metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m423-m424

Bis(benzoyl­acetonato)bis­­(1,3-di-4-pyridyl­propane)manganese(II)

aFaculty of Materials Science & Chemical Engineering, Ningbo University, Zhejiang 315211, People's Republic of China, and bKey Laboratory for Molecular Design and Nutrition Engineering of Ningbo, Ningbo Institute of Technology, Zhejiang University, Zhejiang 315100, People's Republic of China
*Correspondence e-mail: hanlei@nbu.edu.cn

(Received 26 February 2009; accepted 17 March 2009; online 25 March 2009)

In the title compound, [Mn(C10H9O2)2(C13H14N2)2], the MnII ion lies on a crystallographic inversion center and has a slightly distorted octa­hedral coordination environment. Weak ππ stacking inter­actions, with centroid–centroid distances of 3.862 (2) and 3.887 (5) Å, and significant C—H⋯π inter­actions help to stabilize the crystal structure. The atoms of the unique terminal 4-pyridine­propane group are disordered over two sites, the ratio of refined occpancies being 0.712 (7):0.288 (7).

Related literature

For the β-diketone group, see: Yoshida et al. (1999[Yoshida, T., Suzuki, T., Kanamori, K. & Kaizaki, S. (1999). Inorg. Chem. 38, 1059-1068.]). For factors influencing structures and applications, see: Ghosh et al. (2004[Ghosh, A.-K., Ghoshal, D., Lu, T.-H., Mostafa, G. & Chaudhuri, N.-R. (2004). Cryst. Growth. Des. 4, 851-857.]). For the 1-benzoyl­acetone ligand, see: Han & Zhou (2008[Han, L. & Zhou, Y. (2008). Inorg. Chem. Commun. 11, 385-387.]); Bučar & Meštrović (2003[Bučar, D.-K. & Meštrović, E. (2003). Acta Cryst. E59, m985-m987.]); Meštrović et al. (2004[Meštrović, E., Halasz, I., Bučar, D.-K. & Žgela, M. (2004). Acta Cryst. E60, m367-m369.]). For 1,3-bis(4-pyridyl)propane, see: Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D.-M. & Rizzato, S. (2002). Coord. Chem. Rev. 4, 121-129.]); Han et al. (2007[Han, L., Valle, H. & Bu, X.-H. (2007). Inorg. Chem. 46, 1511-1513.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H9O2)2(C13H14N2)2]

  • Mr = 773.81

  • Triclinic, [P \overline 1]

  • a = 9.771 (2) Å

  • b = 10.269 (2) Å

  • c = 10.485 (2) Å

  • α = 79.84 (3)°

  • β = 77.68 (3)°

  • γ = 89.45 (3)°

  • V = 1011.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.43 × 0.27 × 0.14 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.886, Tmax = 0.949

  • 9996 measured reflections

  • 4583 independent reflections

  • 2625 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.131

  • S = 1.11

  • 4583 reflections

  • 279 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O2 2.124 (2)
Mn1—O1 2.157 (2)
Mn1—N1 2.330 (3)
O2—Mn1—O2i 180
O2—Mn1—O1i 97.35 (8)
O2—Mn1—O1 82.65 (8)
O1i—Mn1—O1 180
O2—Mn1—N1 90.12 (9)
O1—Mn1—N1 91.32 (9)
O2—Mn1—N1i 89.88 (9)
O1—Mn1—N1i 88.68 (9)
N1—Mn1—N1i 180
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11ACg1 0.93 2.56 3.159 (4) 122
C14—H14ACg2ii 0.93 2.91 3.738 (5) 149
C14—H14ACg3ii 0.93 2.63 3.440 (9) 147
C15—H15ACg1 0.93 2.60 3.206 (3) 123
C20—H20ACg4iii 0.93 2.65 3.529 (7) 158
Symmetry codes: (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+2, -z+1.Cg1, Cg2, Cg3 and Cg4 are the centroids of the Mn1/O1/C1–C3/O2, N2/C19–C23, N2A/C19A–C23A and C4–C9 rings, respectively.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Great attention has been given to the β-diketone group, as it can chelate divalent 3d-electron metal elements with a heterocyclic base as an electron donor and a number of complexes have been reported in the literature (Yoshida et al., 1999). Many factors, such as guests with different shapes and sizes, the shape of counterions, metal ions and nonconcovalent inter- or intramolecular forces (e.g. hydrogen bonding, π···π stacking and C—H···π interactions) play important roles in determining their structures and applications (Ghosh et al., 2004). 1-Benzoylacetone (Hbzac) is an excellent choice of ligand, not only due to its chelating coordinating effect to the metal center, but also to its ability to act as an anionic ligand to balance the charge and form a neutral framework (Han & Zhou, 2008; Bučar et al., 2003; Meštrović et al., 2004). Another organic ligand, 1,3-bis(4-pyridyl)propane) (bpp), is a long and flexible multi-functional linker, which can adopt different conformations with respect to the relative orientations of the CH2 groups (Han et al., 2007; Carlucci et al., 2002). Recently, we synthesized a neutral monomer, [Mn(bzac)2(bpp)2] through the ambient evaporation of a mixed solution, of which weak π···π stacking and significant C—H···πinteractions are observed in the crystal structure.

There title compound, [Mn(bzac)2(bpp)2] (1), is centrosymmetric with the MnII ion adopting a slightly distorted octahedral coordination geometry. As shown in Fig. 1, the asymmetric unit consists of one-half of the molecule. The MnII ion is coordinated by four O atoms from two symmetry realted bzac anionic ligands in the equatorial plane and two N atoms from two symmetry realted bpp ligands in the axial sites. The chelate ring (Mn/O1/C1/C2/C3/O2) is essentially planar and forms a dihedral angle of 84.96 (8)° with the N1/C11-C15 ring and an angle of 12.49 (9)° with the C4-C9 ring. In the crystal structure there are weak π···π interactions between symmetry related (N1/C11-C15) pyridine rings (symmetry code: 2-x,1-y,1-z) with a centroid-to-centroid distance of 3.862 (2) Å and a perpendicular distance of 3.536 (2)Å and between symmetry related N2/C19-C23 rings (symmetry code: 2-x,2-y,2-z) with a centroid-to-centroid distance of 3.887 (5)Å and a perpendicular distance of 3.280 (3)Å (see Fig .2). In addition, significant C—H···π interactions (Spek, 2009) (Table 2) help stabilize the crystal structure.

Related literature top

For the β-diketone group, see: Yoshida et al. (1999). For factors influencing structures and applications, see: Ghosh et al. (2004). For the 1-benzoylacetone ligand, see: Han & Zhou (2008); Bučar et al. (2003); Meštrović et al. (2004). For 1,3-bis(4-pyridyl)propane, see: Carlucci et al. (2002); Han et al. (2007).Cg1, Cg2, Cg3 and Cg4 are the centroids of the Mn1/O1/C1–C3/O2, N2/C19–C23, N2A/C19A–C23A and C4–C9 rings, respectively.

Experimental top

A mixture of 1-benzoylacetone (0.0358 g, 0.2 mmol) and 1,3-bis(4-pyridyl)propane (0.0830 g, 0.4 mmol) in mixed solution of CH3CN (10ml) and H2O (10ml) was stirred for 30 min. Then MnCl2.4H2O (0.1547g, 0.8 mmol) was added to the solution and stirred for 1 h. The mixed solution was allowed to stand at room temperature for 15 days. A quantity of yellow block-shaped crystals were obtained and collected by filtration with 20% yield based on MnCl2.4H2O.

Refinement top

All H atoms on C atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for phenyl and pyridyl H atoms, C—H = 0.96 Å and Uiso(H) =1.5Ueq(C) for methyl, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene. The atoms of the unique terminal 4-pyridinepropane group are disordered over two sites with a ratio of refined occpancies being 0.712 (7):0.288 (7). The atoms of the minor component of disorder were reined with isotropic displacement parameters.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1) with 30% probability ellipsoids. The minor component disorder atoms have been removed for clarity (Symmetry codes (i): 1-x, 1-y, 1-z).
[Figure 2] Fig. 2. Part of the crystal structure of (1), showing π···π stacking interactions and C—H···π interactions as dashed lines. The minor component disorder atoms have been removed for clarity.
Bis(benzoylacetonato)bis(1,3-di-4-pyridylpropane)manganese(II) top
Crystal data top
[Mn(C10H9O2)2(C13H14N2)2]Z = 1
Mr = 773.81F(000) = 407
Triclinic, P1Dx = 1.271 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.771 (2) ÅCell parameters from 9996 reflections
b = 10.269 (2) Åθ = 3.1–27.4°
c = 10.485 (2) ŵ = 0.37 mm1
α = 79.84 (3)°T = 298 K
β = 77.68 (3)°Block, yellow
γ = 89.45 (3)°0.43 × 0.27 × 0.14 mm
V = 1011.3 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4583 independent reflections
Radiation source: fine-focus sealed tube2625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1211
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.886, Tmax = 0.949l = 1313
9996 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0212P)2 + 0.8043P]
where P = (Fo2 + 2Fc2)/3
4583 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.44 e Å3
22 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Mn(C10H9O2)2(C13H14N2)2]γ = 89.45 (3)°
Mr = 773.81V = 1011.3 (3) Å3
Triclinic, P1Z = 1
a = 9.771 (2) ÅMo Kα radiation
b = 10.269 (2) ŵ = 0.37 mm1
c = 10.485 (2) ÅT = 298 K
α = 79.84 (3)°0.43 × 0.27 × 0.14 mm
β = 77.68 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4583 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2625 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.949Rint = 0.038
9996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05422 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.11Δρmax = 0.44 e Å3
4583 reflectionsΔρmin = 0.85 e Å3
279 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.50000.50000.0515 (2)
O10.5977 (2)0.4870 (2)0.2980 (2)0.0588 (6)
O20.4772 (2)0.70055 (19)0.4153 (2)0.0583 (6)
N10.7142 (3)0.5550 (2)0.5435 (3)0.0554 (7)
C10.6164 (3)0.5749 (3)0.1942 (3)0.0561 (8)
C20.5774 (3)0.7069 (3)0.1891 (3)0.0543 (8)
H2A0.59420.76110.10600.065*
C30.5159 (3)0.7642 (3)0.2973 (3)0.0497 (7)
C40.4914 (3)0.9105 (3)0.2811 (3)0.0512 (7)
C50.4131 (4)0.9594 (3)0.3870 (4)0.0663 (9)
H5A0.37390.90100.46440.080*
C60.3917 (4)1.0938 (4)0.3806 (4)0.0818 (11)
H6A0.33751.12470.45280.098*
C70.4501 (5)1.1811 (4)0.2680 (5)0.0850 (12)
H7A0.43771.27150.26400.102*
C80.5270 (4)1.1340 (4)0.1614 (4)0.0819 (12)
H8A0.56561.19290.08410.098*
C90.5481 (3)0.9997 (3)0.1673 (4)0.0649 (9)
H9A0.60090.96930.09420.078*
C100.6872 (5)0.5313 (4)0.0665 (3)0.0889 (13)
H10A0.78000.50300.07230.133*
H10B0.69270.60390.00610.133*
H10C0.63400.45910.05220.133*
C110.7529 (4)0.5049 (3)0.6567 (3)0.0638 (9)
H11A0.69410.44130.71730.077*
C120.8743 (4)0.5418 (4)0.6887 (4)0.0677 (9)
H12A0.89590.50290.76880.081*
C130.9645 (3)0.6367 (4)0.6023 (4)0.0631 (9)
C140.9256 (3)0.6873 (3)0.4842 (4)0.0655 (9)
H14A0.98300.75030.42150.079*
C150.8025 (3)0.6449 (3)0.4595 (3)0.0610 (8)
H15A0.77930.68120.37930.073*
C161.0969 (4)0.6845 (4)0.6333 (4)0.0850 (12)
H16A1.17480.67870.55990.102*0.712 (7)
H16B1.11520.62720.71150.102*0.712 (7)
C171.0873 (5)0.8315 (6)0.6584 (6)0.0735 (18)0.712 (7)
H17A1.17860.86270.66490.088*0.712 (7)
H17B1.05970.88800.58430.088*0.712 (7)
C180.9821 (5)0.8393 (5)0.7845 (5)0.0715 (18)0.712 (7)
H18A0.89210.80540.77780.086*0.712 (7)
H18B1.01120.78260.85780.086*0.712 (7)
C190.9642 (5)0.9769 (5)0.8155 (6)0.0585 (14)0.712 (7)
C200.8366 (7)1.0339 (8)0.8254 (7)0.068 (2)0.712 (7)
H20A0.76190.98810.80990.082*0.712 (7)
C210.8167 (10)1.1545 (10)0.8570 (9)0.091 (4)0.712 (7)
H21A0.72791.18900.86050.109*0.712 (7)
C221.0392 (10)1.1755 (10)0.8710 (12)0.084 (3)0.712 (7)
H22A1.11141.22600.88480.101*0.712 (7)
C231.0715 (6)1.0503 (7)0.8387 (7)0.0711 (19)0.712 (7)
H23A1.16141.01800.83310.085*0.712 (7)
N20.9127 (8)1.2275 (7)0.8834 (7)0.083 (3)*0.712 (7)
H16C1.15450.73570.55370.102*0.288 (7)
H16D1.14970.60920.66350.102*0.288 (7)
C17A1.0611 (15)0.7711 (11)0.7420 (13)0.067 (4)*0.288 (7)
H17C0.98510.73110.81330.080*0.288 (7)
H17D1.14210.78440.77850.080*0.288 (7)
C18A1.0178 (15)0.9009 (11)0.6687 (12)0.067 (4)*0.288 (7)
H18C1.09260.93320.59270.081*0.288 (7)
H18D0.93550.88410.63550.081*0.288 (7)
C19A0.9859 (14)1.0068 (12)0.7515 (15)0.059 (4)*0.288 (7)
C20A0.8553 (17)1.0579 (18)0.7869 (19)0.065 (6)*0.288 (7)
H20B0.77731.02310.76540.079*0.288 (7)
C21A0.843 (2)1.1620 (17)0.855 (2)0.054 (6)*0.288 (7)
H21B0.75351.19240.88120.064*0.288 (7)
C22A1.071 (2)1.170 (2)0.861 (3)0.061 (6)*0.288 (7)
H22B1.14561.19950.89180.073*0.288 (7)
C23A1.0905 (17)1.0689 (16)0.7889 (16)0.065 (6)*0.288 (7)
H23B1.18141.04080.76350.078*0.288 (7)
N2A0.9475 (18)1.2239 (16)0.8872 (17)0.066 (5)*0.288 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0558 (4)0.0467 (4)0.0503 (4)0.0015 (3)0.0082 (3)0.0078 (3)
O10.0646 (14)0.0521 (13)0.0569 (14)0.0078 (11)0.0061 (11)0.0110 (11)
O20.0687 (14)0.0483 (12)0.0537 (13)0.0068 (10)0.0045 (11)0.0088 (10)
N10.0563 (16)0.0563 (16)0.0534 (16)0.0028 (13)0.0106 (13)0.0110 (13)
C10.0542 (19)0.063 (2)0.0501 (19)0.0049 (16)0.0084 (15)0.0119 (16)
C20.0583 (19)0.0516 (18)0.0499 (18)0.0080 (15)0.0104 (15)0.0028 (15)
C30.0432 (17)0.0510 (17)0.0534 (19)0.0011 (14)0.0101 (14)0.0055 (15)
C40.0473 (17)0.0473 (17)0.0599 (19)0.0012 (14)0.0172 (15)0.0051 (15)
C50.076 (2)0.058 (2)0.066 (2)0.0128 (18)0.0185 (19)0.0120 (17)
C60.104 (3)0.064 (2)0.086 (3)0.026 (2)0.030 (2)0.026 (2)
C70.101 (3)0.053 (2)0.111 (3)0.011 (2)0.041 (3)0.017 (2)
C80.087 (3)0.052 (2)0.099 (3)0.000 (2)0.019 (2)0.007 (2)
C90.063 (2)0.055 (2)0.072 (2)0.0001 (16)0.0108 (18)0.0048 (17)
C100.119 (3)0.082 (3)0.059 (2)0.014 (2)0.003 (2)0.022 (2)
C110.069 (2)0.061 (2)0.059 (2)0.0008 (17)0.0101 (18)0.0083 (17)
C120.071 (2)0.075 (2)0.064 (2)0.015 (2)0.0243 (19)0.0189 (19)
C130.0507 (19)0.073 (2)0.074 (2)0.0129 (17)0.0137 (18)0.036 (2)
C140.054 (2)0.074 (2)0.067 (2)0.0038 (17)0.0042 (17)0.0181 (18)
C150.060 (2)0.066 (2)0.055 (2)0.0002 (17)0.0079 (17)0.0105 (17)
C160.060 (2)0.101 (3)0.110 (3)0.016 (2)0.025 (2)0.056 (3)
C170.047 (3)0.102 (5)0.075 (4)0.007 (3)0.007 (3)0.030 (4)
C180.069 (3)0.077 (4)0.070 (4)0.005 (3)0.009 (3)0.023 (3)
C190.055 (3)0.071 (3)0.051 (3)0.002 (3)0.013 (3)0.011 (3)
C200.051 (3)0.081 (5)0.074 (5)0.003 (3)0.019 (3)0.009 (4)
C210.057 (5)0.117 (8)0.099 (6)0.012 (4)0.016 (4)0.019 (4)
C220.078 (7)0.093 (6)0.084 (5)0.037 (5)0.017 (5)0.017 (4)
C230.049 (3)0.096 (5)0.070 (5)0.001 (3)0.017 (3)0.014 (4)
C16A0.060 (2)0.101 (3)0.110 (3)0.016 (2)0.025 (2)0.056 (3)
Geometric parameters (Å, º) top
Mn1—O22.124 (2)C15—H15A0.9300
Mn1—O2i2.124 (2)C16—C171.576 (6)
Mn1—O1i2.157 (2)C16—H16A0.9700
Mn1—O12.157 (2)C16—H16B0.9700
Mn1—N12.330 (3)C17—C181.506 (6)
Mn1—N1i2.330 (3)C17—H17A0.9700
O1—C11.266 (3)C17—H17B0.9700
O2—C31.273 (3)C18—C191.505 (6)
N1—C151.333 (4)C18—H18A0.9700
N1—C111.337 (4)C18—H18B0.9700
C1—C21.400 (4)C19—C201.364 (6)
C1—C101.511 (4)C19—C231.384 (6)
C2—C31.390 (4)C20—C211.339 (8)
C2—H2A0.9300C20—H20A0.9300
C3—C41.505 (4)C21—N21.310 (9)
C4—C51.377 (4)C21—H21A0.9300
C4—C91.383 (4)C22—N21.331 (9)
C5—C61.386 (5)C22—C231.403 (8)
C5—H5A0.9300C22—H22A0.9300
C6—C71.368 (5)C23—H23A0.9300
C6—H6A0.9300C17A—C18A1.521 (13)
C7—C81.368 (5)C17A—H17C0.9700
C7—H7A0.9300C17A—H17D0.9700
C8—C91.385 (5)C18A—C19A1.498 (13)
C8—H8A0.9300C18A—H18C0.9700
C9—H9A0.9300C18A—H18D0.9700
C10—H10A0.9600C19A—C23A1.369 (13)
C10—H10B0.9600C19A—C20A1.377 (14)
C10—H10C0.9600C20A—C21A1.377 (14)
C11—C121.374 (5)C20A—H20B0.9300
C11—H11A0.9300C21A—N2A1.339 (15)
C12—C131.382 (5)C21A—H21B0.9300
C12—H12A0.9300C22A—N2A1.322 (15)
C13—C141.384 (5)C22A—C23A1.375 (15)
C13—C161.506 (5)C22A—H22B0.9300
C14—C151.374 (4)C23A—H23B0.9300
C14—H14A0.9300
O2—Mn1—O2i180C13—C14—H14A119.9
O2—Mn1—O1i97.35 (8)N1—C15—C14123.9 (3)
O2i—Mn1—O1i82.65 (8)N1—C15—H15A118.1
O2—Mn1—O182.65 (8)C14—C15—H15A118.1
O2i—Mn1—O197.35 (8)C13—C16—C17112.3 (3)
O1i—Mn1—O1180C13—C16—H16A109.1
O2—Mn1—N190.12 (9)C17—C16—H16A109.1
O2i—Mn1—N189.88 (9)C13—C16—H16B109.1
O1i—Mn1—N188.68 (9)C17—C16—H16B109.1
O1—Mn1—N191.32 (9)H16A—C16—H16B107.9
O2—Mn1—N1i89.88 (9)C18—C17—C16110.2 (4)
O2i—Mn1—N1i90.12 (9)C18—C17—H17A109.6
O1i—Mn1—N1i91.32 (9)C16—C17—H17A109.6
O1—Mn1—N1i88.68 (9)C18—C17—H17B109.6
N1—Mn1—N1i180C16—C17—H17B109.6
C1—O1—Mn1129.9 (2)H17A—C17—H17B108.1
C3—O2—Mn1131.8 (2)C19—C18—C17114.0 (4)
C15—N1—C11115.8 (3)C19—C18—H18A108.7
C15—N1—Mn1121.5 (2)C17—C18—H18A108.7
C11—N1—Mn1122.6 (2)C19—C18—H18B108.7
O1—C1—C2125.5 (3)C17—C18—H18B108.7
O1—C1—C10116.2 (3)H18A—C18—H18B107.6
C2—C1—C10118.3 (3)C20—C19—C23116.6 (5)
C3—C2—C1125.7 (3)C20—C19—C18120.1 (5)
C3—C2—H2A117.2C23—C19—C18123.2 (5)
C1—C2—H2A117.2C21—C20—C19121.3 (7)
O2—C3—C2124.3 (3)C21—C20—H20A119.3
O2—C3—C4114.9 (3)C19—C20—H20A119.3
C2—C3—C4120.8 (3)N2—C21—C20125.0 (9)
C5—C4—C9118.0 (3)N2—C21—H21A117.5
C5—C4—C3118.4 (3)C20—C21—H21A117.5
C9—C4—C3123.5 (3)N2—C22—C23124.8 (7)
C4—C5—C6121.3 (3)N2—C22—H22A117.6
C4—C5—H5A119.3C23—C22—H22A117.6
C6—C5—H5A119.3C19—C23—C22117.3 (6)
C7—C6—C5120.0 (4)C19—C23—H23A121.3
C7—C6—H6A120.0C22—C23—H23A121.3
C5—C6—H6A120.0C21—N2—C22114.8 (7)
C6—C7—C8119.4 (4)C18A—C17A—H17C111.1
C6—C7—H7A120.3C18A—C17A—H17D111.1
C8—C7—H7A120.3H17C—C17A—H17D109.0
C7—C8—C9120.7 (4)C19A—C18A—C17A114.2 (10)
C7—C8—H8A119.7C19A—C18A—H18C108.7
C9—C8—H8A119.7C17A—C18A—H18C108.7
C4—C9—C8120.6 (4)C19A—C18A—H18D108.7
C4—C9—H9A119.7C17A—C18A—H18D108.7
C8—C9—H9A119.7H18C—C18A—H18D107.6
C1—C10—H10A109.5C23A—C19A—C20A114.3 (12)
C1—C10—H10B109.5C23A—C19A—C18A121.1 (12)
H10A—C10—H10B109.5C20A—C19A—C18A124.4 (12)
C1—C10—H10C109.5C21A—C20A—C19A118.1 (15)
H10A—C10—H10C109.5C21A—C20A—H20B120.9
H10B—C10—H10C109.5C19A—C20A—H20B120.9
N1—C11—C12123.8 (3)N2A—C21A—C20A126.7 (16)
N1—C11—H11A118.1N2A—C21A—H21B116.7
C12—C11—H11A118.1C20A—C21A—H21B116.7
C11—C12—C13120.2 (3)N2A—C22A—C23A120.3 (17)
C11—C12—H12A119.9N2A—C22A—H22B119.9
C13—C12—H12A119.9C23A—C22A—H22B119.9
C12—C13—C14116.0 (3)C19A—C23A—C22A125.0 (15)
C12—C13—C16122.8 (4)C19A—C23A—H23B117.5
C14—C13—C16121.2 (4)C22A—C23A—H23B117.5
C15—C14—C13120.2 (3)C22A—N2A—C21A115.1 (14)
C15—C14—H14A119.9
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg10.932.563.159 (4)122
C14—H14A···Cg2ii0.932.913.738 (5)149
C14—H14A···Cg3ii0.932.633.440 (9)147
C15—H15A···Cg10.932.603.206 (3)123
C20—H20A···Cg4iii0.932.653.529 (7)158
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C10H9O2)2(C13H14N2)2]
Mr773.81
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.771 (2), 10.269 (2), 10.485 (2)
α, β, γ (°)79.84 (3), 77.68 (3), 89.45 (3)
V3)1011.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.43 × 0.27 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.886, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
9996, 4583, 2625
Rint0.038
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.131, 1.11
No. of reflections4583
No. of parameters279
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.85

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—O22.124 (2)Mn1—N12.330 (3)
Mn1—O12.157 (2)
O2—Mn1—O2i180O1—Mn1—N191.32 (9)
O2—Mn1—O1i97.35 (8)O2—Mn1—N1i89.88 (9)
O2—Mn1—O182.65 (8)O1—Mn1—N1i88.68 (9)
O1i—Mn1—O1180N1—Mn1—N1i180
O2—Mn1—N190.12 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···Cg10.932.563.159 (4)122
C14—H14A···Cg2ii0.932.913.738 (5)149
C14—H14A···Cg3ii0.932.633.440 (9)147
C15—H15A···Cg10.932.603.206 (3)123
C20—H20A···Cg4iii0.932.653.529 (7)158
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (20701022), the Natural Science Foundation of Zhejiang Province (Y4080435), the Natural Science Foundation of Ningbo Municipality (2007A610024) and the K.C. Wong Magna Fund of Ningbo University.

References

First citationBučar, D.-K. & Meštrović, E. (2003). Acta Cryst. E59, m985–m987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D.-M. & Rizzato, S. (2002). Coord. Chem. Rev. 4, 121–129.  CAS Google Scholar
First citationGhosh, A.-K., Ghoshal, D., Lu, T.-H., Mostafa, G. & Chaudhuri, N.-R. (2004). Cryst. Growth. Des. 4, 851–857.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, L., Valle, H. & Bu, X.-H. (2007). Inorg. Chem. 46, 1511–1513.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, L. & Zhou, Y. (2008). Inorg. Chem. Commun. 11, 385–387.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMeštrović, E., Halasz, I., Bučar, D.-K. & Žgela, M. (2004). Acta Cryst. E60, m367–m369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshida, T., Suzuki, T., Kanamori, K. & Kaizaki, S. (1999). Inorg. Chem. 38, 1059–1068.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 4| April 2009| Pages m423-m424
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds