organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o776-o777

6,6′-Dieth­­oxy-2,2′-[4,5-di­methyl-o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenol–ethanol–water (1/1/1)

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 9 March 2009; accepted 11 March 2009; online 14 March 2009)

The title bis-Schiff base compound, C26H28N2O4·C2H6O·H2O, crystallizes as an ethanol and water solvate. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. The water H atoms form bifurcated O—H⋯(O,O) inter­molecular hydrogen bonds with the O atoms of the hydroxyl and eth­oxy groups with R12(5) ring motifs, which may, in part, influence the mol­ecular configuration. The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base mol­ecule are 5.64 (8) and 44.78 (9)°. The crystal structure is further stabilized by inter­molecular C—H⋯O and ππ inter­actions [centroid–centroid distances = 3.6139 (11)–3.7993 (11) Å].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see, for example: Cakir et al. (2002[Cakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci. 18, 377.]); Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094-o3095.],b[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o3234-o3235.]); Karabıyık et al. (2007[Karabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215-o218.]); Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1657-o1658.]); Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]). For applications of Schiff base ligands, see, for example: Hajioudis et al. (1987[Hajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1351.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]); Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]); Fakhari et al. (2005[Fakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813-817.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C26H28N2O4·C2H6O·H2O

  • Mr = 496.59

  • Monoclinic, P 21 /n

  • a = 9.5095 (5) Å

  • b = 25.6633 (12) Å

  • c = 10.7766 (5) Å

  • β = 99.177 (2)°

  • V = 2596.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.45 × 0.12 × 0.02 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.999

  • 32813 measured reflections

  • 7595 independent reflections

  • 4303 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.160

  • S = 1.03

  • 7595 reflections

  • 341 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.84 2.584 (2) 146
O2—H2⋯N2 0.84 1.87 2.609 (2) 146
O1W—H1W1⋯O2i 0.86 (3) 2.24 (3) 2.947 (2) 139 (3)
O1W—H1W1⋯O4i 0.86 (3) 2.28 (3) 3.018 (2) 145 (3)
O1W—H2W1⋯O1i 0.78 (3) 2.30 (3) 3.061 (2) 166 (3)
O1W—H2W1⋯O3i 0.78 (3) 2.43 (3) 2.967 (2) 127 (3)
O5—H5⋯O1Wii 0.84 1.82 2.659 (3) 179
C7—H7A⋯O5 0.95 2.33 3.242 (3) 162
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, such as anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. Although numerous transition-metal complexes of Schiff bases have been structurally characterized (Granovski et al., 1993), relatively few free Schiff bases have been similarly characterized. N-substituted salicylaldimines show photochromism and thermochromism in the solid state. These effects are produced by intramolecular proton transfer associated with a change in the π-electron configuration (Hadjioudis et al. 1987). In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b) such as nickel in some natural food products (Fakhari et al., 2005) or biologically important species (Shahrokhian et al., 2000). As part of a general study of tetradenate and bidentate Schiff bases (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008), we determined the structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base ligand, an ethanol and a water molecule of crystallization. All bonds lengths agree with standard values (Allen et al., 1987). Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The hydrogen atoms of the water molecule make bifurcated intermolecular hydrogen bonds with the oxygen atoms of the hydroxyl and ethoxy groups with R21(5) ring motifs (Bernstein et al., 1995), which may, in part, influence the molecular configuration (Table 1). The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 5.64 (8) and 44.78 (9)° which shows one of the outer benzene ring is twisted. The crystal structure is further stabilized by intermolecular C—H···O and π-π interactions [Cg1···Cg1iii = 3.6139 (11) Å, (iii) x - 1/2, 1/2 - y, z - 1/2; Cg2···Cg2iv = 3.7993 (11) Å, (iv) -x, -y, z - 1; Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 benzene rings].

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see, for example: Cakir et al. (2002); Eltayeb et al. (2007a,b); Karabıyık et al. (2007); Fun & Kia (2008); Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008). For applications of Schiff base ligands, see, for example: Hajioudis et al. (1987); Granovski et al. (1993); Dao et al. (2000); Shahrokhian et al. (2000); Eltayeb & Ahmed (2005a,b); Fakhari et al. (2005); Karthikeyan et al. (2006); Sriram et al. (2006). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding 3-ethoxy-salicylaldehyde (4 mmol) to a solution of 4,5-dimethyl-o-phenylenediamine (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

H atoms of the hydroxy groups of the Schiff base and ethanol were positioned by a freely rotating O—H bond, see Table 1. The hydrogen of the water molecule were located from the difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined as a riding model approximation. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intra- and intermolecular hydrogen bonds are drawn as dashed lines.
6,6'-Diethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenol–ethanol–water (1/1/1) top
Crystal data top
C26H28N2O4·C2H6O·H2OF(000) = 1064
Mr = 496.59Dx = 1.270 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4281 reflections
a = 9.5095 (5) Åθ = 2.3–27.2°
b = 25.6633 (12) ŵ = 0.09 mm1
c = 10.7766 (5) ÅT = 100 K
β = 99.177 (2)°Plate, orange
V = 2596.3 (2) Å30.45 × 0.12 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7595 independent reflections
Radiation source: fine-focus sealed tube4303 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.961, Tmax = 0.999k = 3632
32813 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.5228P]
where P = (Fo2 + 2Fc2)/3
7595 reflections(Δ/σ)max < 0.001
341 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C26H28N2O4·C2H6O·H2OV = 2596.3 (2) Å3
Mr = 496.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5095 (5) ŵ = 0.09 mm1
b = 25.6633 (12) ÅT = 100 K
c = 10.7766 (5) Å0.45 × 0.12 × 0.02 mm
β = 99.177 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7595 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4303 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.999Rint = 0.068
32813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
7595 reflectionsΔρmin = 0.51 e Å3
341 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06040 (14)0.16561 (5)0.35336 (13)0.0257 (3)
H10.02530.17070.38410.039*
O20.13555 (14)0.07045 (5)0.28857 (12)0.0261 (3)
H20.17820.09730.31930.039*
O30.33019 (13)0.16242 (5)0.25794 (12)0.0250 (3)
O40.00004 (14)0.01584 (5)0.22724 (12)0.0276 (3)
O50.1829 (2)0.38301 (7)0.43926 (18)0.0696 (7)
H50.23360.39380.50520.104*
N10.16852 (16)0.21898 (6)0.42494 (13)0.0202 (3)
N20.30447 (16)0.12535 (6)0.45335 (14)0.0221 (4)
C10.12615 (19)0.21183 (7)0.32673 (16)0.0195 (4)
C20.2720 (2)0.21128 (7)0.27477 (17)0.0212 (4)
C30.3428 (2)0.25763 (8)0.24528 (17)0.0239 (4)
H3A0.44100.25730.21030.029*
C40.2710 (2)0.30517 (8)0.26650 (18)0.0271 (5)
H4A0.32070.33690.24560.032*
C50.1292 (2)0.30622 (8)0.31737 (17)0.0241 (4)
H5A0.08120.33870.33190.029*
C60.0546 (2)0.25953 (7)0.34807 (16)0.0197 (4)
C70.0960 (2)0.26133 (8)0.39833 (16)0.0216 (4)
H7A0.14220.29410.41200.026*
C80.31619 (19)0.21948 (7)0.47186 (16)0.0195 (4)
C90.3962 (2)0.26478 (8)0.50515 (17)0.0222 (4)
H9A0.35010.29770.49440.027*
C100.5406 (2)0.26294 (7)0.55340 (16)0.0212 (4)
C110.6084 (2)0.21406 (8)0.56871 (17)0.0216 (4)
C120.5301 (2)0.16936 (8)0.53558 (16)0.0222 (4)
H12A0.57680.13650.54470.027*
C130.3845 (2)0.17112 (7)0.48914 (16)0.0207 (4)
C140.3273 (2)0.08414 (7)0.52055 (17)0.0236 (4)
H14A0.39390.08570.59620.028*
C150.2554 (2)0.03506 (8)0.48551 (17)0.0229 (4)
C160.2757 (2)0.00817 (8)0.56692 (18)0.0279 (5)
H16A0.33980.00560.64390.033*
C170.2041 (2)0.05394 (8)0.53627 (19)0.0287 (5)
H17A0.21910.08290.59170.034*
C180.1087 (2)0.05798 (8)0.42326 (19)0.0270 (4)
H18A0.05790.08950.40290.032*
C190.0884 (2)0.01644 (7)0.34162 (17)0.0232 (4)
C200.16074 (19)0.03062 (7)0.37184 (17)0.0208 (4)
C210.47745 (19)0.15886 (8)0.20175 (18)0.0262 (4)
H21A0.49130.17290.11510.031*
H21B0.53770.17900.25150.031*
C220.5166 (2)0.10202 (8)0.20022 (19)0.0310 (5)
H22A0.61660.09780.16220.047*
H22B0.50270.08870.28650.047*
H22C0.45590.08260.15100.047*
C230.0850 (2)0.06146 (8)0.1942 (2)0.0305 (5)
H23A0.14490.06890.25920.037*
H23B0.02310.09200.18690.037*
C240.1771 (3)0.05042 (9)0.0699 (2)0.0410 (6)
H24A0.23900.08040.04510.061*
H24B0.11660.04410.00590.061*
H24C0.23580.01960.07780.061*
C250.6220 (2)0.31263 (8)0.58803 (19)0.0276 (5)
H25A0.55590.34220.57820.041*
H25B0.69350.31740.53280.041*
H25C0.66940.31060.67560.041*
C260.7651 (2)0.21015 (8)0.62075 (18)0.0279 (5)
H26A0.79600.17380.61730.042*
H26B0.78160.22220.70820.042*
H26C0.81950.23190.57050.042*
C270.0836 (4)0.45876 (12)0.3369 (3)0.0799 (11)
H27A0.09180.48160.26550.120*
H27B0.09950.47910.41480.120*
H27C0.01180.44330.32580.120*
C280.1892 (3)0.41771 (13)0.3437 (2)0.0575 (8)
H28A0.17560.39860.26290.069*
H28B0.28520.43370.35530.069*
O1W0.84548 (19)0.08448 (7)0.14875 (16)0.0412 (4)
H1W10.920 (3)0.0656 (11)0.169 (3)0.064 (9)*
H2W10.855 (3)0.1065 (13)0.199 (3)0.076 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0167 (6)0.0236 (7)0.0347 (8)0.0002 (6)0.0026 (6)0.0009 (6)
O20.0295 (8)0.0200 (7)0.0262 (7)0.0036 (6)0.0031 (6)0.0021 (6)
O30.0155 (6)0.0262 (8)0.0318 (7)0.0000 (6)0.0008 (5)0.0009 (6)
O40.0285 (7)0.0219 (7)0.0291 (7)0.0042 (6)0.0058 (6)0.0017 (6)
O50.0928 (16)0.0370 (11)0.0628 (13)0.0105 (10)0.0368 (11)0.0001 (9)
N10.0185 (8)0.0257 (9)0.0163 (7)0.0007 (7)0.0022 (6)0.0002 (6)
N20.0210 (8)0.0214 (9)0.0230 (8)0.0016 (7)0.0012 (7)0.0028 (6)
C10.0194 (9)0.0234 (10)0.0158 (8)0.0027 (8)0.0030 (7)0.0003 (7)
C20.0195 (9)0.0257 (11)0.0185 (9)0.0005 (8)0.0035 (7)0.0015 (7)
C30.0197 (9)0.0326 (11)0.0191 (9)0.0035 (8)0.0027 (7)0.0008 (8)
C40.0274 (11)0.0256 (11)0.0283 (10)0.0083 (9)0.0048 (8)0.0031 (8)
C50.0267 (10)0.0220 (10)0.0240 (9)0.0011 (8)0.0054 (8)0.0004 (8)
C60.0208 (9)0.0255 (10)0.0136 (8)0.0018 (8)0.0046 (7)0.0007 (7)
C70.0229 (10)0.0238 (10)0.0182 (9)0.0029 (8)0.0036 (7)0.0008 (7)
C80.0196 (9)0.0248 (10)0.0141 (8)0.0014 (8)0.0030 (7)0.0007 (7)
C90.0248 (10)0.0229 (10)0.0192 (9)0.0010 (8)0.0042 (8)0.0009 (7)
C100.0234 (9)0.0262 (10)0.0146 (8)0.0059 (8)0.0050 (7)0.0012 (7)
C110.0190 (9)0.0297 (11)0.0172 (8)0.0036 (8)0.0056 (7)0.0021 (8)
C120.0210 (9)0.0255 (10)0.0198 (9)0.0018 (8)0.0022 (7)0.0006 (8)
C130.0229 (9)0.0233 (10)0.0162 (8)0.0014 (8)0.0039 (7)0.0020 (7)
C140.0196 (9)0.0291 (11)0.0211 (9)0.0006 (8)0.0005 (8)0.0018 (8)
C150.0198 (9)0.0241 (10)0.0243 (9)0.0004 (8)0.0018 (8)0.0009 (8)
C160.0274 (10)0.0277 (11)0.0269 (10)0.0032 (9)0.0005 (8)0.0040 (8)
C170.0295 (11)0.0252 (11)0.0302 (10)0.0032 (9)0.0015 (9)0.0052 (8)
C180.0255 (10)0.0203 (10)0.0348 (11)0.0004 (8)0.0038 (9)0.0005 (8)
C190.0199 (9)0.0239 (10)0.0253 (9)0.0014 (8)0.0015 (8)0.0026 (8)
C200.0196 (9)0.0191 (10)0.0238 (9)0.0010 (8)0.0039 (8)0.0007 (7)
C210.0162 (9)0.0386 (12)0.0226 (9)0.0009 (9)0.0009 (7)0.0001 (8)
C220.0208 (10)0.0402 (13)0.0317 (11)0.0052 (9)0.0030 (9)0.0031 (9)
C230.0278 (11)0.0227 (11)0.0389 (11)0.0052 (9)0.0009 (9)0.0054 (9)
C240.0407 (13)0.0367 (13)0.0400 (12)0.0085 (11)0.0106 (11)0.0076 (10)
C250.0259 (10)0.0299 (11)0.0268 (10)0.0085 (9)0.0033 (8)0.0021 (8)
C260.0209 (10)0.0366 (12)0.0256 (10)0.0027 (9)0.0024 (8)0.0043 (9)
C270.081 (2)0.0466 (18)0.093 (2)0.0021 (17)0.044 (2)0.0018 (16)
C280.0434 (15)0.096 (2)0.0340 (13)0.0122 (16)0.0109 (12)0.0044 (14)
O1W0.0394 (10)0.0386 (10)0.0406 (9)0.0105 (8)0.0088 (8)0.0115 (8)
Geometric parameters (Å, º) top
O1—C11.350 (2)C14—H14A0.9500
O1—H10.8400C15—C201.404 (2)
O2—C201.356 (2)C15—C161.409 (3)
O2—H20.8400C16—C171.372 (3)
O3—C21.371 (2)C16—H16A0.9500
O3—C211.437 (2)C17—C181.401 (3)
O4—C191.377 (2)C17—H17A0.9500
O4—C231.435 (2)C18—C191.376 (3)
O5—C281.370 (3)C18—H18A0.9500
O5—H50.8400C19—C201.403 (3)
N1—C71.295 (2)C21—C221.505 (3)
N1—C81.415 (2)C21—H21A0.9900
N2—C141.281 (2)C21—H21B0.9900
N2—C131.419 (2)C22—H22A0.9800
C1—C61.402 (3)C22—H22B0.9800
C1—C21.411 (2)C22—H22C0.9800
C2—C31.379 (3)C23—C241.506 (3)
C3—C41.399 (3)C23—H23A0.9900
C3—H3A0.9500C23—H23B0.9900
C4—C51.373 (3)C24—H24A0.9800
C4—H4A0.9500C24—H24B0.9800
C5—C61.405 (3)C24—H24C0.9800
C5—H5A0.9500C25—H25A0.9800
C6—C71.448 (3)C25—H25B0.9800
C7—H7A0.9500C25—H25C0.9800
C8—C131.399 (3)C26—H26A0.9800
C8—C91.404 (3)C26—H26B0.9800
C9—C101.390 (3)C26—H26C0.9800
C9—H9A0.9500C27—C281.449 (4)
C10—C111.408 (3)C27—H27A0.9800
C10—C251.507 (3)C27—H27B0.9800
C11—C121.383 (3)C27—H27C0.9800
C11—C261.510 (3)C28—H28A0.9900
C12—C131.396 (3)C28—H28B0.9900
C12—H12A0.9500O1W—H1W10.86 (3)
C14—C151.454 (3)O1W—H2W10.78 (3)
C1—O1—H1109.5C19—C18—C17120.25 (18)
C20—O2—H2109.5C19—C18—H18A119.9
C2—O3—C21117.35 (14)C17—C18—H18A119.9
C19—O4—C23116.90 (15)C18—C19—O4125.77 (17)
C28—O5—H5109.5C18—C19—C20120.33 (17)
C7—N1—C8122.35 (16)O4—C19—C20113.90 (16)
C14—N2—C13119.64 (15)O2—C20—C19117.85 (16)
O1—C1—C6122.41 (16)O2—C20—C15122.49 (17)
O1—C1—C2117.93 (16)C19—C20—C15119.67 (17)
C6—C1—C2119.66 (17)O3—C21—C22106.80 (16)
O3—C2—C3125.94 (17)O3—C21—H21A110.4
O3—C2—C1114.33 (16)C22—C21—H21A110.4
C3—C2—C1119.73 (18)O3—C21—H21B110.4
C2—C3—C4120.48 (17)C22—C21—H21B110.4
C2—C3—H3A119.8H21A—C21—H21B108.6
C4—C3—H3A119.8C21—C22—H22A109.5
C5—C4—C3120.33 (18)C21—C22—H22B109.5
C5—C4—H4A119.8H22A—C22—H22B109.5
C3—C4—H4A119.8C21—C22—H22C109.5
C4—C5—C6120.30 (18)H22A—C22—H22C109.5
C4—C5—H5A119.9H22B—C22—H22C109.5
C6—C5—H5A119.9O4—C23—C24107.00 (17)
C1—C6—C5119.50 (17)O4—C23—H23A110.3
C1—C6—C7120.96 (17)C24—C23—H23A110.3
C5—C6—C7119.52 (17)O4—C23—H23B110.3
N1—C7—C6121.07 (17)C24—C23—H23B110.3
N1—C7—H7A119.5H23A—C23—H23B108.6
C6—C7—H7A119.5C23—C24—H24A109.5
C13—C8—C9118.63 (17)C23—C24—H24B109.5
C13—C8—N1116.93 (16)H24A—C24—H24B109.5
C9—C8—N1124.41 (17)C23—C24—H24C109.5
C10—C9—C8122.02 (18)H24A—C24—H24C109.5
C10—C9—H9A119.0H24B—C24—H24C109.5
C8—C9—H9A119.0C10—C25—H25A109.5
C9—C10—C11118.72 (17)C10—C25—H25B109.5
C9—C10—C25120.09 (18)H25A—C25—H25B109.5
C11—C10—C25121.19 (17)C10—C25—H25C109.5
C12—C11—C10119.47 (17)H25A—C25—H25C109.5
C12—C11—C26119.94 (18)H25B—C25—H25C109.5
C10—C11—C26120.59 (17)C11—C26—H26A109.5
C11—C12—C13121.84 (18)C11—C26—H26B109.5
C11—C12—H12A119.1H26A—C26—H26B109.5
C13—C12—H12A119.1C11—C26—H26C109.5
C12—C13—C8119.30 (17)H26A—C26—H26C109.5
C12—C13—N2121.93 (17)H26B—C26—H26C109.5
C8—C13—N2118.71 (16)C28—C27—H27A109.5
N2—C14—C15122.55 (17)C28—C27—H27B109.5
N2—C14—H14A118.7H27A—C27—H27B109.5
C15—C14—H14A118.7C28—C27—H27C109.5
C20—C15—C16118.99 (17)H27A—C27—H27C109.5
C20—C15—C14120.42 (17)H27B—C27—H27C109.5
C16—C15—C14120.55 (17)O5—C28—C27113.5 (3)
C17—C16—C15120.73 (18)O5—C28—H28A108.9
C17—C16—H16A119.6C27—C28—H28A108.9
C15—C16—H16A119.6O5—C28—H28B108.9
C16—C17—C18120.03 (18)C27—C28—H28B108.9
C16—C17—H17A120.0H28A—C28—H28B107.7
C18—C17—H17A120.0H1W1—O1W—H2W1103 (3)
C21—O3—C2—C31.6 (3)C26—C11—C12—C13178.89 (17)
C21—O3—C2—C1178.13 (16)C11—C12—C13—C82.0 (3)
O1—C1—C2—O30.3 (2)C11—C12—C13—N2179.06 (17)
C6—C1—C2—O3179.82 (16)C9—C8—C13—C121.7 (3)
O1—C1—C2—C3179.47 (16)N1—C8—C13—C12179.82 (16)
C6—C1—C2—C30.1 (3)C9—C8—C13—N2178.84 (16)
O3—C2—C3—C4179.69 (17)N1—C8—C13—N23.0 (2)
C1—C2—C3—C40.0 (3)C14—N2—C13—C1240.6 (3)
C2—C3—C4—C50.2 (3)C14—N2—C13—C8142.33 (18)
C3—C4—C5—C60.3 (3)C13—N2—C14—C15176.25 (17)
O1—C1—C6—C5179.54 (16)N2—C14—C15—C202.6 (3)
C2—C1—C6—C50.0 (3)N2—C14—C15—C16175.16 (19)
O1—C1—C6—C71.1 (3)C20—C15—C16—C170.2 (3)
C2—C1—C6—C7178.44 (17)C14—C15—C16—C17177.60 (19)
C4—C5—C6—C10.2 (3)C15—C16—C17—C180.4 (3)
C4—C5—C6—C7178.27 (18)C16—C17—C18—C191.1 (3)
C8—N1—C7—C6178.76 (16)C17—C18—C19—O4178.80 (19)
C1—C6—C7—N10.0 (3)C17—C18—C19—C201.2 (3)
C5—C6—C7—N1178.43 (17)C23—O4—C19—C184.2 (3)
C7—N1—C8—C13175.89 (16)C23—O4—C19—C20175.79 (17)
C7—N1—C8—C96.1 (3)C18—C19—C20—O2179.31 (18)
C13—C8—C9—C100.6 (3)O4—C19—C20—O20.6 (2)
N1—C8—C9—C10178.60 (17)C18—C19—C20—C150.6 (3)
C8—C9—C10—C110.2 (3)O4—C19—C20—C15179.42 (17)
C8—C9—C10—C25179.88 (17)C16—C15—C20—O2179.95 (18)
C9—C10—C11—C120.0 (3)C14—C15—C20—O22.2 (3)
C25—C10—C11—C12179.86 (17)C16—C15—C20—C190.1 (3)
C9—C10—C11—C26179.99 (17)C14—C15—C20—C19177.71 (18)
C25—C10—C11—C260.1 (3)C2—O3—C21—C22177.08 (16)
C10—C11—C12—C131.2 (3)C19—O4—C23—C24177.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.842.584 (2)146
O1W—H1W1···O2i0.86 (3)2.24 (3)2.947 (2)139 (3)
O1W—H1W1···O4i0.86 (3)2.28 (3)3.018 (2)145 (3)
O2—H2···N20.841.872.609 (2)146
O1W—H2W1···O1i0.78 (3)2.30 (3)3.061 (2)166 (3)
O1W—H2W1···O3i0.78 (3)2.43 (3)2.967 (2)127 (3)
O5—H5···O1Wii0.841.822.659 (3)179
C7—H7A···O50.952.333.242 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H28N2O4·C2H6O·H2O
Mr496.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.5095 (5), 25.6633 (12), 10.7766 (5)
β (°) 99.177 (2)
V3)2596.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.12 × 0.02
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.961, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
32813, 7595, 4303
Rint0.068
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.160, 1.03
No. of reflections7595
No. of parameters341
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.51

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.842.584 (2)146
O1W—H1W1···O2i0.86 (3)2.24 (3)2.947 (2)139 (3)
O1W—H1W1···O4i0.86 (3)2.28 (3)3.018 (2)145 (3)
O2—H2···N20.841.872.609 (2)146
O1W—H2W1···O1i0.78 (3)2.30 (3)3.061 (2)166 (3)
O1W—H2W1···O3i0.78 (3)2.43 (3)2.967 (2)127 (3)
O5—H5···O1Wii0.841.822.659 (3)179
C7—H7A···O50.952.333.242 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCakir, O., Elerman, Y. & Elmali, A. (2002). Anal. Sci. 18, 377.  Web of Science CSD CrossRef PubMed Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094–o3095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o3234–o3235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813–817.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64, o1657–o1658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHajioudis, E., Vitterakis, M. & Mustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1351.  Google Scholar
First citationKarabıyık, H., Güzel, B., Aygün, M., Boğa, G. & Büyükgüngör, O. (2007). Acta Cryst. C63, o215–o218.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages o776-o777
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds