3) Å30.50 × 0.23 × 0.19 mm
Z = 2
Data collection top
Stoe IPDS
diffractometer
1192 reflections with I > 2σ(I)
Detector resolution: 6.66 pixels mm-1Rint = 0.049
Oscillation Phi Incr 2.1 deg scansθmax = 26.1°, θmin = 2.7°
Absorption correction: gaussian
(ABSGAUSS in PLATON; Spek, 2009)
h = 99
Tmin = 0.794, Tmax = 0.893k = 1313
8137 measured reflectionsl = 1313
1671 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
1671 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C16H12Cl4N2O2V = 851.1 (3) Å3
Mr = 406.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.529 (1) ŵ = 0.71 mm1
b = 10.718 (2) ÅT = 295 K
c = 10.759 (2) Å0.50 × 0.23 × 0.19 mm
β = 101.40 (2)°
Data collection top
Stoe IPDS
diffractometer
1671 independent reflections
Absorption correction: gaussian
(ABSGAUSS in PLATON; Spek, 2009)
1192 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.893Rint = 0.049
8137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.94Δρmax = 0.19 e Å3
1671 reflectionsΔρmin = 0.15 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4564 (3)0.03468 (18)0.0456 (2)0.0533 (5)
H1A0.36510.01740.07200.064*
H1B0.54640.05590.12030.064*
C30.3844 (3)0.24891 (17)0.05017 (19)0.0418 (4)
H30.44780.24900.13360.050*
C40.3008 (2)0.36389 (16)0.00494 (17)0.0358 (4)
C50.3094 (2)0.47168 (17)0.06874 (19)0.0411 (4)
H50.36940.47030.15300.049*
C60.2293 (3)0.57999 (16)0.0169 (2)0.0427 (5)
C70.1393 (3)0.58432 (16)0.1083 (2)0.0438 (5)
H70.08540.65800.14250.053*
C80.1302 (2)0.47829 (17)0.18167 (18)0.0409 (4)
C90.2103 (2)0.36623 (15)0.13247 (18)0.0362 (4)
N20.3722 (2)0.14858 (14)0.01354 (16)0.0449 (4)
O90.1968 (2)0.26567 (12)0.20694 (13)0.0479 (3)
H90.24040.20520.16500.072*
Cl60.23717 (8)0.71310 (5)0.11055 (6)0.0639 (2)
Cl80.01342 (8)0.47988 (5)0.33747 (5)0.06174 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0655 (14)0.0390 (10)0.0563 (14)0.0175 (9)0.0141 (10)0.0124 (9)
C30.0446 (10)0.0426 (10)0.0388 (10)0.0057 (8)0.0094 (8)0.0054 (8)
C40.0348 (9)0.0336 (9)0.0398 (10)0.0016 (7)0.0093 (8)0.0025 (8)
C50.0406 (10)0.0405 (10)0.0424 (11)0.0021 (8)0.0085 (8)0.0027 (8)
C60.0432 (10)0.0316 (9)0.0568 (13)0.0051 (8)0.0183 (9)0.0053 (9)
C70.0449 (10)0.0290 (9)0.0607 (14)0.0041 (8)0.0181 (9)0.0073 (9)
C80.0395 (10)0.0387 (10)0.0453 (11)0.0026 (8)0.0099 (8)0.0082 (8)
C90.0390 (9)0.0302 (8)0.0405 (10)0.0018 (7)0.0112 (8)0.0003 (8)
N20.0485 (9)0.0355 (8)0.0508 (10)0.0108 (7)0.0097 (7)0.0072 (8)
O90.0621 (9)0.0359 (7)0.0433 (8)0.0086 (6)0.0050 (6)0.0026 (6)
Cl60.0764 (4)0.0381 (3)0.0824 (4)0.0077 (3)0.0282 (3)0.0184 (3)
Cl80.0731 (4)0.0593 (3)0.0478 (3)0.0151 (3)0.0003 (2)0.0117 (3)
Geometric parameters (Å, º) top
C1—N21.462 (2)C5—H50.9300
C1—C1i1.484 (4)C6—C71.383 (3)
C1—H1A0.9700C6—Cl61.7410 (19)
C1—H1B0.9700C7—C81.378 (3)
C3—N21.269 (2)C7—H70.9300
C3—C41.456 (2)C8—C91.400 (2)
C3—H30.9300C8—Cl81.732 (2)
C4—C51.395 (2)C9—O91.335 (2)
C4—C91.406 (3)O9—H90.8200
C5—C61.375 (3)
N2—C1—C1i109.9 (2)C5—C6—C7120.98 (17)
N2—C1—H1A109.7C5—C6—Cl6119.66 (16)
C1i—C1—H1A109.7C7—C6—Cl6119.34 (14)
N2—C1—H1B109.7C8—C7—C6119.31 (16)
C1i—C1—H1B109.7C8—C7—H7120.3
H1A—C1—H1B108.2C6—C7—H7120.3
N2—C3—C4121.22 (18)C7—C8—C9121.46 (18)
N2—C3—H3119.4C7—C8—Cl8120.31 (14)
C4—C3—H3119.4C9—C8—Cl8118.21 (15)
C5—C4—C9119.92 (16)O9—C9—C8119.32 (17)
C5—C4—C3120.11 (17)O9—C9—C4122.41 (15)
C9—C4—C3119.97 (16)C8—C9—C4118.26 (16)
C6—C5—C4120.07 (18)C3—N2—C1119.58 (18)
C6—C5—H5120.0C9—O9—H9109.5
C4—C5—H5120.0
N2—C3—C4—C5177.24 (17)C7—C8—C9—O9179.49 (17)
N2—C3—C4—C92.4 (3)Cl8—C8—C9—O91.1 (2)
C9—C4—C5—C60.1 (3)C7—C8—C9—C40.2 (3)
C3—C4—C5—C6179.52 (17)Cl8—C8—C9—C4178.22 (13)
C4—C5—C6—C70.0 (3)C5—C4—C9—O9179.50 (16)
C4—C5—C6—Cl6178.76 (13)C3—C4—C9—O90.2 (3)
C5—C6—C7—C80.1 (3)C5—C4—C9—C80.2 (2)
Cl6—C6—C7—C8178.80 (14)C3—C4—C9—C8179.41 (16)
C6—C7—C8—C90.1 (3)C4—C3—N2—C1179.34 (17)
C6—C7—C8—Cl8178.35 (14)C1i—C1—N2—C3139.3 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N20.821.842.562 (2)147

Experimental details

Crystal data
Chemical formulaC16H12Cl4N2O2
Mr406.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.529 (1), 10.718 (2), 10.759 (2)
β (°) 101.40 (2)
V3)851.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.50 × 0.23 × 0.19
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionGaussian
(ABSGAUSS in PLATON; Spek, 2009)
Tmin, Tmax0.794, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
8137, 1671, 1192
Rint0.049
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 0.94
No. of reflections1671
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15

Computer programs: EXPOSE (Stoe & Cie, 1999), SELECT and CELL (Stoe & Cie, 1999), INTEGRATE (Stoe & Cie, 1999), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···N20.821.842.562 (2)147.00
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Jean-Claude Daran, Laboratoire de Chimie de Coordination, UPR-CNRS 8241, Toulouse, France, for his valuable input and insightful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKadish, K. M., Araullo, M. C., Han, M. M. & Franzen, B. C. (1990). J. Am. Chem. Soc. 112, 8364–8368.  CSD CrossRef CAS Web of Science Google Scholar
First citationLu, X.-H. & Xia, Q. H. (2006). J. Mol. Catal. A, 250, 62–69.  CrossRef CAS Google Scholar
First citationMoutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.  CrossRef CAS Web of Science Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008a). J. Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationOurari, A., Khelafi, M. K., Khan, M. A. & Bouet, G. (2011). Adv. Phys. Chem. 1–11.  Google Scholar
First citationOurari, A., Ouari, K., khan, M. A. & Bouet, G. (2008b). J. Coord. Chem. 61, 3846–3859.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS-1 Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTaylor, T. G., Byun, Y. S., Taylor, P. S., Battioni, P. & Mansuy, D. (1991). J. Am. Chem. Soc. 113, 7821–7823.  Google Scholar
First citationTrivedi, B. M., Bhattacharya, P. K., Ganeshpure, P. A. & Satish, S. (1992). J. Mol. Catal. A, 75, 109–115.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds