Download citation
Download citation
link to html
In the title compound, C22H17NO, the dihedral angles between the central benzene ring and the two terminal phenyl rings are 48.20 (4) and 49.62 (4)°, resulting in a substanti­ally twisted mol­ecular conformation. Weak C—H...π inter­actions help to consolidate the centrosymmetric crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705684X/lh2557sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705684X/lh2557Isup2.hkl
Contains datablock I

CCDC reference: 672916

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.038
  • wR factor = 0.100
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

As part of our ongoing studies of organic nonlinear optical materials derived from substituted chalcones (Harrison et al., 2007), we now report the synthesis and structure of the title compound, (I), (Fig. 1). It is centrosymmetric, therefore it does not display any second harmonic generation response.

The dihedral angle between the central (C10—C15) and terminal (C1—C6 and C17—C22) aromatic rings are 49.62 (4)° and 48.20 (4)°, respectively. The dihedral angles for the enone (C7/C8/C9/O1) fragment with respect to C1—C6 and C10—C15 are 25.47 (9)° and 24.37 (8)°, respectively. Overall, the molecule of (I) is substantially twisted.

The only possible directional interactions in (I) are weak C—H···π links (Table 1), with each of the three benzene rings accepting one such bond (Fig. 2).

Related literature top

For background, see: Harrison et al. (2007).

Cg1 is the centroid of atoms C1–C6, Cg2 is the centroid of atoms C10–C15 and Cg3 is the centroid of atoms C17–C22.

Experimental top

A solution of 10% aqueous NaOH (10 ml) and 30 ml me thanol was taken in a conical flask. Benzaldehyde (0.02 mol) and p-amino acetophenone (0.01 mol) were dissolved in 30 ml me thanol and the mixture was added to the conical flask with vigorous stirring. After stirring the solution for 90 minutes, the content were poured into a beaker containing ice cold water and allowed stand for overnight. The resulting precipitate was washed with excess of water, filtered and dried. The compound was purified by successive recrystallization from acetone. Yellow chunks of (I) were obtained by slow evaporation of an acetone solution.

Refinement top

The hydrogen atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) showing 50% displacement ellipsoids (H atoms are drawn as spheres of arbitrary radius).
[Figure 2] Fig. 2. Unit cell packing for (I) with hydrogen atoms not involved in C—H···π links omitted for clarity
(2E)-1-{4-[(1E)-Benzylideneamino]phenyl}-3-phenylprop-2-en-1-one top
Crystal data top
C22H17NOF(000) = 656
Mr = 311.37Dx = 1.249 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6120 reflections
a = 16.8172 (15) Åθ = 4.4–26.0°
b = 5.9146 (4) ŵ = 0.08 mm1
c = 16.6777 (15) ÅT = 291 K
β = 93.501 (1)°Chunk, yellow
V = 1655.8 (2) Å30.49 × 0.43 × 0.31 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
2371 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 4.4°
ω scansh = 2018
8346 measured reflectionsk = 74
3232 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.1191P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3232 reflectionsΔρmax = 0.12 e Å3
218 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (9)
Crystal data top
C22H17NOV = 1655.8 (2) Å3
Mr = 311.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8172 (15) ŵ = 0.08 mm1
b = 5.9146 (4) ÅT = 291 K
c = 16.6777 (15) Å0.49 × 0.43 × 0.31 mm
β = 93.501 (1)°
Data collection top
Bruker SMART1000 CCD
diffractometer
2371 reflections with I > 2σ(I)
8346 measured reflectionsRint = 0.037
3232 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
3232 reflectionsΔρmin = 0.12 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22678 (8)0.2767 (2)0.58028 (8)0.0475 (3)
H10.23670.41830.60300.057*
C20.16855 (8)0.1416 (3)0.60961 (9)0.0571 (4)
H20.14040.19060.65270.068*
C30.15194 (9)0.0658 (3)0.57527 (10)0.0635 (4)
H30.11230.15650.59480.076*
C40.19421 (9)0.1390 (2)0.51180 (10)0.0586 (4)
H40.18250.27860.48820.070*
C50.25364 (8)0.0068 (2)0.48311 (8)0.0494 (3)
H50.28230.05870.44080.059*
C60.27113 (7)0.2047 (2)0.51708 (7)0.0424 (3)
C70.33125 (8)0.3563 (2)0.48715 (8)0.0464 (3)
H70.32900.50540.50460.056*
C80.38872 (8)0.3101 (2)0.43830 (8)0.0466 (3)
H80.39690.16160.42240.056*
C90.43976 (8)0.4922 (2)0.40893 (8)0.0462 (3)
C100.51183 (7)0.4348 (2)0.36626 (7)0.0411 (3)
C110.55233 (8)0.2297 (2)0.37675 (8)0.0450 (3)
H110.53190.11800.40890.054*
C120.62236 (8)0.1911 (2)0.33977 (8)0.0459 (3)
H120.64930.05490.34810.055*
C130.65306 (7)0.3551 (2)0.28991 (8)0.0426 (3)
C140.61208 (8)0.5581 (2)0.27870 (8)0.0471 (3)
H140.63180.66850.24550.057*
C150.54268 (8)0.5977 (2)0.31622 (8)0.0443 (3)
H150.51610.73450.30810.053*
C160.74793 (8)0.1473 (2)0.22590 (8)0.0475 (3)
H160.71210.02750.22510.057*
C170.82613 (8)0.1113 (2)0.19330 (8)0.0458 (3)
C180.84178 (9)0.0890 (2)0.15418 (9)0.0555 (4)
H180.80340.20240.15090.067*
C190.91353 (10)0.1226 (3)0.12000 (10)0.0685 (5)
H190.92300.25660.09300.082*
C200.97104 (10)0.0432 (3)0.12605 (11)0.0746 (5)
H201.01930.02220.10260.090*
C210.95689 (10)0.2413 (3)0.16705 (12)0.0755 (5)
H210.99620.35170.17220.091*
C220.88512 (9)0.2756 (3)0.20010 (10)0.0602 (4)
H220.87590.40960.22720.072*
N10.72731 (6)0.33426 (19)0.25502 (7)0.0490 (3)
O10.42194 (6)0.69165 (17)0.41848 (7)0.0684 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0461 (7)0.0471 (8)0.0494 (8)0.0043 (6)0.0043 (6)0.0034 (6)
C20.0505 (8)0.0672 (10)0.0551 (9)0.0042 (7)0.0156 (7)0.0037 (7)
C30.0541 (9)0.0618 (10)0.0758 (11)0.0096 (8)0.0123 (8)0.0118 (9)
C40.0620 (9)0.0446 (8)0.0690 (10)0.0073 (7)0.0034 (8)0.0008 (7)
C50.0527 (8)0.0459 (8)0.0500 (8)0.0028 (7)0.0076 (6)0.0016 (6)
C60.0392 (7)0.0424 (7)0.0454 (7)0.0028 (6)0.0017 (6)0.0031 (6)
C70.0466 (7)0.0427 (7)0.0502 (8)0.0010 (6)0.0046 (6)0.0017 (6)
C80.0466 (7)0.0427 (7)0.0513 (8)0.0013 (6)0.0089 (6)0.0018 (6)
C90.0465 (7)0.0449 (8)0.0474 (8)0.0008 (6)0.0050 (6)0.0024 (6)
C100.0414 (7)0.0408 (7)0.0410 (7)0.0032 (6)0.0023 (5)0.0020 (6)
C110.0487 (8)0.0405 (7)0.0462 (7)0.0020 (6)0.0065 (6)0.0047 (6)
C120.0462 (7)0.0406 (7)0.0509 (8)0.0031 (6)0.0030 (6)0.0039 (6)
C130.0370 (7)0.0443 (7)0.0465 (7)0.0050 (6)0.0023 (5)0.0031 (6)
C140.0487 (8)0.0410 (7)0.0521 (8)0.0051 (6)0.0072 (6)0.0055 (6)
C150.0455 (7)0.0374 (7)0.0501 (7)0.0006 (6)0.0030 (6)0.0017 (6)
C160.0442 (7)0.0487 (8)0.0497 (8)0.0066 (6)0.0035 (6)0.0001 (6)
C170.0447 (7)0.0463 (8)0.0464 (7)0.0011 (6)0.0040 (6)0.0027 (6)
C180.0571 (9)0.0499 (8)0.0594 (9)0.0000 (7)0.0031 (7)0.0041 (7)
C190.0715 (11)0.0599 (10)0.0750 (11)0.0164 (9)0.0113 (9)0.0103 (8)
C200.0528 (9)0.0749 (12)0.0985 (13)0.0134 (9)0.0239 (9)0.0007 (10)
C210.0494 (9)0.0637 (10)0.1154 (15)0.0027 (8)0.0208 (9)0.0049 (10)
C220.0500 (8)0.0501 (8)0.0815 (11)0.0006 (7)0.0126 (7)0.0076 (8)
N10.0421 (6)0.0480 (7)0.0576 (7)0.0015 (5)0.0081 (5)0.0009 (6)
O10.0734 (7)0.0434 (6)0.0920 (8)0.0057 (5)0.0340 (6)0.0004 (5)
Geometric parameters (Å, º) top
C1—C21.3764 (19)C12—C131.3969 (18)
C1—C61.3945 (18)C12—H120.9300
C1—H10.9300C13—C141.3917 (18)
C2—C31.375 (2)C13—N11.4148 (16)
C2—H20.9300C14—C151.3776 (18)
C3—C41.380 (2)C14—H140.9300
C3—H30.9300C15—H150.9300
C4—C51.3774 (19)C16—N11.2648 (17)
C4—H40.9300C16—C171.4688 (18)
C5—C61.3974 (19)C16—H160.9300
C5—H50.9300C17—C181.3859 (19)
C6—C71.4618 (18)C17—C221.3881 (19)
C7—C81.3299 (18)C18—C191.380 (2)
C7—H70.9300C18—H180.9300
C8—C91.4794 (18)C19—C201.377 (2)
C8—H80.9300C19—H190.9300
C9—O11.2296 (16)C20—C211.385 (2)
C9—C101.4820 (18)C20—H200.9300
C10—C151.3952 (17)C21—C221.372 (2)
C10—C111.3972 (17)C21—H210.9300
C11—C121.3813 (18)C22—H220.9300
C11—H110.9300
C2—C1—C6121.10 (13)C11—C12—H12119.8
C2—C1—H1119.4C13—C12—H12119.8
C6—C1—H1119.4C14—C13—C12118.76 (12)
C3—C2—C1120.03 (14)C14—C13—N1117.53 (12)
C3—C2—H2120.0C12—C13—N1123.50 (12)
C1—C2—H2120.0C15—C14—C13120.79 (12)
C2—C3—C4119.88 (14)C15—C14—H14119.6
C2—C3—H3120.1C13—C14—H14119.6
C4—C3—H3120.1C14—C15—C10120.71 (12)
C5—C4—C3120.45 (14)C14—C15—H15119.6
C5—C4—H4119.8C10—C15—H15119.6
C3—C4—H4119.8N1—C16—C17122.78 (12)
C4—C5—C6120.44 (13)N1—C16—H16118.6
C4—C5—H5119.8C17—C16—H16118.6
C6—C5—H5119.8C18—C17—C22118.79 (13)
C1—C6—C5118.07 (12)C18—C17—C16119.88 (13)
C1—C6—C7118.95 (12)C22—C17—C16121.33 (13)
C5—C6—C7122.93 (12)C19—C18—C17120.89 (14)
C8—C7—C6128.81 (13)C19—C18—H18119.6
C8—C7—H7115.6C17—C18—H18119.6
C6—C7—H7115.6C20—C19—C18119.70 (15)
C7—C8—C9120.74 (12)C20—C19—H19120.1
C7—C8—H8119.6C18—C19—H19120.1
C9—C8—H8119.6C19—C20—C21119.85 (15)
O1—C9—C8120.31 (12)C19—C20—H20120.1
O1—C9—C10119.66 (12)C21—C20—H20120.1
C8—C9—C10120.02 (11)C22—C21—C20120.35 (16)
C15—C10—C11118.57 (12)C22—C21—H21119.8
C15—C10—C9118.29 (12)C20—C21—H21119.8
C11—C10—C9123.07 (12)C21—C22—C17120.38 (15)
C12—C11—C10120.66 (12)C21—C22—H22119.8
C12—C11—H11119.7C17—C22—H22119.8
C10—C11—H11119.7C16—N1—C13120.24 (12)
C11—C12—C13120.48 (12)
C6—C1—C2—C31.6 (2)C11—C12—C13—C140.41 (18)
C1—C2—C3—C40.5 (2)C11—C12—C13—N1175.06 (12)
C2—C3—C4—C50.7 (2)C12—C13—C14—C150.27 (19)
C3—C4—C5—C61.0 (2)N1—C13—C14—C15174.70 (11)
C2—C1—C6—C51.35 (19)C13—C14—C15—C100.09 (19)
C2—C1—C6—C7178.86 (12)C11—C10—C15—C140.75 (18)
C4—C5—C6—C10.06 (19)C9—C10—C15—C14176.29 (11)
C4—C5—C6—C7177.47 (12)N1—C16—C17—C18172.78 (13)
C1—C6—C7—C8167.12 (13)N1—C16—C17—C226.6 (2)
C5—C6—C7—C815.5 (2)C22—C17—C18—C192.3 (2)
C6—C7—C8—C9174.54 (12)C16—C17—C18—C19177.14 (13)
C7—C8—C9—O111.7 (2)C17—C18—C19—C201.2 (2)
C7—C8—C9—C10169.53 (12)C18—C19—C20—C210.7 (3)
O1—C9—C10—C1520.47 (18)C19—C20—C21—C221.5 (3)
C8—C9—C10—C15158.27 (12)C20—C21—C22—C170.5 (3)
O1—C9—C10—C11156.43 (13)C18—C17—C22—C211.4 (2)
C8—C9—C10—C1124.84 (18)C16—C17—C22—C21177.99 (14)
C15—C10—C11—C121.43 (18)C17—C16—N1—C13176.22 (11)
C9—C10—C11—C12175.46 (11)C14—C13—N1—C16143.44 (13)
C10—C11—C12—C131.27 (19)C12—C13—N1—C1641.85 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.893.603 (3)135
C12—H12···Cg1ii0.932.943.626 (2)132
C15—H15···Cg2iii0.932.893.559 (2)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H17NO
Mr311.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)16.8172 (15), 5.9146 (4), 16.6777 (15)
β (°) 93.501 (1)
V3)1655.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.43 × 0.31
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8346, 3232, 2371
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.02
No. of reflections3232
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg3i0.932.893.603 (3)135
C12—H12···Cg1ii0.932.943.626 (2)132
C15—H15···Cg2iii0.932.893.559 (2)130
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds