metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m568-m569

catena-Poly[[[bis­­(thio­urea-κS)copper(I)]-μ-thio­urea-κ2S:S] iodide aceto­nitrile hemisolvate]

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, bLiaocheng Vocational and Technical College, Liaocheng, Shandong 252000, People's Republic of China, and cDongchang College of Liaocheng University, Liaocheng, Shandong 252000, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 30 January 2008; accepted 17 March 2008; online 20 March 2008)

The title complex, {[Cu(CH4N2S)3]I·0.5CH3CN}n, was formed by the reaction of CuI and thio­urea in acetonitrile. There are two independent CuI ions in the asymmetric unit which are coordinated by two terminal and two bridging thio­urea ligands to form a one-dimensional helical chain structure progagating in the a-axis direction. Each CuI ion is in a distorted tetra­hedral coordination environment. The crystal structure is stabilized by weak N—H⋯S and N—H⋯I hydrogen bonds.

Related literature

For related literature, see: Bombicz et al. (2004[Bombicz, P., Mutikainen, I., Krunks, M., Leskela, T., Madarasz, J. & Niinisto, L. (2004). Inorg. Chim. Acta, 357, 513-525.]); Bott et al. (1998[Bott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem. 37, 651-657.]); Stocker et al. (1996[Stocker, F. B., Troester, M. A. & Britton, D. (1996). Inorg. Chem. 35, 3145-3153.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CH4N2S)3]I·0.5C2H3N

  • Mr = 439.33

  • Orthorhombic, P 21 21 21

  • a = 13.392 (8) Å

  • b = 13.874 (9) Å

  • c = 15.289 (9) Å

  • V = 2841 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 298 (2) K

  • 0.43 × 0.39 × 0.31 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.269, Tmax = 0.360 (expected range = 0.207–0.277)

  • 14883 measured reflections

  • 4963 independent reflections

  • 4175 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.00

  • 4963 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2149 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Selected bond lengths (Å)

Cu1—S3 2.275 (2)
Cu1—S2 2.309 (2)
Cu1—S1 2.382 (2)
Cu1—S6i 2.411 (2)
Cu2—S4 2.299 (2)
Cu2—S5 2.335 (2)
Cu2—S1 2.341 (2)
Cu2—S6 2.435 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I2ii 0.86 2.97 3.799 (7) 161
N1—H1B⋯S6i 0.86 2.68 3.524 (7) 167
N2—H2A⋯I2ii 0.86 3.14 3.929 (6) 154
N2—H2B⋯S5 0.86 2.96 3.752 (7) 154
N2—H2B⋯I1iii 0.86 3.17 3.667 (7) 119
N3—H3A⋯I2 0.86 2.87 3.645 (6) 150
N3—H3B⋯I1iv 0.86 3.06 3.720 (6) 135
N4—H4A⋯I2 0.86 3.11 3.837 (7) 144
N4—H4A⋯I1 0.86 3.22 3.706 (6) 119
N4—H4B⋯S6i 0.86 2.73 3.563 (7) 165
N5—H5A⋯N13v 0.86 2.41 3.192 (10) 152
N5—H5A⋯I2iv 0.86 3.32 3.796 (8) 118
N7—H7A⋯I1vi 0.86 3.04 3.839 (7) 156
N7—H7B⋯I2iv 0.86 3.02 3.837 (7) 159
N8—H8A⋯I1vi 0.86 2.93 3.759 (6) 161
N8—H8B⋯S5 0.86 2.69 3.526 (6) 166
N9—H9A⋯I2vii 0.86 3.12 3.922 (6) 155
N9—H9B⋯S4 0.86 2.61 3.429 (7) 161
N10—H10A⋯I1vii 0.86 3.01 3.716 (7) 141
N11—H11A⋯I1viii 0.86 2.99 3.791 (6) 155
N11—H11B⋯S2iii 0.86 2.63 3.466 (6) 163
N12—H12A⋯I1viii 0.86 2.92 3.732 (6) 158
N12—H12B⋯S1 0.86 2.54 3.338 (6) 155
N6—H6A⋯S2v 0.86 2.89 3.397 (6) 119
N6—H6A⋯N13v 0.86 2.51 3.266 (11) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 2006[Brandenburg, K. & Berndt, M. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some copper(I) compounds containing thiourea ligands have been described previously (Bombicz et al., 2004; Bott et al., 1998; Stocker et al., 1996). In this paper, we report the synthesis and the structure of a complex formed by the reaction of thiourea with cuprous iodide. The asymmetric unit of the title compound is shown in Fig. 1. The CuI ions have distorted tetrahedral coordination geometries formed by two bridging thiourea ligands and two terminal thiourea ligands. A one-dimensional helical chain structure parallel to the a axis direction is formed (Fig. 2). An iodide counter ion and half an acetonitrile solvent molecule complete the formula unit although there are two formula units in the asymmetric unit of the crystal structure. The Cu—S distances are in the range of 2.275 (2)–2.435 (2) Å, and agree with those in related structures (Bombicz et al., 2004). In the title compound, the S=C distances are the same within experimental error.

In the crystal structure, there are two different types of hydrogen bonds. Intramolecular N—H···S interactions appear to influence the conformation of the helical chains while intermolecular N—H···S and N—H···I interactions stabilize the crystal structure.

Related literature top

For related literature, see: Bombicz et al. (2004); Bott et al. (1998); Stocker et al. (1996).

Experimental top

CuI (0.19 g 1 mmol) and thiourea (0.16 g 2 mmol) in 10 ml acetonitrile were refluxed for 24 h, forming a colorless solution. After filtration, the solution was allowed to evaporate slowly and crystals suitable for X-ray diffraction were obtained after several days.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms, with, N—H 0.86, C—H 0.96 Å, with Uiso(H) = 1.2Ueq(N), Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenberg & Berndt, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with atom labels and 30% probability displacement ellipsoids. H atoms are not shown.
[Figure 2] Fig. 2. Part of the one-dimensional helical chain structure of the title complex.
catena-Poly[[[bis(thiourea-κS)copper(I)]-µ-thiourea-κ2S:S] iodide acetonitrile hemisolvate] top
Crystal data top
[Cu(CH4N2S)3]I·0.5C2H3NF(000) = 1704
Mr = 439.33Dx = 2.055 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6067 reflections
a = 13.392 (8) Åθ = 2.4–24.6°
b = 13.874 (9) ŵ = 4.14 mm1
c = 15.289 (9) ÅT = 298 K
V = 2841 (3) Å3Block, colorless
Z = 80.43 × 0.39 × 0.31 mm
Data collection top
Bruker SMART CCD
diffractometer
4963 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.269, Tmax = 0.360k = 1416
14883 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4963 reflectionsΔρmax = 0.75 e Å3
280 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 2149 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Cu(CH4N2S)3]I·0.5C2H3NV = 2841 (3) Å3
Mr = 439.33Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 13.392 (8) ŵ = 4.14 mm1
b = 13.874 (9) ÅT = 298 K
c = 15.289 (9) Å0.43 × 0.39 × 0.31 mm
Data collection top
Bruker SMART CCD
diffractometer
4963 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4175 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.360Rint = 0.058
14883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.75 e Å3
S = 1.00Δρmin = 0.56 e Å3
4963 reflectionsAbsolute structure: Flack (1983), 2149 Friedel pairs
280 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.43289 (6)0.62730 (6)0.51306 (5)0.0352 (2)
Cu20.21551 (6)0.78050 (6)0.36342 (6)0.0378 (2)
I10.73774 (3)0.35628 (3)0.66369 (3)0.03691 (12)
I20.56899 (4)0.12983 (4)0.53537 (3)0.04740 (14)
N10.5123 (4)0.8657 (5)0.4926 (4)0.0528 (18)
H1A0.54020.92000.50430.063*
H1B0.53890.81290.51060.063*
N20.3902 (5)0.9446 (5)0.4202 (5)0.064 (2)
H2A0.41890.99840.43250.077*
H2B0.33580.94420.39030.077*
N30.3841 (5)0.3114 (4)0.4764 (4)0.0459 (16)
H3A0.40730.26120.50240.055*
H3B0.33270.30640.44300.055*
N40.5048 (5)0.3993 (5)0.5388 (4)0.0566 (19)
H4A0.52630.34790.56400.068*
H4B0.53450.45340.54740.068*
N50.2276 (5)0.5314 (6)0.6094 (5)0.067 (2)
H5A0.17080.50490.62020.081*
H5B0.25350.52670.55810.081*
N60.2313 (5)0.5839 (5)0.7483 (4)0.0615 (19)
H6A0.17450.55660.75710.074*
H6B0.26020.61460.79010.074*
N70.0075 (5)0.5530 (5)0.2887 (5)0.057 (2)
H7A0.06490.55430.26340.068*
H7B0.01180.50180.31540.068*
N80.0191 (4)0.7058 (4)0.2453 (4)0.0462 (17)
H8A0.03850.70560.22040.055*
H8B0.05610.75640.24310.055*
N90.2578 (5)0.7295 (5)0.1506 (4)0.0568 (18)
H9A0.27650.70190.10300.068*
H9B0.24870.69590.19720.068*
N100.2579 (7)0.8700 (6)0.0790 (4)0.089 (3)
H10A0.27670.84100.03210.107*
H10B0.24860.93140.07860.107*
N110.1163 (4)0.9243 (5)0.6331 (4)0.0478 (16)
H11A0.14050.92680.68510.057*
H11B0.06370.95700.62010.057*
N120.2399 (5)0.8212 (5)0.5951 (4)0.065 (2)
H12A0.26310.82450.64740.078*
H12B0.26910.78560.55680.078*
N130.4435 (6)0.5766 (7)0.2168 (5)0.080 (3)
S10.37489 (12)0.75471 (12)0.42179 (11)0.0289 (4)
S20.38359 (13)0.49427 (13)0.43325 (11)0.0347 (4)
S30.38436 (12)0.63528 (15)0.65547 (11)0.0409 (4)
S40.16498 (11)0.62484 (13)0.33684 (12)0.0377 (4)
S50.20735 (14)0.88344 (13)0.24281 (11)0.0407 (4)
S60.11161 (11)0.86565 (13)0.46883 (10)0.0300 (3)
C10.4293 (5)0.8635 (5)0.4470 (4)0.0371 (16)
C20.4269 (5)0.3951 (5)0.4876 (4)0.0351 (16)
C30.2741 (5)0.5786 (5)0.6706 (5)0.0375 (16)
C40.0505 (4)0.6292 (5)0.2864 (4)0.0339 (15)
C50.2434 (5)0.8202 (6)0.1521 (4)0.0462 (19)
C60.1593 (4)0.8707 (5)0.5735 (4)0.0306 (14)
C70.4660 (6)0.6535 (9)0.2169 (5)0.060 (3)
C80.4976 (7)0.7529 (7)0.2179 (7)0.075 (3)
H8C0.44440.79250.23980.112*
H8D0.51430.77280.15950.112*
H8E0.55510.75950.25490.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0331 (4)0.0335 (5)0.0391 (5)0.0031 (4)0.0053 (4)0.0024 (4)
Cu20.0300 (4)0.0451 (5)0.0383 (5)0.0036 (4)0.0070 (4)0.0002 (4)
I10.0318 (2)0.0460 (3)0.0330 (2)0.0026 (2)0.00101 (19)0.0021 (2)
I20.0590 (3)0.0338 (3)0.0494 (3)0.0017 (3)0.0004 (2)0.0003 (3)
N10.041 (3)0.030 (3)0.087 (5)0.005 (3)0.032 (3)0.001 (4)
N20.049 (4)0.033 (4)0.110 (6)0.015 (3)0.035 (4)0.013 (4)
N30.052 (4)0.039 (4)0.047 (4)0.001 (3)0.006 (3)0.003 (3)
N40.060 (5)0.043 (4)0.067 (5)0.004 (3)0.033 (4)0.013 (4)
N50.042 (4)0.082 (5)0.078 (5)0.022 (4)0.012 (4)0.004 (4)
N60.067 (5)0.062 (4)0.055 (4)0.004 (4)0.032 (4)0.006 (3)
N70.047 (4)0.037 (4)0.087 (5)0.008 (3)0.012 (4)0.008 (4)
N80.024 (3)0.042 (4)0.072 (5)0.000 (3)0.012 (3)0.004 (4)
N90.058 (4)0.072 (5)0.041 (4)0.015 (4)0.011 (3)0.018 (3)
N100.146 (8)0.089 (6)0.032 (4)0.057 (7)0.019 (5)0.008 (4)
N110.042 (3)0.069 (5)0.032 (3)0.018 (3)0.006 (3)0.016 (3)
N120.049 (4)0.117 (6)0.028 (3)0.039 (4)0.005 (3)0.004 (3)
N130.066 (5)0.106 (7)0.066 (5)0.018 (5)0.025 (4)0.011 (5)
S10.0239 (8)0.0303 (9)0.0326 (9)0.0005 (7)0.0038 (7)0.0001 (7)
S20.0379 (9)0.0327 (10)0.0336 (10)0.0020 (8)0.0104 (8)0.0010 (8)
S30.0372 (8)0.0529 (11)0.0327 (9)0.0054 (9)0.0030 (8)0.0016 (9)
S40.0291 (8)0.0365 (10)0.0474 (10)0.0026 (7)0.0061 (8)0.0006 (9)
S50.0527 (11)0.0376 (10)0.0319 (9)0.0019 (8)0.0045 (8)0.0017 (8)
S60.0214 (7)0.0422 (10)0.0265 (8)0.0012 (8)0.0006 (6)0.0039 (9)
C10.035 (3)0.035 (4)0.042 (4)0.003 (4)0.004 (3)0.001 (3)
C20.032 (4)0.042 (4)0.031 (4)0.009 (3)0.003 (3)0.004 (3)
C30.038 (4)0.032 (4)0.042 (4)0.007 (3)0.010 (4)0.008 (3)
C40.030 (3)0.034 (4)0.038 (4)0.001 (3)0.003 (3)0.004 (3)
C50.037 (4)0.068 (6)0.034 (4)0.011 (4)0.003 (4)0.003 (4)
C60.025 (3)0.042 (4)0.025 (3)0.003 (3)0.001 (3)0.003 (3)
C70.040 (5)0.100 (9)0.041 (5)0.003 (5)0.000 (4)0.012 (5)
C80.059 (6)0.096 (8)0.069 (7)0.013 (5)0.028 (5)0.000 (6)
Geometric parameters (Å, º) top
Cu1—S32.275 (2)N7—H7B0.8600
Cu1—S22.309 (2)N8—C41.303 (9)
Cu1—S12.382 (2)N8—H8A0.8600
Cu1—S6i2.411 (2)N8—H8B0.8600
Cu2—S42.299 (2)N9—C51.273 (10)
Cu2—S52.335 (2)N9—H9A0.8600
Cu2—S12.341 (2)N9—H9B0.8600
Cu2—S62.435 (2)N10—C51.328 (10)
N1—C11.313 (8)N10—H10A0.8600
N1—H1A0.8600N10—H10B0.8600
N1—H1B0.8600N11—C61.309 (8)
N2—C11.307 (9)N11—H11A0.8600
N2—H2A0.8600N11—H11B0.8600
N2—H2B0.8600N12—C61.321 (9)
N3—C21.307 (8)N12—H12A0.8600
N3—H3A0.8600N12—H12B0.8600
N3—H3B0.8600N13—C71.109 (12)
N4—C21.306 (8)S1—C11.719 (7)
N4—H4A0.8600S2—C21.708 (7)
N4—H4B0.8600S3—C31.689 (7)
N5—C31.301 (10)S4—C41.718 (6)
N5—H5A0.8600S5—C51.711 (8)
N5—H5B0.8600S6—C61.725 (6)
N6—C31.321 (9)S6—Cu1ii2.411 (2)
N6—H6A0.8600C7—C81.442 (14)
N6—H6B0.8600C8—H8C0.9600
N7—C41.313 (8)C8—H8D0.9600
N7—H7A0.8600C8—H8E0.9600
S3—Cu1—S2117.58 (8)C6—N11—H11A120.0
S3—Cu1—S1115.55 (8)C6—N11—H11B120.0
S2—Cu1—S1100.97 (8)H11A—N11—H11B120.0
S3—Cu1—S6i99.89 (6)C6—N12—H12A120.0
S2—Cu1—S6i112.14 (7)C6—N12—H12B120.0
S1—Cu1—S6i111.15 (7)H12A—N12—H12B120.0
S4—Cu2—S5114.90 (8)C1—S1—Cu2109.7 (2)
S4—Cu2—S1101.08 (7)C1—S1—Cu1112.4 (2)
S5—Cu2—S1115.93 (7)Cu2—S1—Cu1129.34 (8)
S4—Cu2—S6113.86 (7)C2—S2—Cu1106.8 (2)
S5—Cu2—S6101.49 (8)C3—S3—Cu1111.0 (3)
S1—Cu2—S6110.05 (7)C4—S4—Cu2108.0 (3)
C1—N1—H1A120.0C5—S5—Cu2108.3 (3)
C1—N1—H1B120.0C6—S6—Cu1ii105.0 (2)
H1A—N1—H1B120.0C6—S6—Cu2115.0 (2)
C1—N2—H2A120.0Cu1ii—S6—Cu2131.52 (7)
C1—N2—H2B120.0N2—C1—N1119.0 (7)
H2A—N2—H2B120.0N2—C1—S1121.1 (5)
C2—N3—H3A120.0N1—C1—S1119.9 (6)
C2—N3—H3B120.0N4—C2—N3117.9 (6)
H3A—N3—H3B120.0N4—C2—S2121.8 (5)
C2—N4—H4A120.0N3—C2—S2120.2 (5)
C2—N4—H4B120.0N5—C3—N6117.9 (7)
H4A—N4—H4B120.0N5—C3—S3123.7 (6)
C3—N5—H5A120.0N6—C3—S3118.5 (6)
C3—N5—H5B120.0N8—C4—N7118.6 (6)
H5A—N5—H5B120.0N8—C4—S4122.2 (5)
C3—N6—H6A120.0N7—C4—S4119.2 (6)
C3—N6—H6B120.0N9—C5—N10118.6 (8)
H6A—N6—H6B120.0N9—C5—S5124.3 (6)
C4—N7—H7A120.0N10—C5—S5117.1 (7)
C4—N7—H7B120.0N11—C6—N12118.8 (6)
H7A—N7—H7B120.0N11—C6—S6120.3 (5)
C4—N8—H8A120.0N12—C6—S6120.8 (5)
C4—N8—H8B120.0N13—C7—C8178.6 (11)
H8A—N8—H8B120.0C7—C8—H8C109.5
C5—N9—H9A120.0C7—C8—H8D109.5
C5—N9—H9B120.0H8C—C8—H8D109.5
H9A—N9—H9B120.0C7—C8—H8E109.5
C5—N10—H10A120.0H8C—C8—H8E109.5
C5—N10—H10B120.0H8D—C8—H8E109.5
H10A—N10—H10B120.0
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2iii0.862.973.799 (7)161
N1—H1B···S6i0.862.683.524 (7)167
N2—H2A···I2iii0.863.143.929 (6)154
N2—H2B···S50.862.963.752 (7)154
N2—H2B···I1ii0.863.173.667 (7)119
N3—H3A···I20.862.873.645 (6)150
N3—H3B···I1iv0.863.063.720 (6)135
N4—H4A···I20.863.113.837 (7)144
N4—H4A···I10.863.223.706 (6)119
N4—H4B···S6i0.862.733.563 (7)165
N5—H5A···N13v0.862.413.192 (10)152
N5—H5A···I2iv0.863.323.796 (8)118
N7—H7A···I1vi0.863.043.839 (7)156
N7—H7B···I2iv0.863.023.837 (7)159
N8—H8A···I1vi0.862.933.759 (6)161
N8—H8B···S50.862.693.526 (6)166
N9—H9A···I2vii0.863.123.922 (6)155
N9—H9B···S40.862.613.429 (7)161
N10—H10A···I1vii0.863.013.716 (7)141
N11—H11A···I1viii0.862.993.791 (6)155
N11—H11B···S2ii0.862.633.466 (6)163
N12—H12A···I1viii0.862.923.732 (6)158
N12—H12B···S10.862.543.338 (6)155
N6—H6A···S2v0.862.893.397 (6)119
N6—H6A···N13v0.862.513.266 (11)147
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x, y+1, z; (iv) x1/2, y+1/2, z+1; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(CH4N2S)3]I·0.5C2H3N
Mr439.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)13.392 (8), 13.874 (9), 15.289 (9)
V3)2841 (3)
Z8
Radiation typeMo Kα
µ (mm1)4.14
Crystal size (mm)0.43 × 0.39 × 0.31
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.269, 0.360
No. of measured, independent and
observed [I > 2σ(I)] reflections
14883, 4963, 4175
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.00
No. of reflections4963
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.56
Absolute structureFlack (1983), 2149 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Bruker, 1997), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenberg & Berndt, 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—S32.275 (2)Cu2—S42.299 (2)
Cu1—S22.309 (2)Cu2—S52.335 (2)
Cu1—S12.382 (2)Cu2—S12.341 (2)
Cu1—S6i2.411 (2)Cu2—S62.435 (2)
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I2ii0.862.973.799 (7)161.3
N1—H1B···S6i0.862.683.524 (7)167.3
N2—H2A···I2ii0.863.143.929 (6)154.2
N2—H2B···S50.862.963.752 (7)154.0
N2—H2B···I1iii0.863.173.667 (7)118.9
N3—H3A···I20.862.873.645 (6)150.1
N3—H3B···I1iv0.863.063.720 (6)135.1
N4—H4A···I20.863.113.837 (7)143.6
N4—H4A···I10.863.223.706 (6)118.5
N4—H4B···S6i0.862.733.563 (7)164.9
N5—H5A···N13v0.862.413.192 (10)151.6
N5—H5A···I2iv0.863.323.796 (8)117.8
N7—H7A···I1vi0.863.043.839 (7)156.2
N7—H7B···I2iv0.863.023.837 (7)159.3
N8—H8A···I1vi0.862.933.759 (6)161.3
N8—H8B···S50.862.693.526 (6)166.0
N9—H9A···I2vii0.863.123.922 (6)155.4
N9—H9B···S40.862.613.429 (7)160.8
N10—H10A···I1vii0.863.013.716 (7)141.1
N11—H11A···I1viii0.862.993.791 (6)155.0
N11—H11B···S2iii0.862.633.466 (6)162.8
N12—H12A···I1viii0.862.923.732 (6)157.9
N12—H12B···S10.862.543.338 (6)154.7
N6—H6A···S2v0.862.893.397 (6)119.4
N6—H6A···N13v0.862.513.266 (11)147.4
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x1/2, y+3/2, z+1; (iv) x1/2, y+1/2, z+1; (v) x+1/2, y+1, z+1/2; (vi) x+1/2, y+1, z1/2; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y+1/2, z+3/2.
 

Acknowledgements

We acknowledge the Natural Science Foundation of Liaocheng University (X051002) forsupport.

References

First citationBombicz, P., Mutikainen, I., Krunks, M., Leskela, T., Madarasz, J. & Niinisto, L. (2004). Inorg. Chim. Acta, 357, 513–525.  Web of Science CSD CrossRef CAS Google Scholar
First citationBott, R. C., Bowmaker, G. A., Davis, C. A., Hope, G. A. & Jones, B. E. (1998). Inorg. Chem. 37, 651–657.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStocker, F. B., Troester, M. A. & Britton, D. (1996). Inorg. Chem. 35, 3145–3153.  CSD CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m568-m569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds