Download citation
Download citation
link to html
The diazide platinum(II) complex, [Pt(N3)2(PPh3)2], reacts with 4-FC6H4CN under microwave irradiation to give the corresponding neutral title bis­(tetra­zolate) complex trans-[Pt(N4CR)2(PPh3)2] or [Pt(C7H4FN4)2(C18H15P)2]. The PtII atom lies on a crystallographic inversion centre and is coordinated by two N atoms and two P atoms in a slightly distorted square-planar environment. The unique tetra­zolate ring is essentially planar and the corresponding C[pdbond]N and N[pdbond]N bond distances lie in the range 1.317 (3)–1.349 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047617/lh2513sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047617/lh2513Isup2.hkl
Contains datablock I

CCDC reference: 667113

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.020
  • wR factor = 0.047
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Pt1 - N11 .. 5.62 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Pt1 (9) 2.38
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Among heterocyles tetrazoles are an important species as they find use in e.g. material science, pharmaceutical chemistry and as precursors for various types of nitrogen containing heterocyles (Himo et al., 2003). Cycloaddition between an organic azide (RN3) and an organic nitrile (RCN) or isonitrile (RNC) provides tetrazoles, though in harsh conditions (Huisgen, 1968). However, the formation of substituted tetrazoles has been achieved by using a transition metal coordinated azide and free organonitriles (Kukushkin & Pombeiro, 2002) or isonitriles (Kim et al., 2002). Among several transition metals, platinum(II) has been used (Fehlhammer et al. 1983). The existence of several possible isomers for cycloadded compounds in solution was reported by them but the crystal structures were not determined. Herein we report the crystal structure of the tetrazolato complex trans-[Pt(5-p-fluorophenyltetrazolato)2(PPh3)2] (I).

Complex (I) (Fig. 1) is square-planar with the platinum(II) ion in a special position and coordinated to two N2 atoms of the tetrazol moieties and two phosphorus of the phosphines. The tetrazolato ring is nearly planar with bond lengths in the range 1.317 (3) - 1.349 (3) Å, which is similar to those of complexes trans-[Pt(N4CR)2(PPh3)2] (R = Ph or 4-ClC6H4), cis-[Pt(N4CPh)2(2,2-bipy)] and trans-[Pt(C N)(ethyltetrazolato) (PPh3)2)] (Mukhopadhyay et al., 2007). All other bond lengths are normal (Allen et al., 1987; Orpen et al., 1989).

Related literature top

For related literature, see: Allen et al. (1987); Himo et al. (2003); Huisgen (1968); Kim et al. (2002); Kukushkin & Pombeiro (2002); Mukhopadhyay et al. (2007); Orpen et al. (1989).

For related literature, see: Fehlhammer et al. (1983); LePage (1987).

Experimental top

The title complex was prepared by dissolving cis-[Pt(N3)2(PPh3)2] (0.080 g, 0.10 mmol) and 4-fluorobenzonitrile (0.137 g, 1.00 mmol) in 5 ml of DMF and irradiating the solution with focused microwave for 1 h at 373 K. The product precipitated as a white solid which was washed several times with diethyl ether and dried in vacuo. Single crystals were grown by keeping the mother liquid at 277 K for several days. IR (KBr pellet): 1637 ν(C C). Anal. Calc. for Pt50H38N8P2F2:C, 57.41; H, 3.63; N, 10.71%. Found: C,57.12; H 3.67; N10.59%. Characterization by NMR spectroscopy was not possible due to the very poor solubility of the complex in common solvents.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.95 Å and were included in the riding-motion approximation with Uiso(H) = 1.2Ueq(C).

Structure description top

Among heterocyles tetrazoles are an important species as they find use in e.g. material science, pharmaceutical chemistry and as precursors for various types of nitrogen containing heterocyles (Himo et al., 2003). Cycloaddition between an organic azide (RN3) and an organic nitrile (RCN) or isonitrile (RNC) provides tetrazoles, though in harsh conditions (Huisgen, 1968). However, the formation of substituted tetrazoles has been achieved by using a transition metal coordinated azide and free organonitriles (Kukushkin & Pombeiro, 2002) or isonitriles (Kim et al., 2002). Among several transition metals, platinum(II) has been used (Fehlhammer et al. 1983). The existence of several possible isomers for cycloadded compounds in solution was reported by them but the crystal structures were not determined. Herein we report the crystal structure of the tetrazolato complex trans-[Pt(5-p-fluorophenyltetrazolato)2(PPh3)2] (I).

Complex (I) (Fig. 1) is square-planar with the platinum(II) ion in a special position and coordinated to two N2 atoms of the tetrazol moieties and two phosphorus of the phosphines. The tetrazolato ring is nearly planar with bond lengths in the range 1.317 (3) - 1.349 (3) Å, which is similar to those of complexes trans-[Pt(N4CR)2(PPh3)2] (R = Ph or 4-ClC6H4), cis-[Pt(N4CPh)2(2,2-bipy)] and trans-[Pt(C N)(ethyltetrazolato) (PPh3)2)] (Mukhopadhyay et al., 2007). All other bond lengths are normal (Allen et al., 1987; Orpen et al., 1989).

For related literature, see: Allen et al. (1987); Himo et al. (2003); Huisgen (1968); Kim et al. (2002); Kukushkin & Pombeiro (2002); Mukhopadhyay et al. (2007); Orpen et al. (1989).

For related literature, see: Fehlhammer et al. (1983); LePage (1987).

Computing details top

Data collection: APEX2 not SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (50% probability displacement ellipsoids)
trans-Bis[5-(4-fluorophenyl)tetrazolato]bis(triphenylphosphine)platinum(II) top
Crystal data top
[Pt(C7H4FN4)2(C18H15P)2]F(000) = 1040
Mr = 1045.91Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 11.9747 (10) ÅCell parameters from 9539 reflections
b = 9.5514 (8) Åθ = 2.4–28.2°
c = 18.8830 (18) ŵ = 3.41 mm1
β = 98.125 (5)°T = 150 K
V = 2138.1 (3) Å3Prism, colourless
Z = 20.1 × 0.07 × 0.05 mm
Data collection top
Bruker Kappa-APEXII
diffractometer
4253 reflections with I > 2σ(I)
φ and ω scansRint = 0.064
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.4°, θmin = 2.4°
Tmin = 0.727, Tmax = 0.848h = 1515
60325 measured reflectionsk = 1212
5330 independent reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.8432P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.59 e Å3
5330 reflectionsΔρmin = 0.46 e Å3
286 parameters
Crystal data top
[Pt(C7H4FN4)2(C18H15P)2]V = 2138.1 (3) Å3
Mr = 1045.91Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.9747 (10) ŵ = 3.41 mm1
b = 9.5514 (8) ÅT = 150 K
c = 18.8830 (18) Å0.1 × 0.07 × 0.05 mm
β = 98.125 (5)°
Data collection top
Bruker Kappa-APEXII
diffractometer
5330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4253 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.848Rint = 0.064
60325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
5330 reflectionsΔρmin = 0.46 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25933 (19)0.8162 (2)0.12471 (12)0.0212 (5)
C20.35904 (19)0.7248 (2)0.13425 (13)0.0236 (5)
C30.3966 (2)0.6622 (2)0.20023 (13)0.0267 (5)
H30.35790.67940.23990.032*
C40.4899 (2)0.5751 (3)0.20797 (14)0.0316 (6)
H40.51610.53220.25260.038*
C50.5436 (2)0.5523 (3)0.14959 (16)0.0313 (6)
C60.5094 (2)0.6118 (3)0.08396 (15)0.0334 (6)
H60.54890.59420.04460.04*
C70.4163 (2)0.6976 (3)0.07671 (14)0.0308 (6)
H70.39070.73890.03160.037*
C1010.09454 (18)0.6805 (2)0.07073 (12)0.0191 (4)
C1020.1385 (2)0.5590 (2)0.03659 (14)0.0300 (5)
H1020.19030.56510.00630.036*
C1030.1061 (2)0.4285 (2)0.06565 (15)0.0364 (6)
H1030.13560.34570.04210.044*
C1040.0329 (2)0.4187 (2)0.12727 (14)0.0306 (6)
H1040.01310.32920.14720.037*
C1050.0133 (2)0.5388 (3)0.16155 (15)0.0297 (6)
H1050.06640.53150.20380.036*
C1060.01898 (19)0.6690 (2)0.13330 (13)0.0247 (5)
H1060.0110.75120.15710.03*
C1110.25426 (18)0.8254 (2)0.03436 (11)0.0182 (4)
C1120.36433 (19)0.8649 (2)0.02846 (13)0.0268 (5)
H1120.38070.90860.01410.032*
C1130.4500 (2)0.8407 (3)0.08437 (14)0.0327 (6)
H1130.5250.86860.08030.039*
C1140.4269 (2)0.7762 (3)0.14607 (13)0.0305 (6)
H1140.48610.75880.18410.037*
C1150.3176 (2)0.7367 (3)0.15279 (14)0.0306 (6)
H1150.30170.69190.19520.037*
C1160.2319 (2)0.7629 (2)0.09746 (13)0.0245 (5)
H1160.15660.7380.10250.029*
C1210.20093 (17)0.9337 (2)0.10834 (11)0.0172 (4)
C1220.19352 (19)1.0780 (2)0.11778 (12)0.0223 (5)
H1220.15051.13210.08920.027*
C1230.2485 (2)1.1434 (3)0.16862 (13)0.0279 (5)
H1230.24291.2420.17480.034*
C1240.3111 (2)1.0653 (3)0.21010 (13)0.0303 (6)
H1240.34791.11010.24530.036*
C1250.3206 (2)0.9212 (3)0.20067 (13)0.0296 (6)
H1250.3650.86790.22870.036*
C1260.26518 (19)0.8557 (2)0.15023 (12)0.0235 (5)
H1260.2710.75710.14410.028*
N10.19737 (15)0.83754 (19)0.06116 (10)0.0203 (4)
N110.11799 (15)0.92373 (18)0.07663 (9)0.0176 (4)
N120.12859 (17)0.9569 (2)0.14495 (11)0.0240 (4)
N130.21954 (16)0.8883 (2)0.17724 (10)0.0252 (4)
F10.63453 (14)0.46572 (17)0.15627 (11)0.0472 (5)
P10.13779 (5)0.85416 (5)0.03686 (3)0.01532 (11)
Pt10100.01374 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0218 (11)0.0226 (11)0.0183 (11)0.0007 (9)0.0006 (9)0.0035 (9)
C20.0208 (12)0.0250 (11)0.0236 (12)0.0002 (9)0.0022 (10)0.0038 (9)
C30.0259 (12)0.0290 (12)0.0237 (13)0.0007 (10)0.0015 (10)0.0031 (10)
C40.0300 (13)0.0305 (14)0.0301 (14)0.0017 (11)0.0096 (11)0.0063 (11)
C50.0200 (12)0.0243 (11)0.0468 (17)0.0027 (10)0.0050 (12)0.0020 (12)
C60.0273 (13)0.0386 (15)0.0348 (15)0.0038 (11)0.0064 (11)0.0008 (12)
C70.0253 (13)0.0407 (14)0.0256 (13)0.0055 (11)0.0013 (10)0.0050 (11)
C1010.0201 (11)0.0170 (10)0.0216 (11)0.0006 (8)0.0079 (9)0.0024 (8)
C1020.0405 (15)0.0191 (11)0.0295 (14)0.0023 (11)0.0018 (11)0.0002 (11)
C1030.0542 (18)0.0150 (12)0.0407 (16)0.0018 (11)0.0096 (14)0.0001 (11)
C1040.0385 (15)0.0185 (12)0.0381 (15)0.0070 (10)0.0168 (12)0.0058 (10)
C1050.0276 (13)0.0306 (12)0.0315 (14)0.0041 (10)0.0064 (11)0.0099 (10)
C1060.0258 (12)0.0204 (11)0.0285 (13)0.0017 (9)0.0054 (10)0.0038 (9)
C1110.0199 (11)0.0170 (10)0.0176 (11)0.0038 (8)0.0015 (9)0.0020 (8)
C1120.0234 (12)0.0337 (12)0.0232 (13)0.0016 (10)0.0028 (10)0.0030 (10)
C1130.0220 (12)0.0446 (15)0.0299 (14)0.0033 (11)0.0016 (11)0.0009 (12)
C1140.0303 (14)0.0347 (13)0.0237 (13)0.0065 (11)0.0058 (11)0.0001 (10)
C1150.0378 (15)0.0323 (13)0.0221 (13)0.0071 (11)0.0056 (11)0.0067 (10)
C1160.0222 (12)0.0288 (12)0.0231 (12)0.0023 (9)0.0056 (10)0.0028 (10)
C1210.0155 (10)0.0204 (11)0.0152 (11)0.0009 (8)0.0008 (8)0.0001 (8)
C1220.0252 (12)0.0196 (11)0.0222 (12)0.0003 (9)0.0042 (10)0.0003 (9)
C1230.0298 (13)0.0270 (12)0.0263 (13)0.0060 (10)0.0011 (11)0.0089 (10)
C1240.0260 (13)0.0456 (15)0.0197 (13)0.0134 (11)0.0046 (10)0.0041 (11)
C1250.0260 (13)0.0402 (15)0.0240 (13)0.0044 (11)0.0080 (11)0.0077 (11)
C1260.0227 (11)0.0256 (11)0.0230 (12)0.0004 (9)0.0057 (10)0.0017 (9)
N10.0202 (9)0.0221 (9)0.0185 (10)0.0035 (7)0.0022 (8)0.0037 (7)
N110.0186 (9)0.0172 (9)0.0174 (9)0.0025 (7)0.0039 (7)0.0026 (7)
N120.0254 (11)0.0264 (9)0.0200 (10)0.0024 (8)0.0023 (9)0.0024 (8)
N130.0257 (10)0.0294 (10)0.0196 (10)0.0024 (8)0.0000 (8)0.0035 (8)
F10.0299 (9)0.0437 (9)0.0650 (12)0.0160 (7)0.0039 (8)0.0021 (8)
P10.0159 (3)0.0147 (2)0.0155 (3)0.0013 (2)0.0032 (2)0.0006 (2)
Pt10.01427 (6)0.01345 (5)0.01367 (6)0.00017 (5)0.00250 (4)0.00131 (5)
Geometric parameters (Å, º) top
C1—N11.334 (3)C112—C1131.384 (3)
C1—N131.349 (3)C112—H1120.95
C1—C21.469 (3)C113—C1141.380 (3)
C2—C71.389 (3)C113—H1130.95
C2—C31.398 (3)C114—C1151.385 (4)
C3—C41.384 (3)C114—H1140.95
C3—H30.95C115—C1161.380 (3)
C4—C51.370 (4)C115—H1150.95
C4—H40.95C116—H1160.95
C5—F11.359 (3)C121—C1221.391 (3)
C5—C61.372 (4)C121—C1261.395 (3)
C6—C71.374 (3)C121—P11.805 (2)
C6—H60.95C122—C1231.387 (3)
C7—H70.95C122—H1220.95
C101—C1061.387 (3)C123—C1241.378 (4)
C101—C1021.394 (3)C123—H1230.95
C101—P11.826 (2)C124—C1251.391 (4)
C102—C1031.395 (3)C124—H1240.95
C102—H1020.95C125—C1261.385 (3)
C103—C1041.357 (4)C125—H1250.95
C103—H1030.95C126—H1260.95
C104—C1051.393 (4)N1—N111.321 (2)
C104—H1040.95N11—N121.317 (3)
C105—C1061.386 (3)N11—Pt12.0106 (18)
C105—H1050.95N12—N131.341 (3)
C106—H1060.95P1—Pt12.3392 (5)
C111—C1121.391 (3)Pt1—N11i2.0106 (18)
C111—C1161.392 (3)Pt1—P1i2.3392 (5)
C111—P11.816 (2)
N1—C1—N13111.95 (19)C112—C113—H113119.9
N1—C1—C2122.7 (2)C113—C114—C115120.3 (2)
N13—C1—C2125.4 (2)C113—C114—H114119.9
C7—C2—C3119.0 (2)C115—C114—H114119.9
C7—C2—C1119.9 (2)C116—C115—C114119.5 (2)
C3—C2—C1121.1 (2)C116—C115—H115120.3
C4—C3—C2120.3 (2)C114—C115—H115120.3
C4—C3—H3119.8C115—C116—C111120.9 (2)
C2—C3—H3119.8C115—C116—H116119.5
C5—C4—C3118.3 (2)C111—C116—H116119.5
C5—C4—H4120.8C122—C121—C126119.1 (2)
C3—C4—H4120.8C122—C121—P1119.13 (16)
F1—C5—C4118.9 (2)C126—C121—P1121.49 (17)
F1—C5—C6118.0 (3)C123—C122—C121120.5 (2)
C4—C5—C6123.1 (2)C123—C122—H122119.8
C5—C6—C7118.1 (2)C121—C122—H122119.8
C5—C6—H6120.9C124—C123—C122120.0 (2)
C7—C6—H6120.9C124—C123—H123120
C6—C7—C2121.1 (2)C122—C123—H123120
C6—C7—H7119.4C123—C124—C125120.3 (2)
C2—C7—H7119.4C123—C124—H124119.9
C106—C101—C102119.1 (2)C125—C124—H124119.9
C106—C101—P1119.28 (17)C126—C125—C124119.8 (2)
C102—C101—P1121.63 (18)C126—C125—H125120.1
C101—C102—C103119.8 (2)C124—C125—H125120.1
C101—C102—H102120.1C125—C126—C121120.3 (2)
C103—C102—H102120.1C125—C126—H126119.8
C104—C103—C102120.6 (2)C121—C126—H126119.8
C104—C103—H103119.7N11—N1—C1102.86 (18)
C102—C103—H103119.7N12—N11—N1113.18 (18)
C103—C104—C105120.5 (2)N12—N11—Pt1125.35 (14)
C103—C104—H104119.7N1—N11—Pt1121.41 (14)
C105—C104—H104119.7N11—N12—N13106.71 (18)
C106—C105—C104119.3 (3)N12—N13—C1105.29 (18)
C106—C105—H105120.4C121—P1—C111104.97 (10)
C104—C105—H105120.4C121—P1—C101104.38 (10)
C105—C106—C101120.8 (2)C111—P1—C101105.78 (10)
C105—C106—H106119.6C121—P1—Pt1111.07 (7)
C101—C106—H106119.6C111—P1—Pt1111.71 (7)
C112—C111—C116118.9 (2)C101—P1—Pt1117.91 (7)
C112—C111—P1122.48 (17)N11—Pt1—N11i180
C116—C111—P1118.58 (17)N11—Pt1—P191.35 (5)
C113—C112—C111120.2 (2)N11i—Pt1—P188.65 (5)
C113—C112—H112119.9N11—Pt1—P1i88.65 (5)
C111—C112—H112119.9N11i—Pt1—P1i91.35 (5)
C114—C113—C112120.2 (2)P1—Pt1—P1i180.00 (3)
C114—C113—H113119.9
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Pt(C7H4FN4)2(C18H15P)2]
Mr1045.91
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)11.9747 (10), 9.5514 (8), 18.8830 (18)
β (°) 98.125 (5)
V3)2138.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.41
Crystal size (mm)0.1 × 0.07 × 0.05
Data collection
DiffractometerBruker Kappa-APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.727, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
60325, 5330, 4253
Rint0.064
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.047, 1.01
No. of reflections5330
No. of parameters286
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.46

Computer programs: APEX2 not SMART (Bruker, 2006), SAINT (Bruker, 2000), SAINT, WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
C1—N11.334 (3)N11—N121.317 (3)
C1—N131.349 (3)N12—N131.341 (3)
N1—N111.321 (2)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds