Download citation
Download citation
link to html
In the title coordination polymer, [Ni(C8H6ClO3S)2(C10H8N2)(H2O)2]n, the NiII ion exists in an octa­hedral coordination environment formed by two carboxylate O atoms from two 4-chloro­phenyl­sulfinylacetate ligands, two N atoms from two bipyridine ligands and two water mol­ecules. The NiII ion lies on a twofold rotation axis. Bridging by the bipyridine ligand leads to a linear chain structure; inter­molecular O—H...O hydrogen bonds link the chains into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029832/lh2434sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029832/lh2434Isup2.hkl
Contains datablock I

CCDC reference: 654805

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.031
  • wR factor = 0.071
  • Data-to-parameter ratio = 16.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 1.05 PLAT480_ALERT_4_C Long H...A H-Bond Reported H11 .. S1 .. 2.98 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 3148 Count of symmetry unique reflns 1766 Completeness (_total/calc) 178.26% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1382 Fraction of Friedel pairs measured 0.783 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, we reported the crystal structures of diaquabis[(4-nitrophenylsulfinylacetato)(4,4'-bipyridine)zinc (Hou et al. 2007a), diaquabis[(4-chlorophenylsulfinylacetato)(4,4'-bipyridine)cobalt (Hou et al. 2007b) and diaquabis[(4-chlorophenylsulfinylacetato)(4,4'-bipyridine)zinc (Hou et al. 2007c); this paper reports the isostructural nickel compound.

In the title compound the nickel bis(4-chlorophenylsulfinylacetate) moiety is bridged by 4,4'-bipyridine into a linear chain (Fig. 1). The NiII atom shows an all trans octahedral coordination. The chains are connected into a three dimensional network via intermolecular O—H···O hydrogen bonds (Fig. 2).

Related literature top

For isostructural compounds, see: Hou, Yu et al. (2007a,b); Hou et al. (2007). For related literature, see: Nobles & Thompson (1965).

Experimental top

(4-Chlorophenylsulfanyl)acetic acid was prepared by the nucleophilic reaction of chloroacetic acid and 4-chlorothiophenol under basic conditions. It was then oxidized using 30% aqueous hydrogen peroxide in acetic anhydride solution to produce 4-chlorophenylsulfinyl acetic acid (Nobles & Thompson, 1965). Nickel nitrate hexahydrate (0.592 g, 2 mmol), 4,4'-bipyridine (0.312 g, 2 mmol) and 4-chlorophenylsulfinyl acetic acid (0.437 g, 2 mmol) were dissolved in water and the pH was adjusted to 6 with 0.01 M sodium hydroxide; green crystals separated from the filtered solution after several days.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C) or C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

The Flack parameter was refined from 1382 Friedel pairs.

Structure description top

Recently, we reported the crystal structures of diaquabis[(4-nitrophenylsulfinylacetato)(4,4'-bipyridine)zinc (Hou et al. 2007a), diaquabis[(4-chlorophenylsulfinylacetato)(4,4'-bipyridine)cobalt (Hou et al. 2007b) and diaquabis[(4-chlorophenylsulfinylacetato)(4,4'-bipyridine)zinc (Hou et al. 2007c); this paper reports the isostructural nickel compound.

In the title compound the nickel bis(4-chlorophenylsulfinylacetate) moiety is bridged by 4,4'-bipyridine into a linear chain (Fig. 1). The NiII atom shows an all trans octahedral coordination. The chains are connected into a three dimensional network via intermolecular O—H···O hydrogen bonds (Fig. 2).

For isostructural compounds, see: Hou, Yu et al. (2007a,b); Hou et al. (2007). For related literature, see: Nobles & Thompson (1965).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title complex, with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as spheres of arbitrary radii. [Symmetry codes: (I) -x, -y + 2, z; (II) x, y,z - 1; (III) -x, -y + 2, z - 1, (IV) x, y, z + 1].
[Figure 2] Fig. 2. A partial packing plot of (I). Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted.
catena-Poly[[diaquabis[(4-chlorophenylsulfinyl)acetato- κO]nickel(II)]-µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Ni(C8H6ClO3S)2(C10H8N2)(H2O)2]F(000) = 2816
Mr = 686.20Dx = 1.554 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 13082 reflections
a = 20.269 (4) Åθ = 6.3–54.9°
b = 25.503 (6) ŵ = 1.04 mm1
c = 11.345 (11) ÅT = 293 K
V = 5865 (6) Å3Block, green
Z = 80.36 × 0.34 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3148 independent reflections
Radiation source: fine-focus sealed tube2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2526
Tmin = 0.699, Tmax = 0.896k = 3332
13880 measured reflectionsl = 1214
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0337P)2 + 3.8506P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3148 reflectionsΔρmax = 0.41 e Å3
188 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 1382 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (12)
Crystal data top
[Ni(C8H6ClO3S)2(C10H8N2)(H2O)2]V = 5865 (6) Å3
Mr = 686.20Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 20.269 (4) ŵ = 1.04 mm1
b = 25.503 (6) ÅT = 293 K
c = 11.345 (11) Å0.36 × 0.34 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3148 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2922 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.896Rint = 0.046
13880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.41 e Å3
S = 1.05Δρmin = 0.22 e Å3
3148 reflectionsAbsolute structure: Flack (1983), 1382 Friedel pairs
188 parametersAbsolute structure parameter: 0.009 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02738 (12)0.27432 (10)1.0801 (2)0.0288 (5)
C20.06467 (13)0.29286 (11)1.1730 (3)0.0384 (6)
H10.06100.27761.24710.046*
C30.10721 (14)0.33408 (11)1.1552 (3)0.0442 (7)
H20.13360.34631.21630.053*
C40.11011 (14)0.35688 (12)1.0454 (3)0.0467 (7)
C50.07312 (17)0.33870 (14)0.9523 (3)0.0515 (8)
H30.07610.35440.87850.062*
C60.03164 (16)0.29673 (13)0.9708 (3)0.0461 (7)
H40.00650.28360.90890.055*
C70.02904 (12)0.17011 (9)1.1228 (3)0.0347 (5)
H50.05680.16821.05320.042*
H60.05700.17751.19010.042*
C80.00613 (12)0.11761 (10)1.1409 (2)0.0310 (6)
C90.02268 (14)0.04086 (11)0.8755 (3)0.0384 (6)
H70.03950.06940.91680.046*
C100.02241 (16)0.04277 (12)0.7538 (3)0.0423 (7)
H80.03720.07260.71480.051*
C110.00000.00000.6903 (3)0.0301 (9)
C120.00000.00000.5593 (4)0.0353 (10)
C130.03408 (15)0.03756 (12)0.4951 (2)0.0391 (7)
H90.05710.06390.53390.047*
C140.03372 (13)0.03575 (11)0.3736 (3)0.0369 (6)
H100.05820.06070.33280.044*
Cl10.16225 (6)0.41043 (5)1.02446 (13)0.0889 (4)
N10.00000.00000.9364 (2)0.0260 (7)
N20.00000.00000.3110 (3)0.0307 (8)
Ni10.00000.00001.12362 (3)0.02230 (10)
O10.06260 (11)0.21128 (8)0.9883 (2)0.0528 (6)
O20.06426 (9)0.11872 (8)1.1772 (2)0.0493 (5)
O30.02798 (8)0.07784 (6)1.11784 (15)0.0296 (4)
O40.09886 (8)0.02184 (7)1.12220 (16)0.0332 (4)
H120.10000.05341.14640.050*
H110.12480.00791.17200.050*
S10.03045 (3)0.22185 (2)1.10534 (6)0.03402 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (12)0.0244 (12)0.0304 (15)0.0017 (9)0.0044 (10)0.0017 (10)
C20.0474 (15)0.0344 (15)0.0333 (14)0.0034 (12)0.0117 (12)0.0059 (12)
C30.0444 (15)0.0378 (16)0.0503 (18)0.0059 (12)0.0150 (13)0.0006 (13)
C40.0391 (14)0.0369 (16)0.064 (2)0.0068 (12)0.0044 (13)0.0072 (14)
C50.063 (2)0.055 (2)0.0371 (17)0.0043 (16)0.0001 (14)0.0189 (15)
C60.0570 (17)0.0492 (18)0.0322 (16)0.0065 (14)0.0107 (13)0.0028 (13)
C70.0342 (11)0.0251 (12)0.0447 (16)0.0017 (9)0.0025 (12)0.0017 (11)
C80.0391 (13)0.0285 (12)0.0256 (17)0.0012 (10)0.0007 (11)0.0022 (10)
C90.0581 (16)0.0359 (14)0.0213 (14)0.0107 (12)0.0051 (12)0.0039 (11)
C100.0677 (18)0.0350 (16)0.0242 (16)0.0131 (14)0.0077 (13)0.0003 (11)
C110.037 (2)0.040 (3)0.013 (2)0.0003 (15)0.0000.000
C120.046 (2)0.037 (3)0.022 (2)0.0065 (17)0.0000.000
C130.0530 (16)0.0443 (18)0.0200 (14)0.0092 (13)0.0037 (12)0.0026 (12)
C140.0452 (14)0.0401 (16)0.0255 (15)0.0097 (11)0.0001 (12)0.0037 (12)
Cl10.0792 (6)0.0642 (7)0.1232 (11)0.0367 (5)0.0061 (7)0.0231 (7)
N10.0327 (17)0.0333 (18)0.0121 (16)0.0014 (12)0.0000.000
N20.0354 (18)0.0289 (19)0.028 (2)0.0015 (12)0.0000.000
Ni10.03055 (18)0.02204 (19)0.01430 (17)0.00089 (18)0.0000.000
O10.0502 (11)0.0421 (12)0.0660 (15)0.0015 (9)0.0291 (11)0.0030 (11)
O20.0486 (11)0.0303 (10)0.0691 (15)0.0039 (9)0.0222 (10)0.0093 (10)
O30.0389 (8)0.0236 (8)0.0265 (9)0.0012 (6)0.0005 (7)0.0003 (7)
O40.0350 (8)0.0331 (9)0.0314 (9)0.0026 (7)0.0037 (8)0.0024 (9)
S10.0320 (3)0.0254 (3)0.0446 (4)0.0018 (2)0.0021 (3)0.0017 (3)
Geometric parameters (Å, º) top
C1—C61.369 (4)C10—H80.9300
C1—C21.380 (4)C11—C10i1.384 (4)
C1—S11.802 (3)C11—C121.486 (4)
C2—C31.375 (4)C12—C13i1.388 (4)
C2—H10.9300C12—C131.388 (4)
C3—C41.375 (5)C13—C141.378 (4)
C3—H20.9300C13—H90.9300
C4—C51.376 (5)C14—N21.343 (3)
C4—Cl11.743 (3)C14—H100.9300
C5—C61.377 (4)N1—C9i1.332 (3)
C5—H30.9300N1—Ni12.124 (3)
C6—H40.9300N2—C14i1.343 (3)
C7—C81.531 (3)N2—Ni1ii2.125 (4)
C7—S11.799 (2)Ni1—O3i2.0657 (16)
C7—H50.9700Ni1—O32.0657 (17)
C7—H60.9700Ni1—O42.0799 (16)
C8—O21.249 (3)Ni1—O4i2.0799 (16)
C8—O31.255 (3)Ni1—N2iii2.125 (4)
C9—N11.332 (3)O1—S11.503 (2)
C9—C101.381 (5)O4—H120.8501
C9—H70.9300O4—H110.8500
C10—C111.384 (4)
C6—C1—C2120.9 (3)C13i—C12—C11121.7 (2)
C6—C1—S1119.7 (2)C13—C12—C11121.7 (2)
C2—C1—S1119.3 (2)C14—C13—C12119.9 (3)
C3—C2—C1119.6 (3)C14—C13—H9120.0
C3—C2—H1120.2C12—C13—H9120.0
C1—C2—H1120.2N2—C14—C13123.7 (3)
C2—C3—C4118.9 (3)N2—C14—H10118.2
C2—C3—H2120.6C13—C14—H10118.2
C4—C3—H2120.6C9—N1—C9i117.5 (3)
C3—C4—C5122.0 (3)C9—N1—Ni1121.27 (17)
C3—C4—Cl1118.7 (3)C9i—N1—Ni1121.27 (17)
C5—C4—Cl1119.3 (3)C14—N2—C14i116.1 (4)
C4—C5—C6118.5 (3)C14—N2—Ni1ii121.96 (18)
C4—C5—H3120.7C14i—N2—Ni1ii121.96 (18)
C6—C5—H3120.7O3i—Ni1—O3176.36 (10)
C1—C6—C5120.1 (3)O3i—Ni1—O490.39 (7)
C1—C6—H4120.0O3—Ni1—O489.58 (7)
C5—C6—H4120.0O3i—Ni1—O4i89.58 (7)
C8—C7—S1110.14 (17)O3—Ni1—O4i90.39 (7)
C8—C7—H5109.6O4—Ni1—O4i179.11 (10)
S1—C7—H5109.6O3i—Ni1—N188.18 (5)
C8—C7—H6109.6O3—Ni1—N188.18 (5)
S1—C7—H6109.6O4—Ni1—N189.56 (5)
H5—C7—H6108.1O4i—Ni1—N189.56 (5)
O2—C8—O3127.4 (2)O3i—Ni1—N2iii91.82 (5)
O2—C8—C7117.6 (2)O3—Ni1—N2iii91.82 (5)
O3—C8—C7115.0 (2)O4—Ni1—N2iii90.44 (5)
N1—C9—C10123.0 (3)O4i—Ni1—N2iii90.44 (5)
N1—C9—H7118.5N1—Ni1—N2iii180.000 (1)
C10—C9—H7118.5C8—O3—Ni1128.23 (15)
C9—C10—C11119.6 (3)Ni1—O4—H12106.1
C9—C10—H8120.2Ni1—O4—H11118.7
C11—C10—H8120.2H12—O4—H1199.4
C10—C11—C10i117.3 (4)O1—S1—C7104.83 (13)
C10—C11—C12121.4 (2)O1—S1—C1105.96 (13)
C10i—C11—C12121.4 (2)C7—S1—C197.25 (11)
C13i—C12—C13116.6 (4)
Symmetry codes: (i) x, y, z; (ii) x, y, z1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H11···S1iv0.852.983.822 (2)173
O4—H11···O1iv0.851.892.709 (3)160
O4—H12···O2i0.851.852.643 (3)154
Symmetry codes: (i) x, y, z; (iv) x+1/4, y+1/4, z+1/4.

Experimental details

Crystal data
Chemical formula[Ni(C8H6ClO3S)2(C10H8N2)(H2O)2]
Mr686.20
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)293
a, b, c (Å)20.269 (4), 25.503 (6), 11.345 (11)
V3)5865 (6)
Z8
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.36 × 0.34 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.699, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
13880, 3148, 2922
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.05
No. of reflections3148
No. of parameters188
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.22
Absolute structureFlack (1983), 1382 Friedel pairs
Absolute structure parameter0.009 (12)

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H11···S1i0.852.983.822 (2)173.3
O4—H11···O1i0.851.892.709 (3)160.1
O4—H12···O2ii0.851.852.643 (3)154.4
Symmetry codes: (i) x+1/4, y+1/4, z+1/4; (ii) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds