metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)nickel(II) tetra­hydrate

aCollege of Science, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Food Science and Technology, Guang Dong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 13 May 2010; accepted 27 June 2010; online 7 July 2010)

In the title complex, [Ni(C8H9N2O4)2(H2O)2]·4H2O, the NiII ion is coordinated in a slightly distorted octa­hedral environment formed by two bis-chelating H2pimda (H3pimda is 2-propyl-1H-4,5-dicarb­oxy­lic acid) ligands and two coordinated water mol­ecules. In the crystal structure, a three-dimensional framework is formed by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds involving the solvent water mol­ecules, coordinated water mol­ecules, carboxyl­ate O atoms and the protonated N atoms of the H2pimda ligands. The propyl groups of each H2pimda ligand are disordered over two sets of sites with refined occupancies of 0.50 (2):0.50 (2) and 0.762 (11):0.238 (11). In one water solvent mol­ecule, one of the H atoms was refined as disordered over two sites of equal occupancy.

Related literature

For the potential uses and diverse structural types of imidazole-4,5-dicarb­oxy­lic acid complexes, see: Zou et al. (2006[Zou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.]); Li et al. (2006[Li, C. J., Hu, S., Li, W., Lam, C. K., Zheng, Y. Z. & Tong, M. L. (2006). Eur. J. Inorg. Chem. pp.1931-1935.]); Liu et al. (2004[Liu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806-2807.]); Sun et al. (2005[Sun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814-5817.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H9N2O4)2(H2O)2]·4H2O

  • Mr = 561.15

  • Triclinic, [P \overline 1]

  • a = 10.466 (1) Å

  • b = 10.5829 (11) Å

  • c = 11.3011 (13) Å

  • α = 81.585 (1)°

  • β = 83.580 (1)°

  • γ = 86.869 (2)°

  • V = 1229.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 298 K

  • 0.48 × 0.40 × 0.33 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.764

  • 6402 measured reflections

  • 4280 independent reflections

  • 2986 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.208

  • S = 1.05

  • 4280 reflections

  • 358 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O13i 0.86 1.91 2.745 (7) 162
N4—H4⋯O12 0.86 1.88 2.734 (7) 171
O3—H3⋯O2 0.82 1.65 2.466 (6) 176
O7—H7⋯O6 0.82 1.70 2.523 (6) 180
O9—H9C⋯O4ii 0.85 2.11 2.960 (6) 174
O9—H9D⋯O8iii 0.85 1.96 2.807 (6) 173
O10—H10C⋯O4iv 0.85 1.87 2.724 (6) 177
O10—H10D⋯O11v 0.85 1.83 2.675 (7) 177
O11—H11C⋯O1vi 0.85 2.06 2.904 (6) 172
O11—H11C⋯O2vi 0.85 2.62 3.197 (7) 127
O11—H11D⋯O6i 0.85 1.99 2.830 (6) 172
O12—H12C⋯O14 0.85 1.84 2.676 (10) 166
O12—H12D⋯O3vi 0.85 2.07 2.904 (7) 167
O13—H13C⋯O11vii 0.85 2.23 2.889 (9) 134
O13—H13D⋯O8 0.85 2.44 3.068 (9) 131
O14—H14G⋯O13 0.85 1.99 2.488 (11) 117
O14—H14H⋯O14viii 0.85 1.54 2.355 (17) 160
O14—H14F⋯O5ix 0.85 2.19 2.778 (9) 127
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+2; (v) x-1, y, z+1; (vi) -x+1, -y, -z+1; (vii) -x+1, -y+1, -z; (viii) -x, -y+1, -z; (ix) x, y, z-1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, imidazole-4,5-dicarboxylic acid (H3IDC) with two nitrogen and four oxygen atoms has drawn great interest in coordination chemistry due to the fact that H3IDC can be deprotonated to form H2IDC-, HIDC2- and IDC3- anions at different pH values. H3IDC has been widely used to coordinate with metal salts to obtain a series of MOFs with different structures and useful properties (Zou et al. , 2006; Li et al. , 2006; Liu et al. , 2004; Sun et al. , 2005), Therefore, we chose H3pimda to obtain a new NiII complex, whose structure is be reported herein.

As illustrated in Fig. 1, the title compound contains an NiII ion, coordinated by two mono-deprotonated H2pimda- anions and two coordinated water molecules in a slightly distorted octahedral geometry. Four solvent water molecules complete the formula unit. The dihedral angle between the two imidazole rings is 95.11 (17)°. In the crystal structure, a three-dimensional framework is formed by intermolecular O-H···O and N-H···O hydrogen bonds involving the solvent water molecules, coordinated water molecules, carboxy O atoms and the protonated N atoms of H3pimda ligands. The propyl groups of each H3pimda ligands are disordered over two sets of sites with refined occupancies of 0.50 (2):0.50 (2) and 0.762 (11):0.238 (11). In one water solvent molecule, one of the H atoms was refined as disordered over two sites with equall occupancies.

Related literature top

For the potential uses and diverse structural types of imidazole-4,5-dicarboxylic acid complexes, see: Zou et al. (2006); Li et al. (2006); Liu et al. (2004); Sun et al. (2005).

Experimental top

A mixture of NiNO3 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of C3H7NO solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433k for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

C and N bound H atoms were placed in calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.96-0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl). H atoms of the water molecules were located in a difference Fourier map and were allowed to ride on the parent atom, with O-H = 0.85 Å and Uiso(H)=1.2 Ueq.

Structure description top

Recently, imidazole-4,5-dicarboxylic acid (H3IDC) with two nitrogen and four oxygen atoms has drawn great interest in coordination chemistry due to the fact that H3IDC can be deprotonated to form H2IDC-, HIDC2- and IDC3- anions at different pH values. H3IDC has been widely used to coordinate with metal salts to obtain a series of MOFs with different structures and useful properties (Zou et al. , 2006; Li et al. , 2006; Liu et al. , 2004; Sun et al. , 2005), Therefore, we chose H3pimda to obtain a new NiII complex, whose structure is be reported herein.

As illustrated in Fig. 1, the title compound contains an NiII ion, coordinated by two mono-deprotonated H2pimda- anions and two coordinated water molecules in a slightly distorted octahedral geometry. Four solvent water molecules complete the formula unit. The dihedral angle between the two imidazole rings is 95.11 (17)°. In the crystal structure, a three-dimensional framework is formed by intermolecular O-H···O and N-H···O hydrogen bonds involving the solvent water molecules, coordinated water molecules, carboxy O atoms and the protonated N atoms of H3pimda ligands. The propyl groups of each H3pimda ligands are disordered over two sets of sites with refined occupancies of 0.50 (2):0.50 (2) and 0.762 (11):0.238 (11). In one water solvent molecule, one of the H atoms was refined as disordered over two sites with equall occupancies.

For the potential uses and diverse structural types of imidazole-4,5-dicarboxylic acid complexes, see: Zou et al. (2006); Li et al. (2006); Liu et al. (2004); Sun et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The assymetric unit of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. H atoms bonded to C atoms are not shown. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure showing O—H···O and N—H···O hydrogen bonds as dashed lines. Neither the disorder in the complex nor the H atoms which are not involved in hydrogen bonds are shown.
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)nickel(II) tetrahydrate top
Crystal data top
[Ni(C8H9N2O4)2(H2O)2]·4H2OZ = 2
Mr = 561.15F(000) = 588
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.466 (1) ÅCell parameters from 2051 reflections
b = 10.5829 (11) Åθ = 2.5–23.9°
c = 11.3011 (13) ŵ = 0.86 mm1
α = 81.585 (1)°T = 298 K
β = 83.580 (1)°Block, green
γ = 86.869 (2)°0.48 × 0.40 × 0.33 mm
V = 1229.5 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4280 independent reflections
Radiation source: fine-focus sealed tube2986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.682, Tmax = 0.764k = 1112
6402 measured reflectionsl = 1013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0945P)2 + 3.581P]
where P = (Fo2 + 2Fc2)/3
4280 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[Ni(C8H9N2O4)2(H2O)2]·4H2Oγ = 86.869 (2)°
Mr = 561.15V = 1229.5 (2) Å3
Triclinic, P1Z = 2
a = 10.466 (1) ÅMo Kα radiation
b = 10.5829 (11) ŵ = 0.86 mm1
c = 11.3011 (13) ÅT = 298 K
α = 81.585 (1)°0.48 × 0.40 × 0.33 mm
β = 83.580 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4280 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2986 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.764Rint = 0.026
6402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.05Δρmax = 0.75 e Å3
4280 reflectionsΔρmin = 1.16 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.15302 (7)0.21144 (7)0.80787 (6)0.0439 (3)
N10.3486 (4)0.2176 (4)0.8285 (4)0.0403 (10)
N20.5487 (4)0.2256 (4)0.8689 (4)0.0449 (11)
H20.61870.25570.88470.054*
N30.1723 (4)0.2837 (4)0.6268 (4)0.0432 (11)
N40.1924 (5)0.3537 (5)0.4338 (4)0.0520 (13)
H40.20550.35360.35730.062*
O10.2132 (4)0.0190 (4)0.7957 (4)0.0502 (10)
O20.3797 (4)0.1188 (4)0.8133 (4)0.0621 (12)
O30.6045 (4)0.1139 (4)0.8582 (4)0.0596 (11)
H30.53010.11230.84140.089*
O40.7386 (4)0.0255 (4)0.8992 (4)0.0598 (12)
O50.1072 (4)0.4049 (4)0.8174 (3)0.0493 (10)
O60.0993 (5)0.5962 (4)0.7061 (4)0.0590 (11)
O70.1250 (5)0.6826 (4)0.4849 (4)0.0625 (12)
H70.11670.65480.55680.094*
O80.1656 (4)0.6062 (5)0.3144 (4)0.0671 (13)
O90.0354 (4)0.1738 (5)0.7901 (5)0.0746 (15)
H9C0.09610.12640.82350.090*
H9D0.06860.24300.75630.090*
O100.1162 (5)0.1683 (5)0.9898 (4)0.0798 (17)
H10C0.15980.10791.02660.096*
H10D0.04950.18481.03610.096*
O110.9033 (5)0.2266 (5)0.1288 (5)0.0849 (17)
H11C0.86730.15700.15770.102*
H11D0.89860.27440.18350.102*
O120.2218 (7)0.3264 (7)0.1953 (5)0.110 (2)
H12C0.18620.36930.13750.132*
H12D0.26940.26700.16860.132*
O130.2630 (6)0.6526 (7)0.0459 (6)0.112 (2)
H13C0.25760.70350.01910.135*
H13D0.19800.66410.09600.135*
O140.1006 (8)0.4916 (9)0.0385 (7)0.152 (3)
H14G0.16500.52030.00850.182*
H14F0.06050.44360.00240.182*0.50
H14H0.03260.51530.00540.182*0.50
C10.3287 (5)0.0078 (5)0.8114 (5)0.0436 (13)
C20.4061 (5)0.0981 (5)0.8310 (5)0.0394 (12)
C30.5317 (5)0.1013 (5)0.8560 (5)0.0417 (13)
C40.6338 (6)0.0005 (6)0.8721 (5)0.0466 (14)
C50.4375 (5)0.2931 (5)0.8528 (5)0.0457 (14)
C60.4222 (7)0.4317 (7)0.8555 (8)0.072 (2)
H6A0.42860.44440.93790.086*0.50 (2)
H6B0.33450.45600.83940.086*0.50 (2)
H6'A0.47620.45940.91050.086*0.50 (2)
H6'B0.33340.45760.87730.086*0.50 (2)
C70.5053 (15)0.5269 (15)0.7781 (18)0.069 (6)0.50 (2)
H7A0.59490.50620.78960.082*0.50 (2)
H7B0.48380.61150.79960.082*0.50 (2)
C80.484 (2)0.525 (3)0.645 (2)0.093 (8)0.50 (2)
H8A0.47260.43890.63240.139*0.50 (2)
H8B0.55800.55820.59400.139*0.50 (2)
H8C0.40920.57710.62610.139*0.50 (2)
C7'0.4676 (19)0.4840 (19)0.718 (2)0.068 (6)0.50 (2)
H7'10.55700.45750.69940.082*0.50 (2)
H7'20.41700.44550.66650.082*0.50 (2)
C8'0.4540 (19)0.627 (2)0.689 (2)0.100 (8)0.50 (2)
H8'10.36640.65400.70960.150*0.50 (2)
H8'20.47750.65220.60470.150*0.50 (2)
H8'30.50940.66550.73450.150*0.50 (2)
C90.1183 (5)0.4772 (6)0.7179 (5)0.0443 (13)
C100.1527 (5)0.4136 (5)0.6109 (5)0.0380 (12)
C110.1660 (5)0.4595 (6)0.4900 (5)0.0431 (13)
C120.1541 (5)0.5891 (6)0.4234 (5)0.0470 (14)
C130.1946 (6)0.2498 (6)0.5181 (6)0.0553 (16)
C140.2084 (10)0.1182 (8)0.4929 (7)0.087 (3)
H14A0.16370.11280.42320.104*0.762 (11)
H14B0.16470.06430.56050.104*0.762 (11)
H14C0.24090.07040.56410.104*0.238 (11)
H14D0.27910.11870.42960.104*0.238 (11)
C150.3406 (12)0.0638 (11)0.4702 (11)0.088 (4)0.762 (11)
H15A0.38960.07560.53540.106*0.762 (11)
H15B0.38230.10910.39640.106*0.762 (11)
C160.3405 (16)0.0808 (12)0.4595 (14)0.128 (6)0.762 (11)
H16A0.29310.12480.52960.192*0.762 (11)
H16B0.42750.11500.45300.192*0.762 (11)
H16C0.30100.09190.38920.192*0.762 (11)
C15'0.121 (4)0.030 (4)0.449 (3)0.086 (11)0.238 (11)
H15C0.05430.00360.51250.103*0.238 (11)
H15D0.17070.04550.42920.103*0.238 (11)
C16'0.058 (4)0.093 (4)0.338 (4)0.110 (15)0.238 (11)
H16D0.02760.17780.34920.165*0.238 (11)
H16E0.01240.04330.32680.165*0.238 (11)
H16F0.12050.09650.26840.165*0.238 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0360 (4)0.0492 (5)0.0421 (4)0.0037 (3)0.0052 (3)0.0065 (3)
N10.038 (2)0.040 (2)0.041 (2)0.004 (2)0.0074 (19)0.0003 (19)
N20.036 (2)0.047 (3)0.050 (3)0.003 (2)0.011 (2)0.004 (2)
N30.045 (3)0.045 (3)0.039 (3)0.000 (2)0.007 (2)0.000 (2)
N40.059 (3)0.060 (3)0.036 (3)0.008 (3)0.008 (2)0.006 (2)
O10.049 (2)0.046 (2)0.054 (2)0.0064 (19)0.0120 (19)0.0011 (18)
O20.061 (3)0.042 (2)0.084 (3)0.004 (2)0.009 (2)0.012 (2)
O30.050 (3)0.055 (3)0.072 (3)0.016 (2)0.007 (2)0.009 (2)
O40.039 (2)0.067 (3)0.067 (3)0.010 (2)0.007 (2)0.011 (2)
O50.052 (2)0.058 (3)0.035 (2)0.0139 (19)0.0061 (17)0.0037 (18)
O60.078 (3)0.050 (3)0.049 (2)0.011 (2)0.012 (2)0.0061 (19)
O70.075 (3)0.050 (3)0.059 (3)0.003 (2)0.012 (2)0.008 (2)
O80.060 (3)0.084 (3)0.047 (3)0.009 (2)0.003 (2)0.016 (2)
O90.041 (2)0.081 (3)0.089 (4)0.010 (2)0.015 (2)0.039 (3)
O100.066 (3)0.103 (4)0.050 (3)0.043 (3)0.011 (2)0.028 (3)
O110.076 (4)0.083 (4)0.098 (4)0.030 (3)0.025 (3)0.040 (3)
O120.133 (6)0.133 (6)0.070 (4)0.049 (4)0.022 (4)0.042 (4)
O130.094 (5)0.138 (6)0.122 (5)0.009 (4)0.050 (4)0.049 (4)
O140.146 (7)0.185 (9)0.124 (7)0.007 (6)0.015 (5)0.024 (6)
C10.040 (3)0.046 (3)0.043 (3)0.000 (3)0.005 (2)0.000 (2)
C20.038 (3)0.040 (3)0.037 (3)0.004 (2)0.002 (2)0.002 (2)
C30.039 (3)0.042 (3)0.040 (3)0.003 (2)0.001 (2)0.004 (2)
C40.041 (3)0.053 (4)0.039 (3)0.008 (3)0.002 (2)0.004 (3)
C50.041 (3)0.044 (3)0.051 (3)0.004 (3)0.012 (3)0.000 (3)
C60.061 (4)0.056 (4)0.102 (6)0.003 (3)0.032 (4)0.008 (4)
C70.054 (9)0.052 (9)0.103 (14)0.008 (7)0.022 (9)0.008 (8)
C80.067 (12)0.12 (2)0.096 (17)0.009 (12)0.022 (12)0.009 (14)
C7'0.052 (10)0.059 (11)0.094 (15)0.008 (8)0.010 (11)0.008 (11)
C8'0.091 (14)0.084 (15)0.119 (17)0.010 (11)0.010 (12)0.000 (12)
C90.041 (3)0.048 (3)0.043 (3)0.006 (3)0.008 (2)0.001 (3)
C100.033 (3)0.043 (3)0.037 (3)0.002 (2)0.007 (2)0.000 (2)
C110.033 (3)0.052 (3)0.043 (3)0.001 (2)0.005 (2)0.001 (3)
C120.036 (3)0.057 (4)0.044 (3)0.000 (3)0.007 (2)0.007 (3)
C130.065 (4)0.056 (4)0.045 (3)0.006 (3)0.010 (3)0.010 (3)
C140.123 (8)0.074 (5)0.061 (5)0.017 (5)0.014 (5)0.007 (4)
C150.101 (9)0.081 (8)0.079 (7)0.003 (7)0.002 (6)0.009 (6)
C160.162 (15)0.080 (9)0.133 (13)0.006 (9)0.028 (11)0.024 (8)
C15'0.10 (3)0.08 (2)0.07 (2)0.00 (2)0.004 (19)0.006 (18)
C16'0.12 (4)0.10 (3)0.10 (3)0.01 (3)0.02 (3)0.00 (2)
Geometric parameters (Å, º) top
Ni1—O102.038 (4)C5—C61.472 (9)
Ni1—N32.069 (4)C6—C71.485 (17)
Ni1—O92.071 (4)C6—C7'1.60 (2)
Ni1—N12.092 (4)C6—H6A0.9700
Ni1—O52.092 (4)C6—H6B0.9700
Ni1—O12.118 (4)C6—H6'A0.9700
N1—C51.334 (7)C6—H6'B0.9700
N1—C21.368 (7)C7—C81.55 (3)
N2—C51.348 (7)C7—H7A0.9700
N2—C31.368 (7)C7—H7B0.9700
N2—H20.8600C8—H8A0.9600
N3—C131.322 (8)C8—H8B0.9600
N3—C101.366 (7)C8—H8C0.9600
N4—C131.347 (8)C7'—C8'1.50 (3)
N4—C111.367 (8)C7'—H7'10.9700
N4—H40.8600C7'—H7'20.9700
O1—C11.253 (7)C8'—H8'10.9600
O2—C11.262 (7)C8'—H8'20.9600
O3—C41.290 (7)C8'—H8'30.9600
O3—H30.8200C9—C101.469 (8)
O4—C41.227 (7)C10—C111.376 (7)
O5—C91.262 (7)C11—C121.471 (8)
O6—C91.255 (7)C13—C141.459 (10)
O7—C121.294 (8)C14—C151.479 (14)
O7—H70.8200C14—C15'1.51 (4)
O8—C121.212 (7)C14—H14A0.9700
O9—H9C0.8500C14—H14B0.9700
O9—H9D0.8501C14—H14C0.9700
O10—H10C0.8500C14—H14D0.9700
O10—H10D0.8500C15—C161.552 (16)
O11—H11C0.8500C15—H15A0.9700
O11—H11D0.8500C15—H15B0.9700
O12—H12C0.8500C16—H16A0.9600
O12—H12D0.8500C16—H16B0.9600
O13—H13C0.8500C16—H16C0.9600
O13—H13D0.8500C15'—C16'1.52 (5)
O14—H14G0.8500C15'—H15C0.9700
O14—H14F0.8500C15'—H15D0.9700
O14—H14H0.8500C16'—H16D0.9600
C1—C21.474 (8)C16'—H16E0.9600
C2—C31.378 (8)C16'—H16F0.9600
C3—C41.482 (8)
O10—Ni1—N3170.23 (19)C7—C6—H6'B117.7
O10—Ni1—O989.5 (2)C7'—C6—H6'B111.2
N3—Ni1—O987.80 (18)H6'A—C6—H6'B109.4
O10—Ni1—N189.03 (19)C6—C7—C8109.0 (17)
N3—Ni1—N195.10 (18)C6—C7—H7A109.9
O9—Ni1—N1170.79 (18)C8—C7—H7A109.9
O10—Ni1—O590.89 (18)C6—C7—H7B109.9
N3—Ni1—O579.85 (16)C8—C7—H7B109.9
O9—Ni1—O592.39 (19)H7A—C7—H7B108.3
N1—Ni1—O596.72 (17)C8'—C7'—C6113.1 (18)
O10—Ni1—O190.27 (18)C8'—C7'—H7'1109.0
N3—Ni1—O199.18 (17)C6—C7'—H7'1109.0
O9—Ni1—O191.48 (18)C8'—C7'—H7'2109.0
N1—Ni1—O179.43 (16)C6—C7'—H7'2109.0
O5—Ni1—O1175.97 (16)H7'1—C7'—H7'2107.8
C5—N1—C2106.1 (4)C7'—C8'—H8'1109.5
C5—N1—Ni1143.1 (4)C7'—C8'—H8'2109.5
C2—N1—Ni1110.3 (3)H8'1—C8'—H8'2109.5
C5—N2—C3108.5 (5)C7'—C8'—H8'3109.5
C5—N2—H2125.7H8'1—C8'—H8'3109.5
C3—N2—H2125.7H8'2—C8'—H8'3109.5
C13—N3—C10106.5 (5)O6—C9—O5124.3 (5)
C13—N3—Ni1142.9 (4)O6—C9—C10119.7 (5)
C10—N3—Ni1110.6 (3)O5—C9—C10116.0 (5)
C13—N4—C11108.6 (5)N3—C10—C11109.6 (5)
C13—N4—H4125.7N3—C10—C9118.3 (5)
C11—N4—H4125.7C11—C10—C9132.1 (5)
C1—O1—Ni1114.9 (4)N4—C11—C10105.0 (5)
C4—O3—H3109.5N4—C11—C12122.5 (5)
C9—O5—Ni1115.1 (4)C10—C11—C12132.4 (6)
C12—O7—H7109.5O8—C12—O7121.5 (6)
Ni1—O9—H9C141.0O8—C12—C11120.6 (6)
Ni1—O9—H9D106.2O7—C12—C11117.8 (5)
H9C—O9—H9D108.2N3—C13—N4110.2 (5)
Ni1—O10—H10C118.9N3—C13—C14124.8 (6)
Ni1—O10—H10D130.0N4—C13—C14124.8 (6)
H10C—O10—H10D108.5C13—C14—C15117.4 (9)
H11C—O11—H11D108.6C13—C14—C15'133.9 (16)
H12C—O12—H12D108.7C15—C14—C15'106.0 (16)
H13C—O13—H13D110.1C13—C14—H14A107.9
H14G—O14—H14F108.6C15—C14—H14A107.9
H14G—O14—H14H108.5C13—C14—H14B107.9
O1—C1—O2123.8 (5)C15—C14—H14B107.9
O1—C1—C2116.6 (5)H14A—C14—H14B107.2
O2—C1—C2119.6 (5)C13—C14—H14C104.5
N1—C2—C3109.8 (5)C15'—C14—H14C106.3
N1—C2—C1118.5 (5)C13—C14—H14D104.7
C3—C2—C1131.7 (5)H14C—C14—H14D105.7
N2—C3—C2105.3 (5)C14—C15—C16111.6 (11)
N2—C3—C4122.9 (5)C14—C15—H15A109.3
C2—C3—C4131.8 (5)C16—C15—H15A109.3
O4—C4—O3123.8 (5)C14—C15—H15B109.3
O4—C4—C3119.7 (6)C16—C15—H15B109.3
O3—C4—C3116.5 (5)H15A—C15—H15B108.0
N1—C5—N2110.3 (5)C14—C15'—C16'113 (3)
N1—C5—C6126.2 (5)C14—C15'—H15C109.0
N2—C5—C6123.4 (5)C16'—C15'—H15C109.0
C5—C6—C7123.6 (9)C14—C15'—H15D109.0
C5—C6—H6A106.4C16'—C15'—H15D109.0
C7—C6—H6A106.4H15C—C15'—H15D107.8
C5—C6—H6B106.4C15'—C16'—H16D109.5
C7—C6—H6B106.4C15'—C16'—H16E109.5
H6A—C6—H6B106.5H16D—C16'—H16E109.5
C5—C6—H6'A111.6C15'—C16'—H16F109.5
C7'—C6—H6'A112.5H16D—C16'—H16F109.5
H6B—C6—H6'A131.5H16E—C16'—H16F109.5
C5—C6—H6'B111.7
O10—Ni1—N1—C583.4 (6)C2—N1—C5—C6177.5 (6)
N3—Ni1—N1—C587.7 (6)Ni1—N1—C5—C612.2 (11)
O5—Ni1—N1—C57.4 (6)C3—N2—C5—N10.6 (6)
O1—Ni1—N1—C5173.9 (7)C3—N2—C5—C6177.5 (6)
O10—Ni1—N1—C286.6 (4)N1—C5—C6—C7121.2 (12)
N3—Ni1—N1—C2102.3 (4)N2—C5—C6—C755.2 (13)
O5—Ni1—N1—C2177.4 (3)N1—C5—C6—C7'89.1 (10)
O1—Ni1—N1—C23.8 (3)N2—C5—C6—C7'87.3 (10)
O9—Ni1—N3—C1382.1 (7)C5—C6—C7—C864.8 (16)
N1—Ni1—N3—C1389.1 (7)C7'—C6—C7—C85.8 (18)
O5—Ni1—N3—C13174.9 (7)C5—C6—C7'—C8'176.0 (15)
O1—Ni1—N3—C139.1 (7)C7—C6—C7'—C8'50.6 (17)
O9—Ni1—N3—C1095.9 (4)Ni1—O5—C9—O6177.5 (5)
N1—Ni1—N3—C1092.8 (4)Ni1—O5—C9—C104.1 (6)
O5—Ni1—N3—C103.1 (3)C13—N3—C10—C111.3 (6)
O1—Ni1—N3—C10172.9 (3)Ni1—N3—C10—C11180.0 (3)
O10—Ni1—O1—C185.5 (4)C13—N3—C10—C9176.6 (5)
N3—Ni1—O1—C197.0 (4)Ni1—N3—C10—C92.1 (6)
O9—Ni1—O1—C1175.0 (4)O6—C9—C10—N3179.8 (5)
N1—Ni1—O1—C13.5 (4)O5—C9—C10—N31.3 (7)
O10—Ni1—O5—C9179.0 (4)O6—C9—C10—C112.5 (9)
N3—Ni1—O5—C94.1 (4)O5—C9—C10—C11176.0 (5)
O9—Ni1—O5—C991.4 (4)C13—N4—C11—C100.0 (7)
N1—Ni1—O5—C989.9 (4)C13—N4—C11—C12178.7 (5)
Ni1—O1—C1—O2176.4 (4)N3—C10—C11—N40.8 (6)
Ni1—O1—C1—C22.3 (6)C9—C10—C11—N4176.7 (6)
C5—N1—C2—C30.6 (6)N3—C10—C11—C12179.3 (6)
Ni1—N1—C2—C3174.4 (4)C9—C10—C11—C121.8 (10)
C5—N1—C2—C1177.9 (5)N4—C11—C12—O81.2 (9)
Ni1—N1—C2—C14.1 (6)C10—C11—C12—O8177.1 (6)
O1—C1—C2—N11.3 (7)N4—C11—C12—O7178.0 (5)
O2—C1—C2—N1179.9 (5)C10—C11—C12—O70.4 (9)
O1—C1—C2—C3176.7 (5)C10—N3—C13—N41.3 (7)
O2—C1—C2—C32.1 (9)Ni1—N3—C13—N4179.3 (5)
C5—N2—C3—C20.2 (6)C10—N3—C13—C14173.9 (7)
C5—N2—C3—C4177.9 (5)Ni1—N3—C13—C144.2 (12)
N1—C2—C3—N20.2 (6)C11—N4—C13—N30.8 (7)
C1—C2—C3—N2177.9 (5)C11—N4—C13—C14174.3 (7)
N1—C2—C3—C4178.1 (5)N3—C13—C14—C1598.7 (10)
C1—C2—C3—C40.0 (10)N4—C13—C14—C1586.8 (10)
N2—C3—C4—O40.7 (8)N3—C13—C14—C15'103 (2)
C2—C3—C4—O4177.0 (6)N4—C13—C14—C15'72 (2)
N2—C3—C4—O3179.5 (5)C13—C14—C15—C16173.4 (9)
C2—C3—C4—O31.8 (9)C15'—C14—C15—C1622.4 (18)
C2—N1—C5—N20.7 (6)C13—C14—C15'—C16'48 (4)
Ni1—N1—C5—N2171.0 (4)C15—C14—C15'—C16'112 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O13i0.861.912.745 (7)162
N4—H4···O120.861.882.734 (7)171
O3—H3···O20.821.652.466 (6)176
O7—H7···O60.821.702.523 (6)180
O9—H9C···O4ii0.852.112.960 (6)174
O9—H9D···O8iii0.851.962.807 (6)173
O10—H10C···O4iv0.851.872.724 (6)177
O10—H10D···O11v0.851.832.675 (7)177
O11—H11C···O1vi0.852.062.904 (6)172
O11—H11C···O2vi0.852.623.197 (7)127
O11—H11D···O6i0.851.992.830 (6)172
O12—H12C···O140.851.842.676 (10)166
O12—H12D···O3vi0.852.072.904 (7)167
O13—H13C···O11vii0.852.232.889 (9)134
O13—H13D···O80.852.443.068 (9)131
O14—H14G···O130.851.992.488 (11)117
O14—H14H···O14viii0.851.542.355 (17)160
O14—H14F···O5ix0.852.192.778 (9)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z+2; (v) x1, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x, y+1, z; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C8H9N2O4)2(H2O)2]·4H2O
Mr561.15
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.466 (1), 10.5829 (11), 11.3011 (13)
α, β, γ (°)81.585 (1), 83.580 (1), 86.869 (2)
V3)1229.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.48 × 0.40 × 0.33
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.682, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
6402, 4280, 2986
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.208, 1.05
No. of reflections4280
No. of parameters358
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 1.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O13i0.861.912.745 (7)162.1
N4—H4···O120.861.882.734 (7)170.5
O3—H3···O20.821.652.466 (6)176.1
O7—H7···O60.821.702.523 (6)179.7
O9—H9C···O4ii0.852.112.960 (6)173.6
O9—H9D···O8iii0.851.962.807 (6)173.0
O10—H10C···O4iv0.851.872.724 (6)177.3
O10—H10D···O11v0.851.832.675 (7)176.9
O11—H11C···O1vi0.852.062.904 (6)172.0
O11—H11C···O2vi0.852.623.197 (7)126.7
O11—H11D···O6i0.851.992.830 (6)171.9
O12—H12C···O140.851.842.676 (10)165.6
O12—H12D···O3vi0.852.072.904 (7)167.4
O13—H13C···O11vii0.852.232.889 (9)134.1
O13—H13D···O80.852.443.068 (9)130.8
O14—H14G···O130.851.992.488 (11)116.9
O14—H14H···O14viii0.851.542.355 (17)159.7
O14—H14F···O5ix0.852.192.778 (9)126.6
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z+2; (v) x1, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1, z; (viii) x, y+1, z; (ix) x, y, z1.
 

Acknowledgements

The authors acknowledge Guang Dong Ocean University for supporting this work.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, C. J., Hu, S., Li, W., Lam, C. K., Zheng, Y. Z. & Tong, M. L. (2006). Eur. J. Inorg. Chem. pp.1931–1935.  CrossRef Google Scholar
First citationLiu, Y. L., Kravtsov, V., Walsh, R. D., Poddar, P., Srikanth, H. & Eddaoudi, M. (2004). Chem. Commun. pp. 2806–2807.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. Q., Zhang, J., Chen, Y. M. & Yang, G. Y. (2005). Angew. Chem. Int. Ed. 44, 5814–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationZou, R. Q., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds