Download citation
Download citation
link to html
In the title compound, C9H8N4OS, there are two independent mol­ecules in the asymmetric unit. The C—N—C—S torsion angles in the two molecules are 13.9 (4) and 14.3 (5)°. In the crystal structure, inter­molecular N—H...N and O—H...S hydrogen bonds result in the formation of one-dimensional chains of rings propagating along [100].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059715/lh2565sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059715/lh2565Isup2.hkl
Contains datablock I

CCDC reference: 646689

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.048
  • wR factor = 0.123
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S2 in Main Residue . ? PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT480_ALERT_4_C Long H...A H-Bond Reported H1 .. S1 .. 2.98 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases have been intensively investigated recently owing to their diverse biological activities, such as antibacterial, antitumor activities etc. (Yang et al., 2000; Mondal et al., 2001; Tarafder et al., 2002). On the other hand, heterocycles in organic synthesis is a current research (Meyers, 1974) and lots of organic heterocyclic compounds have been synthesized (Raper, 1985; Streubel, 2002; Baker & Jones, 2005) to study their various characteristics.

We are interested in 2,5-dithiobiurea and salicylaldehyde and report here the structure of the title compound. The asymmetric unit of the title compound contains two crystallographically independent molecules, with almost identical bond lengths and angles. The asymmetric unit and atom numbering scheme are shown in (Fig. 1).

The title compound comprises a 2-amino-1,3,4- thiadiazole moiety and 2-hydroxyphenyl group linked by a C=N bond which has a Z geometry. In this Z isomer, the C3—C4 bond is trans with respect to the N3—C1 bond. The geometries of the two molecules in the asymmetric unit are essentially the same, so only one independent molecule is discussed in detail here.

The bond angles around atoms N3 and C3 deviate from 120 ° and this is in general agreement with observation for a similar type of compound (Cheng et al., 2006). The angles C3=N3—C1, C4—C3=N3 and H3—C3—C4 [118.33, 123.71 and 118.18 °, respectively] are distorted as a consequence of the strain induced by the double-bond linkage at C3=N3.

For the five-membered 1,3,4-thiadiazole ring, the N1—N2 bond length (1.384 (4) Å) and the C=N bond lengths (C1=N1 1.303 (4) Å and C2=N2 1.310 (4) Å, respectively) are consistent with those reported in the literature (Ma, Zhang et al., 2004); the C—S bond lengths (C1—S1 1.745 (4) Å and C2—S1 1.733 (4) Å, respectively) are consistent with literature reported (Ma, Li et al., 2004).

The molecular structure and crystal packing of are stabilized by intermolecular N—H···N and O—H···S hydrogen bonds. N—H···N hydrogen bonds generate centrosymmetric R228 (Etter, 1990) rings (Fig.2), forming dimers which are linked through the N—H···N hydrogen bonds to form a second type of ring motif, of R4410 type. The combination of these rings produces a linear chains, which run along [100] and are stabilized by weak intermolecular O—H···S hydrogen bonds.

Related literature top

For related literature, see: Baker & Jones (2005); Ma, Li et al. (2004); Ma, Zhang et al. (2004); Meyers (1974); Mondal et al. (2001); Raper (1985); Streubel (2002); Tarafder et al. (2002); Yang et al. (2000).

For related literature, see: Cheng et al. (2006); Etter (1990).

Experimental top

The reaction was carried out under nitrogen atmosphere with use of standard Schlenk technique. The 2,5-dithiobiurea (0.150 g, 1 mmol) was added to the solution of ethanol (20 ml) with sodium ethoxide (0.136 g, 2 mmol) and stirred for 10 min, and then added salicyladehyde (0.112 g,1 mmol) to the mixture, the mixture was stirred at 353 K and then filtered. an pale yellow solution was obtained, which was filtered. The filtrate was left undisturbed at room temperature for one week. Crystals of the title compound suitable for X-ray analysis were grown from an ethanol solution. yield 65%. NMR(CHCl3):(H) 11.23 (H1, s), 7.02 (H8, s), 7.09 (H6, s), 7.26 (H2, s), 7.56 (H1, s), 7.69 (H1, s), 8.38 (H1, s); (C) 118.1 (C6), 120.8 (C4), 121.8 (C8), 132.6 (C9), 132.9 (C7), 160.5 (C3), 161.4 (C5), 162.0 (C2), 164.2 (C1).

Refinement top

All H atoms were placed in geometrically idealized positions (N—H, O—H and C—H of 0.86, 0.82 and 0.93 Å, respectively) and treated as riding on their parent atoms, with Uiso(H), 1.2Ueq(C,N) and 1.2Ueq(O)

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Hydrogen atoms not involved in hydrogen bonds (dashed lines)have been removed for clarity.
2-Amino-5-(salicylideneamino)-1,3,4-thiadiazole top
Crystal data top
C9H8N4OSF(000) = 912
Mr = 220.25Dx = 1.521 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1496 reflections
a = 5.841 (2) Åθ = 2.3–21.6°
b = 30.421 (10) ŵ = 0.31 mm1
c = 10.915 (4) ÅT = 298 K
β = 97.282 (4)°Block, orange
V = 1923.7 (11) Å30.22 × 0.15 × 0.11 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
3314 independent reflections
Radiation source: fine-focus sealed tube1830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 64
Tmin = 0.932, Tmax = 0.958k = 3633
9736 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
3314 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H8N4OSV = 1923.7 (11) Å3
Mr = 220.25Z = 8
Monoclinic, P21/nMo Kα radiation
a = 5.841 (2) ŵ = 0.31 mm1
b = 30.421 (10) ÅT = 298 K
c = 10.915 (4) Å0.22 × 0.15 × 0.11 mm
β = 97.282 (4)°
Data collection top
Bruker SMART CCD
diffractometer
3314 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1830 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.958Rint = 0.061
9736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
3314 reflectionsΔρmin = 0.27 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0020 (5)0.02475 (9)1.1793 (3)0.0413 (8)
N20.1711 (5)0.00077 (9)1.2504 (3)0.0411 (8)
N30.0552 (5)0.07223 (9)1.0065 (3)0.0389 (7)
N40.5670 (5)0.01561 (10)1.2623 (3)0.0485 (9)
H4A0.56320.03291.32430.058*
H4B0.69450.01141.23240.058*
N50.2979 (5)0.09155 (10)0.4459 (3)0.0503 (9)
N60.4661 (5)0.06510 (10)0.5069 (3)0.0452 (8)
N70.2222 (5)0.14339 (9)0.2877 (3)0.0413 (8)
N80.8524 (5)0.04549 (10)0.5046 (3)0.0503 (9)
H8A0.84830.02710.56420.060*
H8B0.97770.04900.47200.060*
O10.4115 (5)0.12430 (9)0.9319 (3)0.0615 (8)
H10.33750.10580.97500.092*
O20.1463 (5)0.19460 (9)0.2563 (3)0.0648 (8)
H20.05280.17760.29310.097*
S10.37598 (16)0.03882 (3)1.08484 (9)0.0434 (3)
S20.66006 (17)0.10490 (3)0.34039 (9)0.0464 (3)
C10.0808 (6)0.04590 (11)1.0896 (3)0.0349 (9)
C20.3737 (6)0.00484 (11)1.2122 (3)0.0367 (9)
C30.0284 (6)0.08513 (11)0.9074 (3)0.0392 (9)
H30.17230.07450.89360.047*
C40.0879 (7)0.11451 (11)0.8191 (3)0.0398 (9)
C50.3019 (7)0.13374 (12)0.8338 (4)0.0451 (10)
C60.3961 (7)0.16421 (13)0.7469 (4)0.0569 (11)
H60.53560.17770.75640.068*
C70.2859 (8)0.17457 (13)0.6474 (4)0.0596 (12)
H70.35340.19470.58980.072*
C80.0757 (8)0.15570 (14)0.6304 (4)0.0610 (12)
H80.00190.16310.56260.073*
C90.0205 (7)0.12576 (12)0.7163 (3)0.0499 (10)
H90.16060.11270.70580.060*
C100.3698 (6)0.11467 (11)0.3573 (3)0.0401 (9)
C110.6628 (6)0.06866 (11)0.4623 (3)0.0390 (9)
C120.2767 (7)0.15904 (11)0.1865 (3)0.0421 (9)
H120.41590.15060.16070.051*
C130.1291 (7)0.18946 (11)0.1108 (3)0.0412 (9)
C140.0756 (7)0.20601 (11)0.1478 (4)0.0433 (10)
C150.2124 (7)0.23435 (12)0.0721 (4)0.0577 (12)
H150.34740.24540.09720.069*
C160.1507 (9)0.24629 (13)0.0395 (4)0.0629 (13)
H160.24580.26500.09070.075*
C170.0516 (9)0.23096 (14)0.0776 (4)0.0648 (13)
H170.09360.23960.15340.078*
C180.1897 (8)0.20292 (13)0.0031 (3)0.0530 (11)
H180.32600.19270.02880.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0324 (18)0.0468 (18)0.0457 (19)0.0019 (16)0.0083 (16)0.0064 (15)
N20.0336 (19)0.0492 (19)0.0400 (18)0.0019 (16)0.0033 (15)0.0111 (15)
N30.0323 (17)0.0412 (18)0.0431 (19)0.0031 (15)0.0049 (15)0.0009 (15)
N40.0322 (18)0.062 (2)0.054 (2)0.0110 (17)0.0119 (16)0.0189 (16)
N50.038 (2)0.060 (2)0.054 (2)0.0055 (18)0.0101 (17)0.0130 (18)
N60.0361 (19)0.051 (2)0.049 (2)0.0029 (17)0.0071 (16)0.0164 (16)
N70.0401 (19)0.0381 (18)0.0455 (19)0.0030 (16)0.0041 (16)0.0062 (15)
N80.0321 (18)0.063 (2)0.057 (2)0.0056 (17)0.0094 (16)0.0253 (17)
O10.0464 (18)0.0703 (19)0.071 (2)0.0158 (15)0.0218 (16)0.0209 (16)
O20.057 (2)0.0624 (18)0.080 (2)0.0175 (15)0.0267 (17)0.0217 (16)
S10.0338 (6)0.0514 (6)0.0460 (6)0.0026 (5)0.0087 (5)0.0126 (5)
S20.0355 (6)0.0537 (6)0.0505 (6)0.0024 (5)0.0084 (5)0.0150 (5)
C10.029 (2)0.034 (2)0.041 (2)0.0009 (17)0.0047 (17)0.0043 (17)
C20.029 (2)0.041 (2)0.040 (2)0.0006 (18)0.0028 (18)0.0004 (17)
C30.037 (2)0.038 (2)0.044 (2)0.0020 (18)0.0071 (19)0.0019 (18)
C40.037 (2)0.040 (2)0.041 (2)0.0031 (19)0.0001 (18)0.0064 (18)
C50.039 (2)0.045 (2)0.050 (3)0.001 (2)0.002 (2)0.005 (2)
C60.047 (3)0.051 (3)0.068 (3)0.009 (2)0.007 (2)0.010 (2)
C70.071 (3)0.052 (3)0.052 (3)0.006 (2)0.007 (2)0.012 (2)
C80.069 (3)0.066 (3)0.048 (3)0.006 (3)0.006 (2)0.006 (2)
C90.051 (3)0.051 (2)0.047 (2)0.001 (2)0.005 (2)0.006 (2)
C100.039 (2)0.038 (2)0.043 (2)0.0005 (19)0.0028 (19)0.0018 (18)
C110.035 (2)0.041 (2)0.040 (2)0.0040 (19)0.0025 (18)0.0059 (17)
C120.034 (2)0.041 (2)0.051 (3)0.0052 (19)0.0030 (19)0.0048 (19)
C130.042 (2)0.034 (2)0.046 (2)0.0014 (19)0.0005 (19)0.0001 (18)
C140.040 (2)0.030 (2)0.060 (3)0.0021 (19)0.004 (2)0.0052 (19)
C150.046 (3)0.044 (2)0.080 (3)0.006 (2)0.005 (2)0.006 (2)
C160.070 (3)0.041 (3)0.069 (3)0.000 (2)0.023 (3)0.005 (2)
C170.091 (4)0.054 (3)0.047 (3)0.010 (3)0.005 (3)0.005 (2)
C180.058 (3)0.057 (3)0.044 (3)0.002 (2)0.005 (2)0.002 (2)
Geometric parameters (Å, º) top
N1—C11.303 (4)C3—C41.423 (5)
N1—N21.384 (4)C3—H30.9300
N2—C21.310 (4)C4—C91.399 (5)
N3—C31.302 (4)C4—C51.407 (5)
N3—C11.383 (4)C5—C61.389 (5)
N4—C21.343 (4)C6—C71.367 (5)
N4—H4A0.8600C6—H60.9300
N4—H4B0.8600C7—C81.389 (6)
N5—C101.307 (4)C7—H70.9300
N5—N61.375 (4)C8—C91.375 (5)
N6—C111.308 (4)C8—H80.9300
N7—C121.279 (4)C9—H90.9300
N7—C101.385 (4)C12—C131.450 (5)
N8—C111.344 (4)C12—H120.9300
N8—H8A0.8600C13—C181.397 (5)
N8—H8B0.8600C13—C141.403 (5)
O1—C51.346 (4)C14—C151.377 (5)
O1—H10.8200C15—C161.363 (5)
O2—C141.349 (4)C15—H150.9300
O2—H20.8200C16—C171.382 (6)
S1—C21.733 (4)C16—H160.9300
S1—C11.745 (4)C17—C181.368 (6)
S2—C111.726 (4)C17—H170.9300
S2—C101.754 (4)C18—H180.9300
C1—N1—N2112.8 (3)C6—C7—H7119.2
C2—N2—N1112.3 (3)C8—C7—H7119.2
C3—N3—C1118.3 (3)C9—C8—C7118.3 (4)
C2—N4—H4A120.0C9—C8—H8120.9
C2—N4—H4B120.0C7—C8—H8120.9
H4A—N4—H4B120.0C8—C9—C4121.4 (4)
C10—N5—N6113.4 (3)C8—C9—H9119.3
C11—N6—N5112.2 (3)C4—C9—H9119.3
C12—N7—C10120.2 (3)N5—C10—N7120.6 (3)
C11—N8—H8A120.0N5—C10—S2113.1 (3)
C11—N8—H8B120.0N7—C10—S2126.3 (3)
H8A—N8—H8B120.0N6—C11—N8123.6 (3)
C5—O1—H1109.5N6—C11—S2114.7 (3)
C14—O2—H2109.5N8—C11—S2121.8 (3)
C2—S1—C186.66 (17)N7—C12—C13122.3 (3)
C11—S2—C1086.66 (18)N7—C12—H12118.8
N1—C1—N3123.4 (3)C13—C12—H12118.8
N1—C1—S1113.9 (3)C18—C13—C14118.2 (4)
N3—C1—S1122.7 (3)C18—C13—C12119.7 (4)
N2—C2—N4125.0 (3)C14—C13—C12122.1 (3)
N2—C2—S1114.3 (3)O2—C14—C15118.0 (4)
N4—C2—S1120.7 (3)O2—C14—C13121.8 (3)
N3—C3—C4123.7 (3)C15—C14—C13120.2 (4)
N3—C3—H3118.1C16—C15—C14120.3 (4)
C4—C3—H3118.1C16—C15—H15119.9
C9—C4—C5119.3 (3)C14—C15—H15119.9
C9—C4—C3118.1 (4)C15—C16—C17120.8 (4)
C5—C4—C3122.6 (3)C15—C16—H16119.6
O1—C5—C6119.9 (4)C17—C16—H16119.6
O1—C5—C4121.4 (3)C18—C17—C16119.6 (4)
C6—C5—C4118.7 (4)C18—C17—H17120.2
C7—C6—C5120.7 (4)C16—C17—H17120.2
C7—C6—H6119.6C17—C18—C13121.0 (4)
C5—C6—H6119.6C17—C18—H18119.5
C6—C7—C8121.6 (4)C13—C18—H18119.5
C1—N1—N2—C20.3 (4)C3—C4—C9—C8176.6 (3)
C10—N5—N6—C110.4 (5)N6—N5—C10—N7179.3 (3)
N2—N1—C1—N3179.7 (3)N6—N5—C10—S20.7 (4)
N2—N1—C1—S10.7 (4)C12—N7—C10—N5165.7 (3)
C3—N3—C1—N1167.2 (3)C12—N7—C10—S214.3 (5)
C3—N3—C1—S113.9 (4)C11—S2—C10—N50.6 (3)
C2—S1—C1—N10.7 (3)C11—S2—C10—N7179.3 (3)
C2—S1—C1—N3179.7 (3)N5—N6—C11—N8178.6 (3)
N1—N2—C2—N4178.4 (3)N5—N6—C11—S20.1 (4)
N1—N2—C2—S10.2 (4)C10—S2—C11—N60.4 (3)
C1—S1—C2—N20.5 (3)C10—S2—C11—N8178.9 (3)
C1—S1—C2—N4178.1 (3)C10—N7—C12—C13179.5 (3)
C1—N3—C3—C4175.8 (3)N7—C12—C13—C18175.3 (3)
N3—C3—C4—C9179.9 (3)N7—C12—C13—C144.4 (5)
N3—C3—C4—C52.6 (5)C18—C13—C14—O2179.9 (3)
C9—C4—C5—O1179.2 (3)C12—C13—C14—O20.2 (5)
C3—C4—C5—O11.7 (6)C18—C13—C14—C150.7 (5)
C9—C4—C5—C61.6 (5)C12—C13—C14—C15179.0 (3)
C3—C4—C5—C6176.0 (3)O2—C14—C15—C16178.8 (3)
O1—C5—C6—C7179.3 (4)C13—C14—C15—C160.4 (6)
C4—C5—C6—C71.5 (6)C14—C15—C16—C171.3 (6)
C5—C6—C7—C81.0 (7)C15—C16—C17—C181.0 (6)
C6—C7—C8—C90.4 (6)C16—C17—C18—C130.1 (6)
C7—C8—C9—C40.4 (6)C14—C13—C18—C171.0 (6)
C5—C4—C9—C81.0 (6)C12—C13—C18—C17178.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.822.983.408 (3)115
O2—H2···N70.821.922.644 (4)147
O1—H1···N30.821.932.660 (4)147
N8—H8B···N5ii0.862.323.093 (4)150
N8—H8A···N2iii0.862.213.041 (4)162
N4—H4B···N1ii0.862.243.061 (4)159
N4—H4A···N6iii0.862.112.962 (4)170
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC9H8N4OS
Mr220.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.841 (2), 30.421 (10), 10.915 (4)
β (°) 97.282 (4)
V3)1923.7 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.22 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.932, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
9736, 3314, 1830
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.00
No. of reflections3314
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.822.983.408 (3)114.6
O2—H2···N70.821.922.644 (4)146.6
O1—H1···N30.821.932.660 (4)147.1
N8—H8B···N5ii0.862.323.093 (4)149.5
N8—H8A···N2iii0.862.213.041 (4)162.0
N4—H4B···N1ii0.862.243.061 (4)158.6
N4—H4A···N6iii0.862.112.962 (4)169.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds