Download citation
Download citation
link to html
In the title compound, C4H6N3+·C6HCl2O4·H2O, anions, cations and water mol­ecules are linked by inter­molecular O—H...O, O—H...N and N—H...O hydrogen bonds into one-dimensional tapes along [111]. These tapes are further linked by weak Cl...Cl inter­actions [Cl...Cl = 3.394 (2) Å], forming sheets parallel to the (10\overline{1}) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808034740/lh2716sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808034740/lh2716Isup2.hkl
Contains datablock I

CCDC reference: 709443

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.078
  • wR factor = 0.197
  • Data-to-parameter ratio = 10.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT369_ALERT_2_B Long C(sp2)-C(sp2) Bond C1 - C2 ... 1.57 Ang.
Author Response: In terms of the precision of this structure C1-C2 and C4-C5 are statistically the same [1.569(7) vs. 1.533(7)\%A, respectively] and these distances fall within the expected range for similar structures in the Cambridge Structural Database [Allen (2002). Acta Cryst. B58, 380-388.]

Alert level C Value of measurement temperature given = 292.000 Value of melting point given = 0.000 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C4 - C5 ... 1.53 Ang.
Author Response: In terms of the precision of this structure C1-C2 and C4-C5 are statistically the same [1.569(7) vs. 1.533(7)\%A, respectively] and these distances fall within the expected range for similar structures in the Cambridge Structural Database [Allen (2002). Acta Cryst. B58, 380-388.]
PLAT432_ALERT_2_C Short Inter X...Y Contact  O5     ..  C7      ..       2.99 Ang.
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ ....          ?
PLAT154_ALERT_1_C The su's on the Cell Angles are Equal  (x 10000)        100 Deg.
PLAT180_ALERT_4_C Check Cell Rounding: # of Values Ending with 0 =          3
PLAT234_ALERT_4_C Large Hirshfeld Difference O2     --  C2      ..       0.11  Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C2     --  C3      ..       0.13  Ang.
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd.  #          1
              C6 H Cl2 O4
Author Response: In order to better manifest the hydrogen-bonding between the dication and anion, the centre gravity of the dication were placed outside of the unit cell.

Alert level G PLAT333_ALERT_2_G Check Large Av C6-Ring C-C Dist. C1 -C6 1.44 Ang. PLAT335_ALERT_2_G Check Large C6 Ring C-C Range . C1 -C6 0.22 Ang. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Chloranilic acid (CA) can be regarded as a strong organic acid (pKa1= 1.38; pKa2 = 2.98) which can release its two hydroxyl protons easily. For this reason, CA is often used as a bridge ligand in the synthesis of metal coordination complexes (Kawata et al., 1994; Kawata et al., 1998; Abrahams et al., 2002; Cueto et al., 1992; Min et al., 2006; Min et al., 2007) or used as a cocrystal agent in the construction of supramolecular structure based on hydrogen-bonds (Gotoh et al., 2006, 2007a, 2007b and 2007c; Murata et al., 2007; Gaballa et al., 2008; Jia et al., 2008). As part of our continuing studies on the synthesis of co-crystal or organic salts involved CA (Meng & Qian, 2006), we report here the crystal structure of the title compound (I) which was obtained by mixing equivalent amount of CA and 2-aminopyrimidine (2-APy) in 95% methanol solution at room temperature.

In (I), one of the CA hydroxyl protons is transferred to a pyrimidine N atom, forming a 1:1 organic adduct with one water molecule being incorporated into the crystal lattice (Fig. 1). According to the definitions of co-crystal and organic salt proposed by Aakeröy and Salmon (2005), complex (I) can be considered as an organic salt. The bond lengths and bonds angles in the CA- anion are comparable with those from some analogues (Wang & Wei, 2005; Yang, 2007). In the 2-APy+ cation, the angles of C7—N1—C8 and C7—N2—C10 [116.5 (1)° and 122.2 (1)°, respectively] are both consistent with the magnitude of C—N—C angles in unprotonated and protonated pyridine molecules [116.3 (16)° and 122.4 (16)°, respectively] (Allen et al., 1987; Allen, 2002). All other geomtric parameters in the structure are as expected.

In the crystal structure, intermolecular O–H···O and N–H···O hydrogen bonds (Table 1), link the components of (I) into one-dimensional tapes along [111] (Fig.2). In addition, neighbouring tapes are linked by weak Cl···Cl interactions [Cl···Cli = 3.394 (2) Å, see: Aakeröy et al., 2007); symmetry code: (i) x, y+1, z)] resulting in two-dimensional sheets parallel to the (10-1) plane.

Related literature top

For background information, see: Aakeröy & Salmon (2005); Aakeröy et al. (2007); Abrahams et al. (2002); Cueto et al. (1992); Kawata et al. (1994, 1998). For related crystal structures, see: Meng & Qian (2006); Min et al. (2006, 2007); Murata et al. (2007); Wang & Wei (2005); Yang (2007); Gaballa et al. (2008); Gotoh et al. (2006, 2007a,b,c); Jia et al. (2008). For bond-length data, see: Allen (2002); Allen et al. (1987).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of chloranilic acid (1 mmol, 210 mg) and 2-aminopyimidine (1 mmol, 9.5 mg) were dissolved in 95% methanol (20 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting red solution was kept in air for two week. Plate-like crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution.

Refinement top

H atoms bonded to C atoms were located in difference maps and subsequently treated as riding modes, with C–H=0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were also found in difference maps, with the constraints of N—H =0.86 (2)Å and O—H =0.82 (2) Å, and the Uiso(H) values being set k times of their carrier atoms (k=1.2 for N and 1.5 for O atoms)

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H-bonds are shown in dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the one-dimensional tape (a) linked by intermolecular O-H···O and N-H···O hydrogen bonds parallel to the [111] direction and the two-dimensional sheet (b) linked by Cl···Cl interactin. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.
2-Aminopyrimidinium hydrogen chloranilate monohydrate top
Crystal data top
C4H6N3+·C6HCl2O4·H2OZ = 2
Mr = 322.10F(000) = 328
Triclinic, P1Dx = 1.709 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7969 (5) ÅCell parameters from 1004 reflections
b = 9.4631 (6) Åθ = 2.2–25.2°
c = 11.0604 (7) ŵ = 0.54 mm1
α = 106.074 (1)°T = 292 K
β = 105.892 (1)°Plate, red
γ = 101.925 (1)°0.27 × 0.10 × 0.04 mm
V = 626.01 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2121 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1348 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
0.3° wide ω exposures scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.857, Tmax = 0.979k = 1111
5691 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.1114P)2]
where P = (Fo2 + 2Fc2)/3
2121 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.66 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
C4H6N3+·C6HCl2O4·H2Oγ = 101.925 (1)°
Mr = 322.10V = 626.01 (7) Å3
Triclinic, P1Z = 2
a = 6.7969 (5) ÅMo Kα radiation
b = 9.4631 (6) ŵ = 0.54 mm1
c = 11.0604 (7) ÅT = 292 K
α = 106.074 (1)°0.27 × 0.10 × 0.04 mm
β = 105.892 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2121 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1348 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.979Rint = 0.071
5691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0786 restraints
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.66 e Å3
2121 reflectionsΔρmin = 0.45 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1247 (7)0.1172 (6)0.1769 (5)0.0361 (12)
C20.1473 (7)0.0408 (6)0.2001 (5)0.0425 (13)
C30.2335 (8)0.1755 (5)0.0838 (5)0.0378 (12)
C40.3014 (7)0.1738 (6)0.0449 (5)0.0358 (12)
C50.2867 (7)0.0171 (6)0.0623 (5)0.0372 (12)
C60.2029 (7)0.1163 (6)0.0438 (5)0.0363 (12)
Cl10.1870 (2)0.29304 (15)0.02393 (13)0.0479 (5)
Cl20.2558 (2)0.35198 (15)0.10632 (14)0.0500 (5)
O10.0385 (6)0.2339 (4)0.2793 (3)0.0506 (10)
O20.0871 (6)0.0336 (4)0.3183 (3)0.0547 (11)
O30.3780 (6)0.2884 (4)0.1520 (4)0.0513 (10)
O40.3561 (6)0.0196 (4)0.1857 (4)0.0509 (10)
H40.399 (10)0.110 (3)0.238 (5)0.076*
C70.3286 (7)0.6009 (6)0.5065 (5)0.0365 (12)
C80.5278 (8)0.8089 (6)0.4821 (6)0.0462 (14)
H80.63010.90590.52060.055*
C90.4403 (9)0.7485 (6)0.3461 (6)0.0481 (14)
H90.48010.80200.29330.058*
C100.2900 (8)0.6044 (7)0.2895 (5)0.0468 (14)
H100.22440.55730.19670.056*
N10.4796 (6)0.7413 (5)0.5644 (4)0.0447 (11)
N20.2407 (6)0.5338 (5)0.3717 (4)0.0378 (11)
H20.162 (9)0.442 (6)0.329 (5)0.045*
N30.2768 (7)0.5294 (6)0.5858 (5)0.0504 (12)
H3A0.200 (8)0.434 (3)0.548 (5)0.060*
H3B0.337 (9)0.579 (6)0.671 (2)0.060*
O50.0043 (6)0.2393 (4)0.5451 (3)0.0493 (10)
H5A0.050 (10)0.171 (5)0.468 (2)0.074*
H5B0.021 (10)0.205 (6)0.606 (3)0.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.026 (3)0.037 (3)0.041 (3)0.006 (2)0.012 (2)0.009 (3)
C20.024 (3)0.053 (4)0.050 (3)0.008 (2)0.011 (2)0.023 (3)
C30.034 (3)0.034 (3)0.046 (3)0.013 (2)0.015 (2)0.013 (3)
C40.020 (3)0.042 (3)0.040 (3)0.011 (2)0.010 (2)0.006 (3)
C50.027 (3)0.047 (3)0.042 (3)0.016 (2)0.016 (2)0.016 (3)
C60.023 (3)0.045 (3)0.048 (3)0.015 (2)0.015 (2)0.020 (3)
Cl10.0427 (8)0.0484 (9)0.0582 (9)0.0174 (6)0.0181 (7)0.0246 (7)
Cl20.0507 (9)0.0413 (8)0.0540 (9)0.0113 (6)0.0153 (7)0.0161 (7)
O10.058 (2)0.044 (2)0.040 (2)0.0055 (19)0.0164 (19)0.0100 (19)
O20.070 (3)0.049 (2)0.034 (2)0.010 (2)0.0066 (19)0.0145 (18)
O30.052 (2)0.046 (2)0.044 (2)0.0126 (19)0.0096 (19)0.0068 (19)
O40.062 (3)0.046 (2)0.038 (2)0.016 (2)0.0110 (19)0.0117 (17)
C70.024 (3)0.045 (3)0.043 (3)0.018 (2)0.013 (2)0.012 (3)
C80.026 (3)0.047 (3)0.059 (4)0.006 (2)0.015 (3)0.013 (3)
C90.044 (3)0.057 (4)0.053 (4)0.019 (3)0.019 (3)0.029 (3)
C100.040 (3)0.062 (4)0.043 (3)0.021 (3)0.017 (3)0.017 (3)
N10.031 (2)0.048 (3)0.051 (3)0.016 (2)0.010 (2)0.011 (2)
N20.024 (2)0.037 (2)0.044 (3)0.0089 (18)0.0065 (19)0.007 (2)
N30.041 (3)0.052 (3)0.058 (3)0.014 (2)0.017 (3)0.020 (3)
O50.051 (2)0.059 (2)0.040 (2)0.021 (2)0.013 (2)0.0214 (19)
Geometric parameters (Å, º) top
C1—O11.234 (6)C7—N21.347 (6)
C1—C61.419 (7)C7—N11.354 (6)
C1—C21.569 (7)C8—N11.321 (6)
C2—O21.236 (5)C8—C91.355 (7)
C2—C31.412 (7)C8—H80.9300
C3—C41.377 (7)C9—C101.377 (7)
C3—Cl21.738 (5)C9—H90.9300
C4—O31.252 (6)C10—N21.341 (6)
C4—C51.533 (7)C10—H100.9300
C5—O41.308 (6)N2—H20.84 (5)
C5—C61.346 (7)N3—H3A0.86 (2)
C6—Cl11.732 (5)N3—H3B0.86 (2)
O4—H40.83 (2)O5—H5A0.82 (4)
C7—N31.323 (6)O5—H5B0.82 (4)
O1—C1—C6125.3 (5)N3—C7—N1118.2 (5)
O1—C1—C2115.6 (4)N2—C7—N1120.6 (4)
C6—C1—C2119.1 (5)N1—C8—C9125.3 (5)
O2—C2—C3127.1 (5)N1—C8—H8117.3
O2—C2—C1116.4 (5)C9—C8—H8117.3
C3—C2—C1116.5 (4)C8—C9—C10117.1 (5)
C4—C3—C2123.5 (4)C8—C9—H9121.4
C4—C3—Cl2118.9 (4)C10—C9—H9121.4
C2—C3—Cl2117.6 (4)N2—C10—C9118.2 (5)
O3—C4—C3126.8 (5)N2—C10—H10120.9
O3—C4—C5115.2 (4)C9—C10—H10120.9
C3—C4—C5118.1 (5)C8—N1—C7116.5 (5)
O4—C5—C6121.7 (5)C10—N2—C7122.2 (5)
O4—C5—C4116.6 (4)C10—N2—H2112 (3)
C6—C5—C4121.8 (4)C7—N2—H2126 (3)
C5—C6—C1121.0 (5)C7—N3—H3A117 (4)
C5—C6—Cl1121.7 (4)C7—N3—H3B117 (4)
C1—C6—Cl1117.4 (4)H3A—N3—H3B126 (5)
C1—O1—H2135.7 (14)H3A—O5—H5A112 (4)
C2—O2—H5A118.4 (13)H3A—O5—H5B126 (4)
C5—O4—H4109 (4)H5A—O5—H5B114 (3)
N3—C7—N2121.2 (5)
O1—C1—C2—O23.6 (7)O4—C5—C6—Cl11.4 (7)
C6—C1—C2—O2176.2 (4)C4—C5—C6—Cl1179.9 (3)
O1—C1—C2—C3176.3 (4)O1—C1—C6—C5177.2 (5)
C6—C1—C2—C33.9 (7)C2—C1—C6—C53.0 (7)
O2—C2—C3—C4178.5 (5)O1—C1—C6—Cl13.0 (7)
C1—C2—C3—C41.7 (7)C2—C1—C6—Cl1176.8 (3)
O2—C2—C3—Cl21.0 (7)C6—C1—O1—H238 (2)
C1—C2—C3—Cl2178.8 (3)C2—C1—O1—H2143 (2)
C2—C3—C4—O3179.6 (5)C3—C2—O2—H5A163 (2)
Cl2—C3—C4—O30.9 (7)C1—C2—O2—H5A17 (2)
C2—C3—C4—C51.4 (7)N1—C8—C9—C100.4 (8)
Cl2—C3—C4—C5178.1 (3)C8—C9—C10—N20.1 (8)
O3—C4—C5—O40.4 (6)C9—C8—N1—C70.7 (8)
C3—C4—C5—O4178.8 (4)N3—C7—N1—C8179.8 (5)
O3—C4—C5—C6178.4 (4)N2—C7—N1—C82.4 (7)
C3—C4—C5—C62.5 (7)C9—C10—N2—C71.9 (8)
O4—C5—C6—C1178.8 (4)N3—C7—N2—C10179.6 (5)
C4—C5—C6—C10.1 (7)N1—C7—N2—C103.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.83 (2)2.16 (6)2.651 (5)118 (5)
O4—H4···N1i0.83 (2)2.07 (4)2.795 (6)146 (6)
O5—H5A···O20.82 (4)2.09 (3)2.872 (5)156 (6)
O5—H5A···O10.82 (4)2.34 (4)2.859 (5)121 (4)
O5—H5B···O2ii0.82 (4)2.09 (4)2.830 (5)150 (5)
N3—H3A···O50.86 (2)2.02 (3)2.815 (6)153 (5)
N2—H2···O10.84 (5)1.98 (5)2.793 (6)163 (5)
N3—H3B···O3iii0.86 (2)2.17 (4)2.953 (6)151 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H6N3+·C6HCl2O4·H2O
Mr322.10
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.7969 (5), 9.4631 (6), 11.0604 (7)
α, β, γ (°)106.074 (1), 105.892 (1), 101.925 (1)
V3)626.01 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.27 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
5691, 2121, 1348
Rint0.071
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.197, 0.97
No. of reflections2121
No. of parameters199
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.45

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.83 (2)2.16 (6)2.651 (5)118 (5)
O4—H4···N1i0.83 (2)2.07 (4)2.795 (6)146 (6)
O5—H5A···O20.82 (4)2.09 (3)2.872 (5)156 (6)
O5—H5A···O10.82 (4)2.34 (4)2.859 (5)121 (4)
O5—H5B···O2ii0.82 (4)2.09 (4)2.830 (5)150 (5)
N3—H3A···O50.86 (2)2.02 (3)2.815 (6)153 (5)
N2—H2···O10.84 (5)1.98 (5)2.793 (6)163 (5)
N3—H3B···O3iii0.86 (2)2.17 (4)2.953 (6)151 (5)
Symmetry codes: (i) x1, y1, z1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds