metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m518-m519

Poly[[di­aqua­{N-[1-(3-pyrid­yl)ethyl­­idene]-4H-1,2,4-triazol-4-amine}zinc(II)] bis­­(perchlorate)]

aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Non-ferrous Metals of the Ministry of Education, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: rosesunqz@yahoo.com.cn

(Received 30 March 2009; accepted 7 April 2009; online 10 April 2009)

In the title compound, {[Zn(C9H9N5)2(H2O)2](ClO4)2}n, the ZnII ion lies on an inversion center and is coordinated by two triazolyl N atoms and two pyridyl N atoms from four symmetry-related N-1-(3-pyrid­yl)ethyl­idene-4H-1,2,4-triazol-4-amine (L) ligands and two O atoms from coordinated water mol­ecules in a slightly distorted octa­hedral environment. Each L ligand bridges symmetry-related ZnII ions, forming a two-dimensional layer with a (4,4) grid. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds connect perchlorate counter-anions to the layers.

Related literature

For the structures of triazole complexes, see: Wang et al. (2006[Wang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5822-5829.], 2007[Wang, Y., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 43, 2002-2010.]); Drabent et al. (2003[Drabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem. pp. 1548-1554.], 2004[Drabent, K., Białońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224-227.], 2008[Drabent, K., Ciunick, Z. & Ozarowshi, A. (2008). Inorg. Chem. 47, 3358-3365.]); Sun et al. (2009a[Sun, Q., Zheng, F., Sun, X. & Wang, W. (2009a). Acta Cryst. E65, m124.],b[Sun, Q., Zheng, F., Sun, X. & Wang, W. (2009b). Acta Cryst. E65, m283-m284.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33-43.]). For general background information, see: Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]); Ding et al. (2007[Ding, B., Huang, Y. Q., Liu, Y. Y., Shi, W. & Cheng, P. (2007). Inorg. Chem. Commun. 10, 7-10.]); Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131-185.]); Klingele & Brooker (2003[Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119-132.]); Zhai et al. (2006[Zhai, Q. G., Wu, X. Y., Chen, S. M., Lu, C. Z. & Yang, W. B. (2006). Cryst. Growth Des. 6, 2126-2135.]). For the (4,4) topology, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H9N5)2(H2O)2](ClO4)2

  • Mr = 674.75

  • Monoclinic, P 21 /n

  • a = 7.4929 (9) Å

  • b = 10.0963 (12) Å

  • c = 17.149 (2) Å

  • β = 94.887 (2)°

  • V = 1292.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.38 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.647, Tmax = 0.697

  • 6344 measured reflections

  • 2266 independent reflections

  • 1856 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.130

  • S = 1.05

  • 2266 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯N2 0.85 2.20 2.814 (4) 130
O1W—H1WB⋯O4i 0.85 2.22 2.993 (5) 151
O1W—H1WB⋯O3i 0.85 2.26 3.003 (5) 147
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL, DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazoles and their derivatives can coordinate with metal ions using two bridging adjacent nitrogen atoms via the 1, 2 or 4-positioned N atoms, exhibiting unique magnetic properties. Recently, a variety of such coordination compounds with various structures and different chemical properties have been reported (Beckmann & Brooker, 2003; Ding et al., 2007; Haasnoot, 2000; Klingele & Brooker, 2003; Zhai et al., 2006). Relatively speaking, the crystal structures of only a few compounds based on 4-amido-1,2,4-triazoles Schiff base ligands have been studied e.g. [Ag4(µ2-L)6(CH3CN)2] (AsF6)4.2H2O [where L=4-salicylideneamino- 1,2,4-triazole] (Wang et al., 2006) and a series of one-dimensional linear chain polymers {[Cu(µ-OH)(µ-RPhtrz)] [(H2O)X]}n (where R=Cl, Br; HPhtrz= N-[(E)-phenylmethylidene-4H-1,2,4-triazol-4- amine]; X=BF4-, NO3-) (Drabent et al., 2008). However, the most common structure type is dimeric with M2L4 [where M=Cu(I), Ag(I)] in which two ligands coordinate with metal ion in monodentate fashion and two in bidentate mode (Drabent et al., 2003;2004; Wang et al., 2007).

As part of our on-going work (Sun et al., 2009a,b), we have synthesized N-[1-(3-pyridyl)ethylidene]-4H-1,2,4-triazol- 4-amine. Unlike above Schiff base ligands containing 1,2,4-triazole, it is a rigid angular multifunctional ligand containing one pyridine and one triazole group, which are both strong coordination donors to metal centers. Therefore, it was expected that the pyridyl N atom would coordinate with metal ions creating a structure with a novel topology. Herein we present the crystal structure of the title two-dimensional layer compound with a (4,4) grid (Batten & Robson, 1998).

The asymmetric unit of the title compound is shown in Fig. 1. Each ZnII ion is in a slightly distorted octahedral coordination environment with the equatorial sites occupied by two triazolyl N atoms of symmetry related ligands (L) and two symmetry related water molecules. The axial sites are occupied by two pyridyl N atoms from two symmetry related ligands (L). Unlike the N1, N2 coordination mode reported previously (Drabent et al., 2003,2004,2008; Sun et al., 2009a,b; Wang et al., 2006 and 2007; Yi et al., 2004), each ligand in the title compound bridges two ZnII ions, forming a two-dimensional sheet with a (4, 4) topology (Fig. 2). Fig. 3 shows how ClO4- anions and coordinated water molecules occupy the spaces between neighbouring layers.

Related literature top

For the structures of triazole complexes, see: Wang et al. (2006,2007); Drabent et al. (2003,2004,2008); Sun et al. (2009a,b); Yi et al. (2004). For general background information, see: Beckmann & Brooker (2003); Ding et al. (2007); Haasnoot (2000); Klingele & Brooker (2003); Zhai et al. (2006). For the (4,4) grid, see: Batten & Robson (1998).

Experimental top

Preparation of ligand L: An ethanolic solution (20 ml) of 3-acetylpyridine (1.21 g, 10 mmol) was added to a warm ethanolic solution (10 ml) of 4-amino- 1,2,4-triazole (0.84 g, 10 mmol) and the resulting solution was refluxed for four hours. The reaction mixture was then cooled to room temperature. Upon standing overnight the resultant pale yellow solid was filtered off, washed with diethyl ether and dried under vacuum. Yield: 80%. Elemental analyses calcd (%): C, 57.7; H, 4.8; N, 37.4. Found: C, 57.6; H, 4.8; N, 37.4. 1H NMR (500 MHz, DMSO, 298 K): 9.14 (d, 1H), 8.80 (s, 2H), 8.77 (d, 1H), 8.35–8.36 (d, 1H), 7.57–7.59 (m, 1H), 2.44 (s, 3H).

Preparation of the title compound: The ligand L (0.1 mmol, 0.019 g) and Zn(ClO4)2.6H2O (0.1 mmol, 0.037 g) were mixed in acetonitrile and methanol. After stirring at room temperature for one hour, the colourless solution was filtered and evaporated at room temperature. A few days later the block crystals were obtained. Elemental analyses calcd (%) for Zn0.5C9H11ClN5O5: C, 30.8; H, 4.6; N, 20.0. Found: C, 30.7; H, 4.5; N, 20.0. IR (KBr pellets, λ, cm-1): 3384m, 3124m, 1627m, 1588w, 1523m, 1477w, 1420w, 1369w, 1291m, 1184m, 1088vs, 1010m, 888w, 826w, 698m, 626 s, 489w, 435w.

Refinement top

H atoms were placed calculated positions C-H = 0.93-0.96Å; O-H = 0.85Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing the (4, 4) topology and the slightly distorted octahedal configuration for ZnII ions.
[Figure 3] Fig. 3. Part of the crystal structure viewed perpendicular to the (010) plane to show how ClO4- anions and coordinated water ligands occupy the layers. H atoms have been omitted for clarity.
Poly[[diaqua{N-[1-(3-pyridyl)ethylidene]-4H-1,2,4-triazol-4- amine}zinc(II)] bis(perchlorate)] top
Crystal data top
[Zn(C9H9N5)2(H2O)2](ClO4)2F(000) = 688
Mr = 674.75Dx = 1.734 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2652 reflections
a = 7.4929 (9) Åθ = 2.4–27.8°
b = 10.0963 (12) ŵ = 1.23 mm1
c = 17.149 (2) ÅT = 293 K
β = 94.887 (2)°Block, colourless
V = 1292.6 (3) Å30.38 × 0.30 × 0.30 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
2266 independent reflections
Radiation source: fine-focus sealed tube1856 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.647, Tmax = 0.697k = 1111
6344 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0859P)2 + 0.0827P]
where P = (Fo2 + 2Fc2)/3
2266 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Zn(C9H9N5)2(H2O)2](ClO4)2V = 1292.6 (3) Å3
Mr = 674.75Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4929 (9) ŵ = 1.23 mm1
b = 10.0963 (12) ÅT = 293 K
c = 17.149 (2) Å0.38 × 0.30 × 0.30 mm
β = 94.887 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2266 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1856 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.697Rint = 0.053
6344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
2266 reflectionsΔρmin = 0.35 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.00000.0318 (2)
N10.6739 (4)0.0235 (3)0.10252 (15)0.0313 (6)
N20.8545 (4)0.0414 (3)0.09414 (16)0.0388 (7)
N30.8080 (3)0.0549 (3)0.21762 (14)0.0295 (6)
N40.8448 (4)0.0976 (3)0.29546 (14)0.0339 (6)
N50.9165 (4)0.2865 (3)0.50082 (15)0.0346 (6)
C10.6489 (4)0.0320 (3)0.17647 (18)0.0311 (7)
H1B0.53920.02370.19760.037*
C20.9296 (4)0.0616 (4)0.16374 (18)0.0375 (8)
H2B1.05110.07840.17530.045*
C30.7815 (4)0.0301 (3)0.34965 (19)0.0305 (7)
C40.6845 (5)0.0988 (3)0.3412 (2)0.0433 (9)
H4B0.67570.12570.28730.065*
H4C0.56650.08890.35820.065*
H4D0.74890.16480.37260.065*
C50.8132 (4)0.0933 (3)0.42821 (17)0.0289 (7)
C60.7662 (5)0.0350 (4)0.4965 (2)0.0383 (8)
H6A0.71390.04860.49530.046*
C70.7979 (5)0.1027 (4)0.56667 (19)0.0419 (9)
H7A0.77050.06390.61340.050*
C80.8695 (5)0.2266 (4)0.56639 (19)0.0388 (8)
H8A0.88700.27210.61360.047*
C90.8878 (4)0.2192 (3)0.43411 (18)0.0336 (8)
H9A0.91990.25920.38850.040*
Cl10.65614 (11)0.77575 (8)0.69869 (5)0.0395 (3)
O20.6939 (3)0.9043 (3)0.73148 (17)0.0567 (7)
O10.5062 (4)0.7213 (3)0.7307 (2)0.0798 (11)
O30.6227 (7)0.7890 (4)0.6170 (2)0.1085 (14)
O40.8049 (5)0.6906 (3)0.7127 (3)0.0937 (12)
O1W0.7229 (3)0.0328 (3)0.06446 (14)0.0425 (6)
H1WA0.81720.02280.03380.051*
H1WB0.73530.09720.09540.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0407 (4)0.0362 (4)0.0182 (3)0.0009 (2)0.0001 (2)0.00160 (19)
N10.0336 (15)0.0363 (16)0.0236 (14)0.0012 (12)0.0006 (11)0.0013 (11)
N20.0366 (16)0.0505 (18)0.0295 (16)0.0022 (14)0.0039 (12)0.0054 (13)
N30.0340 (14)0.0331 (15)0.0205 (13)0.0001 (12)0.0014 (11)0.0046 (11)
N40.0432 (16)0.0377 (16)0.0202 (14)0.0052 (13)0.0014 (11)0.0075 (11)
N50.0452 (17)0.0345 (16)0.0235 (14)0.0029 (13)0.0003 (11)0.0017 (11)
C10.0358 (18)0.0342 (18)0.0231 (17)0.0003 (14)0.0018 (14)0.0037 (13)
C20.0329 (18)0.049 (2)0.0310 (19)0.0013 (16)0.0051 (14)0.0044 (16)
C30.0302 (17)0.0324 (18)0.0281 (17)0.0047 (14)0.0034 (14)0.0024 (14)
C40.060 (2)0.035 (2)0.0332 (19)0.0104 (17)0.0008 (16)0.0012 (15)
C50.0290 (16)0.0318 (18)0.0255 (16)0.0025 (13)0.0006 (12)0.0020 (13)
C60.042 (2)0.0398 (19)0.0335 (19)0.0050 (16)0.0045 (15)0.0020 (15)
C70.051 (2)0.048 (2)0.0270 (18)0.0056 (17)0.0055 (15)0.0059 (15)
C80.050 (2)0.044 (2)0.0222 (17)0.0012 (16)0.0023 (15)0.0005 (14)
C90.0439 (19)0.0359 (19)0.0212 (16)0.0003 (15)0.0035 (13)0.0014 (13)
Cl10.0451 (5)0.0349 (5)0.0397 (5)0.0018 (4)0.0111 (4)0.0036 (3)
O20.0545 (16)0.0439 (16)0.073 (2)0.0038 (13)0.0105 (14)0.0182 (13)
O10.068 (2)0.067 (2)0.110 (3)0.0251 (17)0.043 (2)0.0256 (18)
O30.196 (4)0.089 (3)0.041 (2)0.001 (3)0.010 (2)0.0046 (18)
O40.067 (2)0.054 (2)0.161 (4)0.0276 (17)0.012 (2)0.011 (2)
O1W0.0432 (14)0.0514 (16)0.0339 (14)0.0006 (12)0.0092 (11)0.0095 (11)
Geometric parameters (Å, º) top
Zn1—O1W2.106 (2)C3—C51.491 (4)
Zn1—O1Wi2.106 (2)C4—H4B0.9600
Zn1—N1i2.111 (3)C4—H4C0.9600
Zn1—N12.111 (3)C4—H4D0.9600
Zn1—N5ii2.245 (3)C5—C61.382 (4)
Zn1—N5iii2.245 (3)C5—C91.389 (5)
N1—C11.301 (4)C6—C71.387 (5)
N1—N21.385 (4)C6—H6A0.9300
N2—C21.292 (4)C7—C81.362 (5)
N3—C11.352 (4)C7—H7A0.9300
N3—C21.354 (4)C8—H8A0.9300
N3—N41.408 (3)C9—H9A0.9300
N4—C31.276 (4)Cl1—O11.404 (3)
N5—C91.332 (4)Cl1—O31.409 (4)
N5—C81.349 (4)Cl1—O41.412 (3)
N5—Zn1iv2.245 (3)Cl1—O21.433 (3)
C1—H1B0.9300O1W—H1WA0.8500
C2—H2B0.9300O1W—H1WB0.8500
C3—C41.491 (5)
O1W—Zn1—O1Wi180N4—C3—C5112.9 (3)
O1W—Zn1—N1i92.38 (10)C4—C3—C5120.0 (3)
O1Wi—Zn1—N1i87.62 (10)C3—C4—H4B109.5
O1W—Zn1—N187.62 (10)C3—C4—H4C109.5
O1Wi—Zn1—N192.38 (10)H4B—C4—H4C109.5
N1i—Zn1—N1180C3—C4—H4D109.5
O1W—Zn1—N5ii94.97 (10)H4B—C4—H4D109.5
O1Wi—Zn1—N5ii85.03 (10)H4C—C4—H4D109.5
N1i—Zn1—N5ii87.73 (10)C6—C5—C9117.2 (3)
N1—Zn1—N5ii92.27 (10)C6—C5—C3123.4 (3)
O1W—Zn1—N5iii85.03 (10)C9—C5—C3119.3 (3)
O1Wi—Zn1—N5iii94.97 (10)C5—C6—C7119.2 (3)
N1i—Zn1—N5iii92.27 (10)C5—C6—H6A120.4
N1—Zn1—N5iii87.73 (10)C7—C6—H6A120.4
N5ii—Zn1—N5iii180C8—C7—C6119.2 (3)
C1—N1—N2108.4 (3)C8—C7—H7A120.4
C1—N1—Zn1133.6 (2)C6—C7—H7A120.4
N2—N1—Zn1117.9 (2)N5—C8—C7123.0 (3)
C2—N2—N1106.1 (3)N5—C8—H8A118.5
C1—N3—C2105.5 (3)C7—C8—H8A118.5
C1—N3—N4129.8 (3)N5—C9—C5124.3 (3)
C2—N3—N4122.9 (3)N5—C9—H9A117.8
C3—N4—N3118.2 (3)C5—C9—H9A117.8
C9—N5—C8116.9 (3)O1—Cl1—O3110.2 (3)
C9—N5—Zn1iv120.6 (2)O1—Cl1—O4110.0 (2)
C8—N5—Zn1iv121.9 (2)O3—Cl1—O4107.3 (3)
N1—C1—N3109.0 (3)O1—Cl1—O2109.83 (17)
N1—C1—H1B125.5O3—Cl1—O2108.5 (2)
N3—C1—H1B125.5O4—Cl1—O2111.0 (2)
N2—C2—N3110.9 (3)Zn1—O1W—H1WA108.1
N2—C2—H2B124.5Zn1—O1W—H1WB125.6
N3—C2—H2B124.5H1WA—O1W—H1WB110.4
N4—C3—C4127.1 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N20.852.202.814 (4)130
O1W—H1WB···O4iii0.852.222.993 (5)151
O1W—H1WB···O3iii0.852.263.003 (5)147
Symmetry code: (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C9H9N5)2(H2O)2](ClO4)2
Mr674.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4929 (9), 10.0963 (12), 17.149 (2)
β (°) 94.887 (2)
V3)1292.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.38 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.647, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
6344, 2266, 1856
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.130, 1.05
No. of reflections2266
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999) and OLEX (Dolomanov et al., 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N20.852.202.814 (4)130
O1W—H1WB···O4i0.852.222.993 (5)151
O1W—H1WB···O3i0.852.263.003 (5)147
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Innovation Program for College Students of Central South University (grant No. 081053308).

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Huang, Y. Q., Liu, Y. Y., Shi, W. & Cheng, P. (2007). Inorg. Chem. Commun. 10, 7–10.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrabent, K., Białońska, A. & Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrabent, K., Ciunick, Z. & Ozarowshi, A. (2008). Inorg. Chem. 47, 3358–3365.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDrabent, K., Ciunik, Z. & Chmielewski, P. J. (2003). Eur. J. Inorg. Chem. pp. 1548–1554.  CSD CrossRef Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200, 131–185.  Web of Science CrossRef Google Scholar
First citationKlingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Q., Zheng, F., Sun, X. & Wang, W. (2009a). Acta Cryst. E65, m124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Q., Zheng, F., Sun, X. & Wang, W. (2009b). Acta Cryst. E65, m283–m284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 43, 2002–2010.  Web of Science CSD CrossRef Google Scholar
First citationWang, Y., Yi, L., Yang, X., Ding, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2006). Inorg. Chem. 45, 5822–5829.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhai, Q. G., Wu, X. Y., Chen, S. M., Lu, C. Z. & Yang, W. B. (2006). Cryst. Growth Des. 6, 2126–2135.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 5| May 2009| Pages m518-m519
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds