metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m766-m767

Poly[[μ3-3-(3-pyrid­yl)acrylato-κ3N:O:O′][μ2-3-(3-pyrid­yl)acrylato-κ3O,O′:O][μ2-3-(3-pyrid­yl)acrylato-κ2O:O′)]gadolinium(III)]

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, bFaculty of Earth Sciences, China University of Geosciences, Wuhan 430074, People's Republic of China, and cDepartment of Resources and Environmental Engineering, Guilin University of Technology, Guilin,541004, People's Republic of China
*Correspondence e-mail: fupeiliang@yahoo.cn

(Received 14 April 2008; accepted 28 April 2008; online 3 May 2008)

In the title compound, [Gd(C8H6NO2)3]n, the GdIII ion is in a bicapped trigonal prismatic coordination environment formed by seven O atoms and one N atom, derived from seven different 3-(3-pyrid­yl)acrylate (3-PYA) ligands. GdIII ions are bridged by bidentate and tridentate 3-PYA ligands, resulting in a two-dimensional structure.

Related literature

For related literature, see: Ayyappan et al. (2001[Ayyappan, P., Evans, O. R. & Lin, W.-B. (2001). Inorg. Chem. 40, 4627-4632.]); Gunning & Cahill (2005[Gunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788-2792.]); Zhang et al. (2000[Zhang, J., Xiong, R.-G., Zuo, J.-L., Che, C.-M. & You, X.-Z. (2000). J. Chem. Soc. Dalton Trans. pp. 2898-2900.]) Liu et al. (2006[Liu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319-m2320.]); Liu et al. (2004[Liu, Y.-J., Xiong, R.-G., You, X.-Z. & Che, C.-M. (2004). Z. Anorg. Allg. Chem. 630, 2761-2764.]); Zhou et al. (2004[Zhou, Q.-X., Wang, Y.-J., Zhao, X.-Q. & Yue, L. (2004). Chin. J. Struct. Chem. 23, 570-573.]); Li et al. (2007[Li, W.-G., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2007). Acta Cryst. E63, m351-m352.]). For related structures, see: Zhou et al., (2003[Zhou, Q.-X., Wang, Y.-J., Zhao, X.-Q. & Yue, L. (2003). Chin. J. Inorg. Chem. 19, 1245-1248.]).

[Scheme 1]

Experimental

Crystal data
  • [Gd(C8H6NO2)3]

  • Mr = 601.66

  • Monoclinic, P 21 /c

  • a = 7.7197 (17) Å

  • b = 25.646 (6) Å

  • c = 11.445 (2) Å

  • β = 95.684 (3)°

  • V = 2254.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 294 (2) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.534, Tmax = 0.615 (expected range = 0.507–0.584)

  • 12572 measured reflections

  • 4654 independent reflections

  • 3517 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.05

  • 4654 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 2.06 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O4i 2.305 (3)
Gd1—O2i 2.305 (3)
Gd1—O1 2.332 (3)
Gd1—O3 2.353 (3)
Gd1—O6ii 2.383 (3)
Gd1—O5 2.440 (3)
Gd1—O6 2.546 (3)
Gd1—N1iii 2.628 (4)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bifunctional compound 3-pyridylacrylic acid (3-HPYA) is a potential multidentate ligand, and several types of complexes formed with 3-HPYA have been studied (Ayyappan et al., 2001; Gunning & Cahill, 2005; Zhang et al., 2000). Until now, however, only a few crystallographic studies of 4f-block metal complexes of HPYA have been reported (Liu et al.,2006; Liu et al.,2004; Zhou et al.,2004; Zhou et al.,2003; Li et al., 2007).

Here, we report the synthesis and structure of the title complex, [Gd(TPA)3]n (I) (Fig.1). The GdIII ion is eight-coordinated by seven O atoms and one N atom derived from seven different 3-PYA ligands. The topology of (I) is a two-dimensional structure mediated by bridging 3-PYA ligands. Symmetry-related GdIII centres are bridged by two bidentate and two tridentate 3-PYA ligands, which results in the formation of a one-dimensional chain along a axis (Fig.2). Different chains are connected by tridentate 3-PYA ligands, which results in the formation of a two-dimensional framework parallel to (100) (Fig.3). Gd—O distances are in the range 2.305 (3) to 2.546 (3) Å, and the Gd—N distance is 2.628 (4) Å.

Related literature top

For related literature, see: Ayyappan et al. (2001); Gunning & Cahill (2005); Zhang et al. (2000) Liu et al. (2006); Liu et al. (2004); Zhou et al. (2004); Li et al. (2007). For related structures, see: Zhou et al., (2003).

Experimental top

A mixture of Gd2O3(0.5 mmol), 3-pyridylacrylic acid (2.0 mmol), H2O(14 ml) was sealed in a 25 ml Teflon-lined stainless reactor and heated at 468 K for six days under autogenous pressure, then followed by slow cooling to room temperature, when a few colourless crystals were obtained. Analysis:found C 47.41,H 3.08,N 7.03%; C24H20GdN3O7 requires C 47.45,H 2.97,N 6.92%.

Refinement top

H atoms bonded were placed at calulated posotions and treated using a riding-model approximation [C—H = 0.93Å and Uiso(H)= 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the structure of (I) showing the coordination environment of the GdIII ion, with displacement ellipsoids at the 30% probability level. All H atoms are omitted for clarity. [Symmetry codes:(a)-x,1 - y,-z;(b)-x,1 - y,1 - z;(c)1 - x,1 - y,1 - z.]
[Figure 2] Fig. 2. Part of a chain structure of (I), along the a axis. All H atoms are omitted.
[Figure 3] Fig. 3. The two-dimensional structure of (I) parallel to (100), All H atoms have been omitted for clearity.
Poly[[µ3-3-(3-pyridyl)acrylato-κ3N:O:O'][µ2- 3-(3-pyridyl)acrylato-κ3O,O':O][µ2-3-(3- pyridyl)acrylato-κ2O:O')]gadolinium(III)] top
Crystal data top
[Gd(C8H6NO2)3]F(000) = 1180
Mr = 601.66Dx = 1.772 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5417 reflections
a = 7.7197 (17) Åθ = 2.7–26.5°
b = 25.646 (6) ŵ = 2.99 mm1
c = 11.445 (2) ÅT = 294 K
β = 95.684 (3)°Block, colourless
V = 2254.8 (8) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4654 independent reflections
Radiation source: fine-focus sealed tube3517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 26.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 99
Tmin = 0.534, Tmax = 0.615k = 3032
12572 measured reflectionsl = 147
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0357P)2 + 2.29P]
where P = (Fo2 + 2Fc2)/3
4654 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 2.06 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
[Gd(C8H6NO2)3]V = 2254.8 (8) Å3
Mr = 601.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7197 (17) ŵ = 2.99 mm1
b = 25.646 (6) ÅT = 294 K
c = 11.445 (2) Å0.24 × 0.20 × 0.18 mm
β = 95.684 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4654 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3517 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.615Rint = 0.048
12572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 2.06 e Å3
4654 reflectionsΔρmin = 1.17 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.75345 (2)0.501980 (8)0.574129 (16)0.01502 (9)
O10.9665 (4)0.52846 (14)0.7208 (3)0.0273 (7)
O21.1908 (5)0.52067 (14)0.6134 (3)0.0311 (8)
O30.8511 (4)0.58040 (13)0.4964 (3)0.0306 (8)
O41.0842 (4)0.57303 (13)0.3946 (3)0.0302 (8)
O50.6072 (4)0.57155 (13)0.6716 (3)0.0262 (7)
O60.4848 (4)0.55290 (13)0.4935 (2)0.0236 (7)
N11.3676 (5)0.53963 (15)1.2405 (3)0.0240 (9)
C50.5075 (6)0.58425 (18)0.5821 (4)0.0219 (10)
C60.9606 (6)0.59796 (18)0.4321 (4)0.0236 (10)
C71.2073 (6)0.5432 (2)0.9203 (4)0.0275 (11)
H71.09100.53640.92920.033*
C90.3667 (7)0.72221 (19)0.6627 (4)0.0298 (11)
C100.8451 (7)0.6892 (2)0.4348 (4)0.0330 (12)
H100.76590.67810.48570.040*
C110.4341 (7)0.6688 (2)0.6617 (4)0.0314 (12)
H110.49390.65700.73120.038*
C121.2511 (6)0.54388 (19)0.8113 (4)0.0245 (10)
H121.36400.55340.79860.029*
C131.3224 (6)0.55200 (19)1.0284 (4)0.0248 (10)
C140.7726 (8)0.7816 (2)0.4738 (6)0.0453 (15)
H140.72200.76950.53900.054*
C151.5195 (6)0.5655 (2)1.2392 (4)0.0288 (11)
H151.58740.57031.31010.035*
N20.3364 (7)0.80038 (19)0.7784 (4)0.0468 (13)
C170.9503 (7)0.6539 (2)0.3963 (5)0.0347 (13)
H171.02460.66490.34200.042*
C180.4192 (6)0.6355 (2)0.5732 (4)0.0290 (11)
H180.35210.64440.50410.035*
C200.2839 (7)0.7472 (2)0.5650 (4)0.0370 (13)
H200.26520.72980.49370.044*
C210.8437 (7)0.7449 (2)0.4033 (5)0.0332 (12)
C220.2294 (8)0.7983 (2)0.5747 (5)0.0447 (15)
H220.17330.81550.51020.054*
C231.4821 (6)0.5782 (2)1.0315 (4)0.0309 (12)
H231.52170.59070.96270.037*
N30.7710 (7)0.8333 (2)0.4554 (5)0.0582 (15)
C250.3879 (8)0.7510 (2)0.7660 (5)0.0425 (14)
H250.44250.73450.83210.051*
C260.8422 (8)0.8500 (2)0.3614 (6)0.0539 (17)
H260.84220.88560.34650.065*
C271.5802 (6)0.5853 (2)1.1382 (4)0.0326 (12)
H271.68550.60311.14210.039*
C280.9162 (8)0.7645 (2)0.3054 (5)0.0429 (14)
H280.96450.74180.25420.052*
C290.9163 (9)0.8174 (2)0.2846 (6)0.0515 (16)
H290.96530.83080.22000.062*
C300.2599 (8)0.8233 (2)0.6821 (5)0.0441 (15)
H300.22530.85780.68730.053*
C331.1260 (6)0.52998 (18)0.7078 (4)0.0203 (9)
C341.2735 (6)0.53395 (19)1.1353 (4)0.0272 (11)
H341.16760.51661.13400.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01666 (12)0.01601 (13)0.01255 (12)0.00038 (9)0.00230 (8)0.00069 (9)
O10.0229 (17)0.036 (2)0.0223 (17)0.0025 (15)0.0008 (14)0.0003 (14)
O20.038 (2)0.036 (2)0.0197 (17)0.0029 (16)0.0062 (15)0.0066 (15)
O30.0317 (19)0.0241 (19)0.038 (2)0.0019 (15)0.0136 (16)0.0060 (15)
O40.0315 (19)0.0218 (18)0.038 (2)0.0080 (15)0.0080 (16)0.0036 (15)
O50.0279 (18)0.0274 (19)0.0230 (17)0.0059 (14)0.0011 (14)0.0011 (14)
O60.0245 (17)0.0224 (17)0.0241 (17)0.0025 (13)0.0027 (14)0.0061 (13)
N10.026 (2)0.024 (2)0.021 (2)0.0016 (17)0.0005 (16)0.0013 (16)
C50.022 (2)0.021 (2)0.022 (2)0.0032 (19)0.0024 (19)0.0027 (19)
C60.028 (3)0.019 (2)0.023 (2)0.0021 (19)0.000 (2)0.0005 (18)
C70.026 (2)0.036 (3)0.020 (2)0.011 (2)0.0020 (19)0.001 (2)
C90.035 (3)0.027 (3)0.028 (3)0.003 (2)0.005 (2)0.007 (2)
C100.036 (3)0.027 (3)0.037 (3)0.003 (2)0.009 (2)0.004 (2)
C110.037 (3)0.031 (3)0.025 (3)0.007 (2)0.001 (2)0.000 (2)
C120.023 (2)0.032 (3)0.019 (2)0.007 (2)0.0044 (19)0.0048 (19)
C130.029 (3)0.026 (3)0.020 (2)0.005 (2)0.003 (2)0.0030 (19)
C140.047 (4)0.036 (3)0.054 (4)0.012 (3)0.008 (3)0.004 (3)
C150.030 (3)0.032 (3)0.023 (3)0.000 (2)0.004 (2)0.003 (2)
N20.064 (3)0.033 (3)0.043 (3)0.007 (2)0.003 (3)0.012 (2)
C170.033 (3)0.029 (3)0.046 (3)0.007 (2)0.017 (2)0.013 (2)
C180.030 (3)0.027 (3)0.029 (3)0.003 (2)0.000 (2)0.004 (2)
C200.048 (3)0.029 (3)0.033 (3)0.004 (2)0.001 (3)0.003 (2)
C210.037 (3)0.026 (3)0.036 (3)0.006 (2)0.003 (2)0.004 (2)
C220.059 (4)0.026 (3)0.048 (4)0.007 (3)0.002 (3)0.004 (3)
C230.032 (3)0.038 (3)0.024 (2)0.011 (2)0.004 (2)0.003 (2)
N30.068 (4)0.026 (3)0.081 (4)0.013 (3)0.009 (3)0.004 (3)
C250.053 (4)0.036 (3)0.036 (3)0.013 (3)0.004 (3)0.005 (2)
C260.059 (4)0.024 (3)0.075 (5)0.007 (3)0.014 (4)0.008 (3)
C270.028 (3)0.040 (3)0.030 (3)0.011 (2)0.000 (2)0.003 (2)
C280.057 (4)0.032 (3)0.041 (3)0.008 (3)0.013 (3)0.006 (2)
C290.065 (4)0.033 (3)0.057 (4)0.005 (3)0.008 (3)0.016 (3)
C300.052 (4)0.023 (3)0.059 (4)0.004 (3)0.013 (3)0.000 (3)
C330.024 (2)0.021 (2)0.016 (2)0.0032 (19)0.0031 (18)0.0010 (17)
C340.028 (3)0.030 (3)0.023 (2)0.011 (2)0.000 (2)0.002 (2)
Geometric parameters (Å, º) top
Gd1—O4i2.305 (3)C11—C181.321 (6)
Gd1—O2i2.305 (3)C11—H110.9300
Gd1—O12.332 (3)C12—C331.495 (6)
Gd1—O32.353 (3)C12—H120.9300
Gd1—O6ii2.383 (3)C13—C341.394 (6)
Gd1—O52.440 (3)C13—C231.401 (6)
Gd1—O62.546 (3)C14—N31.343 (8)
Gd1—N1iii2.628 (4)C14—C211.389 (8)
Gd1—C52.846 (5)C14—H140.9300
O1—C331.255 (5)C15—C271.385 (7)
O2—C331.257 (5)C15—H150.9300
O2—Gd1i2.305 (3)N2—C301.333 (7)
O3—C61.258 (5)N2—C251.340 (7)
O4—C61.259 (6)C17—H170.9300
O4—Gd1i2.305 (3)C18—H180.9300
O5—C51.262 (5)C20—C221.383 (8)
O6—C51.293 (5)C20—H200.9300
O6—Gd1ii2.383 (3)C21—C281.395 (7)
N1—C151.348 (6)C22—C301.386 (8)
N1—C341.351 (6)C22—H220.9300
N1—Gd1iii2.628 (4)C23—C271.383 (7)
C5—C181.479 (7)C23—H230.9300
C6—C171.492 (7)N3—C261.326 (8)
C7—C121.325 (6)C25—H250.9300
C7—C131.468 (6)C26—C291.378 (9)
C7—H70.9300C26—H260.9300
C9—C201.388 (7)C27—H270.9300
C9—C251.389 (7)C28—C291.377 (8)
C9—C111.466 (7)C28—H280.9300
C10—C171.321 (7)C29—H290.9300
C10—C211.472 (7)C30—H300.9300
C10—H100.9300C34—H340.9300
O4i—Gd1—O2i77.61 (12)C17—C10—C21124.9 (5)
O4i—Gd1—O178.31 (12)C17—C10—H10117.5
O2i—Gd1—O1124.09 (12)C21—C10—H10117.5
O4i—Gd1—O3125.63 (12)C18—C11—C9127.3 (5)
O2i—Gd1—O376.54 (12)C18—C11—H11116.3
O1—Gd1—O378.10 (12)C9—C11—H11116.3
O4i—Gd1—O6ii87.00 (12)C7—C12—C33122.5 (4)
O2i—Gd1—O6ii76.00 (11)C7—C12—H12118.7
O1—Gd1—O6ii150.72 (11)C33—C12—H12118.7
O3—Gd1—O6ii130.38 (11)C34—C13—C23116.8 (4)
O4i—Gd1—O5143.96 (11)C34—C13—C7119.6 (4)
O2i—Gd1—O5138.40 (12)C23—C13—C7123.6 (4)
O1—Gd1—O577.47 (11)N3—C14—C21125.3 (6)
O3—Gd1—O574.21 (11)N3—C14—H14117.4
O6ii—Gd1—O5101.73 (11)C21—C14—H14117.4
O4i—Gd1—O6153.58 (11)N1—C15—C27123.7 (4)
O2i—Gd1—O690.69 (11)N1—C15—H15118.1
O1—Gd1—O6127.08 (11)C27—C15—H15118.1
O3—Gd1—O672.81 (11)C30—N2—C25116.1 (5)
O6ii—Gd1—O667.07 (13)C10—C17—C6125.8 (5)
O5—Gd1—O652.66 (10)C10—C17—H17117.1
O4i—Gd1—N1iii76.53 (12)C6—C17—H17117.1
O2i—Gd1—N1iii139.77 (13)C11—C18—C5121.1 (5)
O1—Gd1—N1iii79.57 (11)C11—C18—H18119.4
O3—Gd1—N1iii143.62 (12)C5—C18—H18119.4
O6ii—Gd1—N1iii72.39 (11)C22—C20—C9119.5 (5)
O5—Gd1—N1iii73.15 (11)C22—C20—H20120.2
O6—Gd1—N1iii99.15 (11)C9—C20—H20120.2
O4i—Gd1—C5165.50 (12)C14—C21—C28115.8 (5)
O2i—Gd1—C5113.80 (13)C14—C21—C10120.6 (5)
O1—Gd1—C5100.73 (12)C28—C21—C10123.6 (5)
O3—Gd1—C567.56 (12)C20—C22—C30118.8 (5)
O6ii—Gd1—C587.27 (12)C20—C22—H22120.6
O5—Gd1—C526.20 (11)C30—C22—H22120.6
O6—Gd1—C527.02 (11)C27—C23—C13119.2 (4)
N1iii—Gd1—C589.04 (12)C27—C23—H23120.4
C33—O1—Gd1123.6 (3)C13—C23—H23120.4
C33—O2—Gd1i167.0 (3)C26—N3—C14116.5 (5)
C6—O3—Gd1141.8 (3)N2—C25—C9125.5 (5)
C6—O4—Gd1i142.2 (3)N2—C25—H25117.2
C5—O5—Gd195.2 (3)C9—C25—H25117.2
C5—O6—Gd1ii131.5 (3)N3—C26—C29123.7 (6)
C5—O6—Gd189.5 (3)N3—C26—H26118.2
Gd1ii—O6—Gd1112.93 (13)C29—C26—H26118.2
C15—N1—C34115.8 (4)C23—C27—C15119.2 (5)
C15—N1—Gd1iii126.0 (3)C23—C27—H27120.4
C34—N1—Gd1iii118.2 (3)C15—C27—H27120.4
O5—C5—O6120.1 (4)C29—C28—C21120.1 (6)
O5—C5—C18121.7 (4)C29—C28—H28119.9
O6—C5—C18118.2 (4)C21—C28—H28119.9
O5—C5—Gd158.6 (2)C26—C29—C28118.7 (6)
O6—C5—Gd163.4 (2)C26—C29—H29120.7
C18—C5—Gd1163.9 (3)C28—C29—H29120.7
O3—C6—O4126.4 (4)N2—C30—C22123.5 (5)
O3—C6—C17119.0 (4)N2—C30—H30118.3
O4—C6—C17114.6 (4)C22—C30—H30118.3
C12—C7—C13127.0 (5)O1—C33—O2125.1 (4)
C12—C7—H7116.5O1—C33—C12118.5 (4)
C13—C7—H7116.5O2—C33—C12116.4 (4)
C20—C9—C25116.5 (5)N1—C34—C13125.3 (4)
C20—C9—C11124.1 (4)N1—C34—H34117.4
C25—C9—C11119.4 (5)C13—C34—H34117.4
O4i—Gd1—O1—C3363.2 (4)O4i—Gd1—C5—C18153.1 (10)
O2i—Gd1—O1—C333.0 (4)O2i—Gd1—C5—C1866.6 (12)
O3—Gd1—O1—C3367.5 (4)O1—Gd1—C5—C1868.3 (12)
O6ii—Gd1—O1—C33124.6 (3)O3—Gd1—C5—C183.9 (11)
O5—Gd1—O1—C33143.7 (4)O6ii—Gd1—C5—C18140.0 (12)
O6—Gd1—O1—C33124.9 (3)O5—Gd1—C5—C1896.1 (12)
N1iii—Gd1—O1—C33141.4 (4)O6—Gd1—C5—C18100.0 (12)
C5—Gd1—O1—C33131.6 (4)N1iii—Gd1—C5—C18147.5 (12)
O4i—Gd1—O3—C625.1 (5)Gd1—O3—C6—O49.9 (9)
O2i—Gd1—O3—C638.6 (5)Gd1—O3—C6—C17171.4 (4)
O1—Gd1—O3—C691.1 (5)Gd1i—O4—C6—O316.9 (9)
O6ii—Gd1—O3—C696.6 (5)Gd1i—O4—C6—C17161.9 (4)
O5—Gd1—O3—C6171.3 (5)C20—C9—C11—C184.1 (9)
O6—Gd1—O3—C6133.6 (5)C25—C9—C11—C18177.1 (6)
N1iii—Gd1—O3—C6144.4 (5)C13—C7—C12—C33174.8 (5)
C5—Gd1—O3—C6161.8 (5)C12—C7—C13—C34159.3 (5)
O4i—Gd1—O5—C5159.1 (3)C12—C7—C13—C2320.9 (8)
O2i—Gd1—O5—C524.2 (3)C34—N1—C15—C270.4 (7)
O1—Gd1—O5—C5152.1 (3)Gd1iii—N1—C15—C27177.8 (4)
O3—Gd1—O5—C571.1 (3)C21—C10—C17—C6176.4 (5)
O6ii—Gd1—O5—C557.9 (3)O3—C6—C17—C106.8 (8)
O6—Gd1—O5—C59.1 (2)O4—C6—C17—C10172.1 (5)
N1iii—Gd1—O5—C5125.2 (3)C9—C11—C18—C5174.6 (5)
O4i—Gd1—O6—C5147.4 (3)O5—C5—C18—C113.9 (7)
O2i—Gd1—O6—C5149.8 (3)O6—C5—C18—C11178.5 (4)
O1—Gd1—O6—C514.5 (3)Gd1—C5—C18—C1189.9 (12)
O3—Gd1—O6—C574.2 (2)C25—C9—C20—C220.6 (8)
O6ii—Gd1—O6—C5135.7 (3)C11—C9—C20—C22178.2 (5)
O5—Gd1—O6—C58.8 (2)N3—C14—C21—C280.9 (9)
N1iii—Gd1—O6—C569.3 (3)N3—C14—C21—C10177.3 (6)
O4i—Gd1—O6—Gd1ii11.7 (3)C17—C10—C21—C14159.1 (6)
O2i—Gd1—O6—Gd1ii74.46 (14)C17—C10—C21—C2818.9 (9)
O1—Gd1—O6—Gd1ii150.16 (12)C9—C20—C22—C300.3 (9)
O3—Gd1—O6—Gd1ii150.14 (15)C34—C13—C23—C270.8 (8)
O6ii—Gd1—O6—Gd1ii0.0C7—C13—C23—C27179.0 (5)
O5—Gd1—O6—Gd1ii126.89 (17)C21—C14—N3—C260.6 (10)
N1iii—Gd1—O6—Gd1ii66.37 (14)C30—N2—C25—C90.6 (9)
C5—Gd1—O6—Gd1ii135.7 (3)C20—C9—C25—N20.5 (9)
Gd1—O5—C5—O616.6 (4)C11—C9—C25—N2178.4 (6)
Gd1—O5—C5—C18161.1 (4)C14—N3—C26—C290.3 (10)
Gd1ii—O6—C5—O5105.1 (5)C13—C23—C27—C151.1 (8)
Gd1—O6—C5—O515.8 (4)N1—C15—C27—C230.5 (8)
Gd1ii—O6—C5—C1877.2 (5)C14—C21—C28—C290.9 (9)
Gd1—O6—C5—C18161.9 (4)C10—C21—C28—C29177.2 (6)
Gd1ii—O6—C5—Gd1120.9 (3)N3—C26—C29—C280.4 (10)
O4i—Gd1—C5—O557.1 (6)C21—C28—C29—C260.6 (10)
O2i—Gd1—C5—O5162.7 (2)C25—N2—C30—C221.6 (9)
O1—Gd1—C5—O527.7 (3)C20—C22—C30—N21.5 (9)
O3—Gd1—C5—O599.9 (3)Gd1—O1—C33—O24.5 (7)
O6ii—Gd1—C5—O5123.9 (3)Gd1—O1—C33—C12175.5 (3)
O6—Gd1—C5—O5164.0 (4)Gd1i—O2—C33—O17.7 (18)
N1iii—Gd1—C5—O551.5 (3)Gd1i—O2—C33—C12172.4 (12)
O4i—Gd1—C5—O6106.9 (5)C7—C12—C33—O115.5 (7)
O2i—Gd1—C5—O633.3 (3)C7—C12—C33—O2164.5 (5)
O1—Gd1—C5—O6168.3 (2)C15—N1—C34—C130.7 (7)
O3—Gd1—C5—O696.1 (2)Gd1iii—N1—C34—C13177.6 (4)
O6ii—Gd1—C5—O640.1 (3)C23—C13—C34—N10.1 (8)
O5—Gd1—C5—O6164.0 (4)C7—C13—C34—N1179.9 (5)
N1iii—Gd1—C5—O6112.5 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Gd(C8H6NO2)3]
Mr601.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)7.7197 (17), 25.646 (6), 11.445 (2)
β (°) 95.684 (3)
V3)2254.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.534, 0.615
No. of measured, independent and
observed [I > 2σ(I)] reflections
12572, 4654, 3517
Rint0.048
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.06
No. of reflections4654
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.06, 1.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Gd1—O4i2.305 (3)Gd1—O6ii2.383 (3)
Gd1—O2i2.305 (3)Gd1—O52.440 (3)
Gd1—O12.332 (3)Gd1—O62.546 (3)
Gd1—O32.353 (3)Gd1—N1iii2.628 (4)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (GKJ0639031), People's Republic of China.

References

First citationAyyappan, P., Evans, O. R. & Lin, W.-B. (2001). Inorg. Chem. 40, 4627–4632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGunning, N. S. & Cahill, C. L. (2005). J. Chem. Soc. Dalton Trans. pp. 2788–2792.  CSD CrossRef Google Scholar
First citationLi, W.-G., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2007). Acta Cryst. E63, m351–m352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C.-B., Nie, X.-L., Ding, L., Xie, M.-Y. & Wen, H.-L. (2006). Acta Cryst. E62, m2319–m2320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-J., Xiong, R.-G., You, X.-Z. & Che, C.-M. (2004). Z. Anorg. Allg. Chem. 630, 2761–2764.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Xiong, R.-G., Zuo, J.-L., Che, C.-M. & You, X.-Z. (2000). J. Chem. Soc. Dalton Trans. pp. 2898–2900.  Web of Science CSD CrossRef Google Scholar
First citationZhou, Q.-X., Wang, Y.-J., Zhao, X.-Q. & Yue, L. (2003). Chin. J. Inorg. Chem. 19, 1245–1248.  CAS Google Scholar
First citationZhou, Q.-X., Wang, Y.-J., Zhao, X.-Q. & Yue, L. (2004). Chin. J. Struct. Chem. 23, 570-573.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m766-m767
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds