Download citation
Download citation
link to html
The title mol­ecule, C15H12N2O2, is essentially planar. The crystal structure is stabilized by an extensive hydrogen-bonded network. There are two intra­molecular hydrogen bonds resulting in six-membered rings in graph-set patterns S(6) and three inter­molecular inter­actions. Two of these are C—H...O inter­molecular hydrogen bonds that result in dimers, representing R22(10) graph-set patterns, and a C—H...N hydrogen bond leading to the formation of chains of mol­ecules along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056929/lh2558sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056929/lh2558Isup2.hkl
Contains datablock I

CCDC reference: 672953

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.097
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Isoindole type compounds are important as intermediates for the synthesis of novel multidrugs resistance reversal agents (Berger et al., 1999). They have also shown diuretic activity (Cignarella et al., 1981). Several isoindoles have exhibited anti-inflammatory and analgesic activity (Mancilla et al., 2007). In our efforts to isolate chromagens responsible for color development in the reaction of N-phenylurea with ortho phthaldehyde (OPTA), the title compound, (I), was prepared, the crystal structure of which is presented in this article.

The structure of (I) is composed of an essentially planar molecule comprised of an isoindole ring that is briged through a carboxamide group to a phenyl ring (Fig. 1). A mean-planes calculation through all non-hydrogen atoms revealed that C12 and N1 atoms lie 0.057 (1) and 0.052 (1) Å above and below, respectively, from the plane. The angle between mean-planes of the isoindole ring and the phenyl ring is 2.62 (8)°. The structure is stabilized by two intramolecular hydrogen bonds N2—H2N···O1 and C11—H11A···O2 that result in six membered rings which may be best defined in graph set patterns S(6) (Bernstein et al., 1994); details of hydrogen bonding geometry have been provided in the Table. In addition, rather weak intermolecular interactions of two distinct types are present in the crystal (Fig. 2). The C—H···O type intermolecular H-bonding results in dimers forming ten-membered rings ···O1—C8—C1—C2—H2···O1i and ···O2—C9—N1—C7—H7b···O2ii, both representing R22(10) graph set patterns (Bernstein et al., 1994). The C—H···N type H-bonding results in chains of molecules in a pattern ···N2—C9—N1—C7—H7B···N2iii along the b-aixs. Symmetry codes as in the bydrogen bond geometry table.

The structure of 2-(bis(1-oxo-2,3-dihydroisoindol-2-yl)methyl)tetrahydrothiophene (Benati et al., 2003) which is somewhat related to the title compound has been reported.

Related literature top

For related literature, see: Benati et al. (2003); Berger et al. (1999); Bernstein et al. (1994); Cignarella et al. (1981); Mancilla et al. (2007).

Experimental top

A mixture of o-phthaldehyde (0.67 g, 200 mmol) and N-phenylurea (0.68 g, 200 mmol) in 100 ml of ethanol was refluxed for 12 hrs. The contents of flask were then left to stand for 48 hrs. at room temperature. The crystals of (I) thus formed were filtered, washed with hexane, ether and ethanol and were dried at room temperature. Crystals suitable for X-ray diffraction were grown from a solution of acetone by slow evaporation at room temperature.

Refinement top

H-atoms were included in the refinements at geometrically idealized positions with C—Haromatic = 0.95, CH2 = 0.99 and N—H = 0.88 Å and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids plotted at 50% probability level; intermolecular interactions have been indicated by broken lines.
[Figure 2] Fig. 2. H-bonding interactions in the unit cell of (I); H-atoms not involved in interactions have been ignored. H-bonds are shown as dashed lines.
1-Oxo-N-phenylisoindoline-2-carboxamide top
Crystal data top
C15H12N2O2F(000) = 528
Mr = 252.27Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5034 reflections
a = 12.905 (4) Åθ = 2.6–27.5°
b = 5.619 (1) ŵ = 0.09 mm1
c = 17.161 (6) ÅT = 173 K
β = 102.228 (17)°Needle, colorless
V = 1216.2 (6) Å30.35 × 0.10 × 0.06 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2768 independent reflections
Radiation source: fine-focus sealed tube2119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1616
Tmin = 0.968, Tmax = 0.994k = 67
5034 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.038P)2 + 0.39P]
where P = (Fo2 + 2Fc2)/3
2768 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H12N2O2V = 1216.2 (6) Å3
Mr = 252.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.905 (4) ŵ = 0.09 mm1
b = 5.619 (1) ÅT = 173 K
c = 17.161 (6) Å0.35 × 0.10 × 0.06 mm
β = 102.228 (17)°
Data collection top
Nonius KappaCCD
diffractometer
2768 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2119 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.994Rint = 0.021
5034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2768 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Experimental. IR spectra (nujol) showed vibrations 3425 cm-1 (N—H), 1714 and 1680 cm-1 (C=O), 1600 and 155.8 cm-1 (C=C), 1150 cm-1 (C—O). 1H-NMR (DMSO-d6); δ: 4.92 (s –CH2–), 7.10–7.93 (aromatic ring protons, 9H), 10.72 (s, NH). 13C-NMR (DMSO-d6); δ: 48.59 (–CH2–), 123.37 (C4), 124.08 (C3), 128.65 (C5), 130.94 (C6), 133.93 (C2), 141.07 (C1), 150.25 (C9), 169.44 (C8) and 120.06, 124.86, 129.03, 137.50 (N—Ph carbons). Anal. Calcd for C15H12N2O2. Required: C, 71.42; H, 4.79; N, 11.0; O, 12.68; Found: C, 71.40; H, 4.80; N, 11.07; O, 12.70. m.p. 441 K. m/z; 252.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92562 (7)0.27832 (16)0.39885 (5)0.0328 (2)
O20.89390 (8)0.31349 (17)0.24855 (6)0.0406 (3)
N10.97796 (8)0.07840 (18)0.34984 (6)0.0263 (2)
N20.80821 (8)0.01677 (19)0.28210 (6)0.0297 (3)
H2N0.81690.13660.31590.036*
C11.09874 (10)0.1015 (2)0.44905 (7)0.0268 (3)
C21.14801 (11)0.2514 (2)0.51004 (8)0.0315 (3)
H21.11390.39080.52340.038*
C31.24880 (11)0.1894 (3)0.55062 (8)0.0356 (3)
H31.28460.28660.59320.043*
C41.29830 (11)0.0143 (3)0.52972 (8)0.0380 (3)
H41.36760.05320.55840.046*
C51.24877 (11)0.1619 (2)0.46793 (8)0.0346 (3)
H51.28340.29910.45350.041*
C61.14717 (10)0.1021 (2)0.42818 (7)0.0281 (3)
C71.07353 (10)0.2269 (2)0.36116 (8)0.0296 (3)
H7A1.05870.39160.37610.036*
H7B1.10300.23080.31240.036*
C80.99162 (10)0.1207 (2)0.39860 (7)0.0263 (3)
C90.89044 (10)0.1374 (2)0.28902 (7)0.0284 (3)
C100.71058 (10)0.0067 (2)0.22699 (8)0.0301 (3)
C110.68394 (11)0.1681 (3)0.16870 (8)0.0360 (3)
H110.73240.29270.16480.043*
C120.58577 (11)0.1588 (3)0.11620 (9)0.0419 (4)
H120.56750.27840.07650.050*
C130.51455 (12)0.0206 (3)0.12064 (9)0.0452 (4)
H130.44810.02590.08400.054*
C140.54067 (12)0.1927 (3)0.17890 (10)0.0480 (4)
H140.49160.31580.18280.058*
C150.63785 (11)0.1869 (3)0.23162 (9)0.0401 (3)
H150.65520.30670.27130.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (5)0.0257 (5)0.0383 (5)0.0031 (4)0.0116 (4)0.0042 (4)
O20.0453 (6)0.0332 (5)0.0402 (6)0.0068 (4)0.0016 (4)0.0125 (4)
N10.0310 (6)0.0215 (5)0.0280 (5)0.0004 (4)0.0093 (4)0.0015 (4)
N20.0330 (6)0.0276 (5)0.0290 (6)0.0025 (4)0.0080 (4)0.0037 (4)
C10.0315 (6)0.0226 (6)0.0286 (6)0.0032 (5)0.0119 (5)0.0018 (5)
C20.0375 (7)0.0267 (6)0.0328 (7)0.0051 (5)0.0131 (6)0.0026 (5)
C30.0383 (7)0.0360 (7)0.0333 (7)0.0105 (6)0.0094 (6)0.0028 (6)
C40.0322 (7)0.0410 (8)0.0398 (8)0.0035 (6)0.0054 (6)0.0033 (6)
C50.0349 (7)0.0296 (7)0.0403 (8)0.0023 (6)0.0105 (6)0.0016 (6)
C60.0330 (7)0.0237 (6)0.0296 (7)0.0019 (5)0.0113 (5)0.0023 (5)
C70.0336 (7)0.0223 (6)0.0336 (7)0.0033 (5)0.0084 (5)0.0006 (5)
C80.0340 (7)0.0200 (6)0.0281 (6)0.0025 (5)0.0139 (5)0.0004 (5)
C90.0347 (7)0.0248 (6)0.0272 (6)0.0002 (5)0.0097 (5)0.0012 (5)
C100.0314 (7)0.0302 (6)0.0302 (7)0.0011 (5)0.0100 (5)0.0036 (5)
C110.0335 (7)0.0347 (7)0.0406 (8)0.0003 (6)0.0092 (6)0.0050 (6)
C120.0356 (7)0.0448 (8)0.0444 (8)0.0033 (6)0.0067 (6)0.0085 (7)
C130.0339 (8)0.0493 (9)0.0494 (9)0.0019 (7)0.0024 (7)0.0009 (7)
C140.0407 (8)0.0425 (8)0.0583 (10)0.0122 (7)0.0048 (7)0.0028 (7)
C150.0419 (8)0.0341 (7)0.0434 (8)0.0063 (6)0.0070 (7)0.0043 (6)
Geometric parameters (Å, º) top
O1—C81.2293 (15)C5—C61.3851 (19)
O2—C91.2148 (16)C5—H50.9500
N1—C81.3859 (15)C6—C71.5016 (18)
N1—C91.4057 (17)C7—H7A0.9900
N1—C71.4676 (16)C7—H7B0.9900
N2—C91.3556 (16)C10—C111.3921 (19)
N2—C101.4073 (17)C10—C151.3944 (19)
N2—H2N0.8800C11—C121.391 (2)
C1—C61.3865 (17)C11—H110.9500
C1—C21.3883 (18)C12—C131.377 (2)
C1—C81.4715 (18)C12—H120.9500
C2—C31.384 (2)C13—C141.380 (2)
C2—H20.9500C13—H130.9500
C3—C41.394 (2)C14—C151.383 (2)
C3—H30.9500C14—H140.9500
C4—C51.391 (2)C15—H150.9500
C4—H40.9500
C8—N1—C9128.19 (10)N1—C7—H7B111.3
C8—N1—C7112.54 (10)C6—C7—H7B111.3
C9—N1—C7118.99 (10)H7A—C7—H7B109.2
C9—N2—C10127.29 (11)O1—C8—N1125.74 (12)
C9—N2—H2N116.4O1—C8—C1128.03 (11)
C10—N2—H2N116.4N1—C8—C1106.22 (10)
C6—C1—C2122.40 (12)O2—C9—N2126.40 (12)
C6—C1—C8109.11 (11)O2—C9—N1119.71 (12)
C2—C1—C8128.47 (12)N2—C9—N1113.89 (11)
C3—C2—C1117.27 (12)C11—C10—C15119.12 (13)
C3—C2—H2121.4C11—C10—N2124.12 (12)
C1—C2—H2121.4C15—C10—N2116.75 (12)
C2—C3—C4120.69 (13)C12—C11—C10119.41 (13)
C2—C3—H3119.7C12—C11—H11120.3
C4—C3—H3119.7C10—C11—H11120.3
C5—C4—C3121.61 (13)C13—C12—C11121.24 (14)
C5—C4—H4119.2C13—C12—H12119.4
C3—C4—H4119.2C11—C12—H12119.4
C6—C5—C4117.71 (13)C12—C13—C14119.29 (14)
C6—C5—H5121.1C12—C13—H13120.4
C4—C5—H5121.1C14—C13—H13120.4
C5—C6—C1120.30 (12)C13—C14—C15120.41 (14)
C5—C6—C7130.05 (12)C13—C14—H14119.8
C1—C6—C7109.66 (11)C15—C14—H14119.8
N1—C7—C6102.34 (10)C14—C15—C10120.52 (14)
N1—C7—H7A111.3C14—C15—H15119.7
C6—C7—H7A111.3C10—C15—H15119.7
C6—C1—C2—C30.42 (18)C2—C1—C8—O12.6 (2)
C8—C1—C2—C3177.84 (12)C6—C1—C8—N11.61 (13)
C1—C2—C3—C40.79 (19)C2—C1—C8—N1176.84 (12)
C2—C3—C4—C50.1 (2)C10—N2—C9—O20.3 (2)
C3—C4—C5—C61.0 (2)C10—N2—C9—N1179.59 (11)
C4—C5—C6—C11.35 (19)C8—N1—C9—O2175.71 (12)
C4—C5—C6—C7178.64 (13)C7—N1—C9—O22.24 (17)
C2—C1—C6—C50.67 (19)C8—N1—C9—N24.20 (17)
C8—C1—C6—C5179.23 (11)C7—N1—C9—N2177.67 (10)
C2—C1—C6—C7179.32 (11)C9—N2—C10—C110.9 (2)
C8—C1—C6—C70.76 (13)C9—N2—C10—C15179.93 (12)
C8—N1—C7—C63.79 (13)C15—C10—C11—C120.3 (2)
C9—N1—C7—C6178.24 (10)N2—C10—C11—C12178.82 (13)
C5—C6—C7—N1177.34 (13)C10—C11—C12—C130.2 (2)
C1—C6—C7—N12.65 (13)C11—C12—C13—C140.8 (2)
C9—N1—C8—O13.3 (2)C12—C13—C14—C150.8 (3)
C7—N1—C8—O1177.10 (12)C13—C14—C15—C100.3 (2)
C9—N1—C8—C1177.28 (11)C11—C10—C15—C140.2 (2)
C7—N1—C8—C13.46 (13)N2—C10—C15—C14178.95 (13)
C6—C1—C8—O1178.97 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.413.3105 (17)159
C7—H7B···O2ii0.992.573.0746 (17)112
C7—H7B···N2iii0.992.603.4695 (18)147
C11—H11···O20.952.272.8833 (19)122
N2—H2N···O10.881.952.6803 (15)140
Symmetry codes: (i) x+2, y1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12N2O2
Mr252.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.905 (4), 5.619 (1), 17.161 (6)
β (°) 102.228 (17)
V3)1216.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.10 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.968, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
5034, 2768, 2119
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.02
No. of reflections2768
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.413.3105 (17)159.1
C7—H7B···O2ii0.992.573.0746 (17)111.5
C7—H7B···N2iii0.992.603.4695 (18)147.1
C11—H11···O20.952.272.8833 (19)121.5
N2—H2N···O10.881.952.6803 (15)140.0
Symmetry codes: (i) x+2, y1, z+1; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds