Download citation
Download citation
link to html
Geometric parameters of the title compound, C14H12N4O3, a pyrazolopyrimidine derivative, are in the usual ranges. The dihedral angle between the pyrazolopyrimidine system and the phenyl ring is 4.64 (5)°. The non-H atoms of the ester side chain lie in a common plane (r.m.s. deviation = 0.028 Å) and this plane is almost perpendicular [77.69 (4)°] to the central ring system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807020284/lh2372sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807020284/lh2372Isup2.hkl
Contains datablock I

CCDC reference: 647707

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.033
  • wR factor = 0.089
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Pyrazolo[3,4-d]pyrimidines and their derivatives are of interest as potential bioactive molecules. Various pyrazolopyrimidine derivatives are reported to have antileishmanial, antihypertensive, antibacterial and antifungal, antiangiogenic, antiinflammatory and analgesic activities. A new pyrazolopyrimidine derivative, (I), C15H14N4O3, has been synthesized and the crystal structure is reported. The dihedral angle between the pyrazolopyrimidine moiety and the phenyl ring ist 4.64 (5)°. The non-H atoms of the ester side chain lie in a common plane (r.m.s. deviation 0.028 Å) and this plane is almost perpendicular [77.69 (4)°] to the central ring system.

Related literature top

For related structures, see: Wen et al. (2004); Oliveira-Campos et al. (2006), Portilla et al. (2005), Yathirajan et al., (2007). For related literature, see: Garg et al. (1990); El-Feky & Abd El-Samii (1996); Ismail, et al. (2003); Devesa, et al. (2004) and Russo et al. (1993).

Experimental top

4-Hydroxy-1-phenyl pyrazolo[3,4-d]pyrimidine (21.2 g, 0.1 mol) in 180 ml acetone was stirred with (16.5 g, 0.12 mol) of anhydrous potassium carbonate at room temperature and ethyl chloroacetate (10.8 g, 0.1 mol) was added to it in drops. The reaction mixture was then refluxed for 8 h. Progress of the reaction was monitored by TLC. The acetone was distilled out and the residue was diluted with 250 ml water. The solid obtained was filtered, washed with water and then recrystallized from methanol to obtain the compound as white needles (Yield: 95%; m.p.: 401–404 K). Crystals suitable for X-ray diffraction were obtained from acetone by slow evaporation. Analysis for C15H14N4O3: Found (Calaculated): C: 60.28 (60.40); H: 4.61 (4.73); N: 18.63% (18.78%). 1H-NMR (400 MHz, CDCl3): δ 1.28 (t, 3H, CH3), δ 4.24 (q, 2H, CH2), δ 4.72 (s, 2H, –CH2), 7.34 (t, 1H, ArH), 7.49 (t, 2H, ArH), 7.97 (s, 1H, ArH), 8.01 (d (J=8.4), 1H, ArH), 8.24 (s, 1H, ArH).

Refinement top

H atoms were found in a difference map, but they were refined using a riding model with Caromatic—H = 0.95 Å, Cmethyl—H = 0.98Å or Cmethylene—H = 0.99Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Pyrazolo[3,4-d]pyrimidines and their derivatives are of interest as potential bioactive molecules. Various pyrazolopyrimidine derivatives are reported to have antileishmanial, antihypertensive, antibacterial and antifungal, antiangiogenic, antiinflammatory and analgesic activities. A new pyrazolopyrimidine derivative, (I), C15H14N4O3, has been synthesized and the crystal structure is reported. The dihedral angle between the pyrazolopyrimidine moiety and the phenyl ring ist 4.64 (5)°. The non-H atoms of the ester side chain lie in a common plane (r.m.s. deviation 0.028 Å) and this plane is almost perpendicular [77.69 (4)°] to the central ring system.

For related structures, see: Wen et al. (2004); Oliveira-Campos et al. (2006), Portilla et al. (2005), Yathirajan et al., (2007). For related literature, see: Garg et al. (1990); El-Feky & Abd El-Samii (1996); Ismail, et al. (2003); Devesa, et al. (2004) and Russo et al. (1993).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering; displacement ellipsoids are at the 50% probability level.
Ethyl (4-oxo-1-phenyl-1,4-dihydro-5H-pyrazolo[3,4-d]pyrimidin-5-yl)acetate top
Crystal data top
C15H14N4O3F(000) = 624
Mr = 298.30Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13263 reflections
a = 7.5794 (8) Åθ = 3.7–25.7°
b = 11.1125 (9) ŵ = 0.10 mm1
c = 16.9767 (14) ÅT = 173 K
β = 99.654 (8)°Block, colourless
V = 1409.6 (2) Å30.42 × 0.42 × 0.39 mm
Z = 4
Data collection top
Stoe IPDSII two-circle
diffractometer
2246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.6°, θmin = 3.7°
ω scansh = 89
13151 measured reflectionsk = 1312
2639 independent reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.3352P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2639 reflectionsΔρmax = 0.22 e Å3
200 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (2)
Crystal data top
C15H14N4O3V = 1409.6 (2) Å3
Mr = 298.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5794 (8) ŵ = 0.10 mm1
b = 11.1125 (9) ÅT = 173 K
c = 16.9767 (14) Å0.42 × 0.42 × 0.39 mm
β = 99.654 (8)°
Data collection top
Stoe IPDSII two-circle
diffractometer
2246 reflections with I > 2σ(I)
13151 measured reflectionsRint = 0.037
2639 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
2639 reflectionsΔρmin = 0.18 e Å3
200 parameters
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24290 (13)0.61443 (10)0.49115 (6)0.0247 (2)
N20.22207 (16)0.73702 (10)0.47946 (7)0.0325 (3)
C30.26957 (19)0.76037 (12)0.40955 (8)0.0314 (3)
H30.26870.83830.38650.038*
C40.32179 (16)0.65424 (11)0.37357 (7)0.0238 (3)
C50.30268 (15)0.56255 (11)0.42729 (7)0.0216 (3)
N60.33727 (14)0.44297 (9)0.41782 (6)0.0238 (2)
C70.38414 (16)0.41908 (11)0.34901 (7)0.0235 (3)
H70.40840.33730.33860.028*
N80.40173 (14)0.50088 (9)0.29023 (6)0.0216 (2)
C90.37669 (16)0.62594 (11)0.29877 (7)0.0228 (3)
O90.40183 (13)0.69497 (8)0.24495 (5)0.0322 (2)
C110.19631 (16)0.56162 (13)0.56226 (7)0.0265 (3)
C120.20112 (18)0.43756 (13)0.57351 (8)0.0310 (3)
H120.23720.38610.53440.037*
C130.15252 (18)0.38940 (15)0.64270 (8)0.0354 (3)
H130.15610.30480.65070.043*
C140.09882 (18)0.46431 (15)0.70013 (8)0.0380 (4)
H140.06460.43120.74690.046*
C150.09596 (19)0.58721 (16)0.68826 (8)0.0400 (4)
H150.05970.63850.72740.048*
C160.14538 (18)0.63769 (14)0.61984 (8)0.0347 (3)
H160.14430.72250.61260.042*
C210.45008 (17)0.45945 (11)0.21501 (7)0.0233 (3)
H21A0.50330.37810.22270.028*
H21B0.54160.51410.19950.028*
C220.28981 (17)0.45528 (11)0.14821 (7)0.0236 (3)
O220.13704 (13)0.47698 (11)0.15424 (6)0.0420 (3)
O230.34468 (12)0.42116 (8)0.08081 (5)0.0279 (2)
C240.20836 (18)0.41720 (13)0.00853 (7)0.0313 (3)
H24A0.15940.49870.00470.038*
H24B0.10890.36340.01670.038*
C250.2988 (2)0.37021 (14)0.05772 (8)0.0376 (4)
H25A0.21180.36610.10740.056*
H25B0.34670.28960.04380.056*
H25C0.39680.42430.06510.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0240 (5)0.0289 (6)0.0211 (5)0.0003 (4)0.0039 (4)0.0042 (4)
N20.0374 (6)0.0280 (6)0.0335 (6)0.0008 (5)0.0106 (5)0.0084 (5)
C30.0388 (8)0.0233 (7)0.0339 (7)0.0021 (6)0.0110 (6)0.0046 (5)
C40.0242 (6)0.0231 (6)0.0240 (6)0.0024 (5)0.0035 (5)0.0023 (5)
C50.0178 (6)0.0269 (6)0.0194 (6)0.0010 (5)0.0010 (4)0.0022 (5)
N60.0260 (5)0.0252 (6)0.0205 (5)0.0025 (4)0.0046 (4)0.0017 (4)
C70.0263 (6)0.0216 (6)0.0226 (6)0.0012 (5)0.0039 (5)0.0020 (5)
N80.0263 (5)0.0204 (5)0.0184 (5)0.0008 (4)0.0041 (4)0.0000 (4)
C90.0244 (6)0.0203 (6)0.0231 (6)0.0016 (5)0.0022 (5)0.0005 (5)
O90.0470 (6)0.0232 (5)0.0277 (5)0.0013 (4)0.0104 (4)0.0044 (4)
C110.0172 (6)0.0423 (8)0.0196 (6)0.0021 (5)0.0019 (5)0.0033 (5)
C120.0276 (7)0.0421 (8)0.0244 (6)0.0002 (6)0.0075 (5)0.0007 (6)
C130.0284 (7)0.0506 (9)0.0276 (7)0.0014 (6)0.0057 (6)0.0059 (6)
C140.0252 (7)0.0679 (11)0.0209 (6)0.0039 (7)0.0040 (5)0.0024 (6)
C150.0299 (7)0.0674 (11)0.0234 (7)0.0003 (7)0.0065 (6)0.0119 (7)
C160.0291 (7)0.0485 (9)0.0268 (7)0.0025 (6)0.0053 (6)0.0095 (6)
C210.0266 (6)0.0245 (6)0.0200 (6)0.0025 (5)0.0073 (5)0.0001 (5)
C220.0276 (7)0.0221 (6)0.0226 (6)0.0014 (5)0.0084 (5)0.0018 (5)
O220.0274 (5)0.0700 (8)0.0298 (5)0.0030 (5)0.0080 (4)0.0127 (5)
O230.0274 (5)0.0380 (5)0.0190 (4)0.0019 (4)0.0060 (4)0.0049 (4)
C240.0307 (7)0.0412 (8)0.0211 (6)0.0028 (6)0.0013 (5)0.0027 (5)
C250.0491 (9)0.0415 (8)0.0230 (7)0.0044 (7)0.0087 (6)0.0049 (6)
Geometric parameters (Å, º) top
N1—C51.3703 (15)C13—C141.394 (2)
N1—N21.3818 (16)C13—H130.9500
N1—C111.4386 (16)C14—C151.380 (2)
N2—C31.3224 (17)C14—H140.9500
C3—C41.4148 (17)C15—C161.396 (2)
C3—H30.9500C15—H150.9500
C4—C51.3911 (17)C16—H160.9500
C4—C91.4359 (16)C21—C221.5172 (17)
C5—N61.3692 (16)C21—H21A0.9900
N6—C71.3039 (15)C21—H21B0.9900
C7—N81.3728 (15)C22—O221.2038 (16)
C7—H70.9500C22—O231.3362 (14)
N8—C91.4134 (16)O23—C241.4663 (15)
N8—C211.4608 (14)C24—C251.5055 (18)
C9—O91.2321 (15)C24—H24A0.9900
C11—C121.391 (2)C24—H24B0.9900
C11—C161.3948 (18)C25—H25A0.9800
C12—C131.3954 (18)C25—H25B0.9800
C12—H120.9500C25—H25C0.9800
C5—N1—N2110.25 (10)C15—C14—C13119.22 (13)
C5—N1—C11130.73 (11)C15—C14—H14120.4
N2—N1—C11118.98 (10)C13—C14—H14120.4
C3—N2—N1106.29 (10)C14—C15—C16121.27 (13)
N2—C3—C4111.22 (12)C14—C15—H15119.4
N2—C3—H3124.4C16—C15—H15119.4
C4—C3—H3124.4C11—C16—C15118.94 (14)
C5—C4—C3105.08 (11)C11—C16—H16120.5
C5—C4—C9119.79 (11)C15—C16—H16120.5
C3—C4—C9135.07 (12)N8—C21—C22112.10 (10)
N6—C5—N1126.62 (11)N8—C21—H21A109.2
N6—C5—C4126.22 (11)C22—C21—H21A109.2
N1—C5—C4107.16 (11)N8—C21—H21B109.2
C7—N6—C5112.90 (10)C22—C21—H21B109.2
N6—C7—N8126.21 (11)H21A—C21—H21B107.9
N6—C7—H7116.9O22—C22—O23124.86 (12)
N8—C7—H7116.9O22—C22—C21126.25 (11)
C7—N8—C9123.05 (10)O23—C22—C21108.88 (10)
C7—N8—C21119.74 (10)C22—O23—C24116.63 (10)
C9—N8—C21117.21 (10)O23—C24—C25106.88 (11)
O9—C9—N8119.73 (11)O23—C24—H24A110.3
O9—C9—C4128.55 (11)C25—C24—H24A110.3
N8—C9—C4111.71 (10)O23—C24—H24B110.3
C12—C11—C16120.54 (12)C25—C24—H24B110.3
C12—C11—N1120.99 (11)H24A—C24—H24B108.6
C16—C11—N1118.46 (13)C24—C25—H25A109.5
C11—C12—C13119.41 (13)C24—C25—H25B109.5
C11—C12—H12120.3H25A—C25—H25B109.5
C13—C12—H12120.3C24—C25—H25C109.5
C14—C13—C12120.60 (15)H25A—C25—H25C109.5
C14—C13—H13119.7H25B—C25—H25C109.5
C12—C13—H13119.7
C5—N1—N2—C30.40 (14)C3—C4—C9—O94.3 (2)
C11—N1—N2—C3178.39 (11)C5—C4—C9—N80.99 (16)
N1—N2—C3—C40.25 (15)C3—C4—C9—N8175.48 (14)
N2—C3—C4—C50.01 (15)C5—N1—C11—C122.80 (19)
N2—C3—C4—C9176.81 (13)N2—N1—C11—C12174.71 (11)
N2—N1—C5—N6179.59 (11)C5—N1—C11—C16177.43 (12)
C11—N1—C5—N61.9 (2)N2—N1—C11—C165.06 (16)
N2—N1—C5—C40.39 (13)C16—C11—C12—C130.71 (19)
C11—N1—C5—C4178.07 (11)N1—C11—C12—C13179.06 (11)
C3—C4—C5—N6179.75 (12)C11—C12—C13—C140.3 (2)
C9—C4—C5—N62.33 (19)C12—C13—C14—C150.7 (2)
C3—C4—C5—N10.23 (13)C13—C14—C15—C160.1 (2)
C9—C4—C5—N1177.65 (10)C12—C11—C16—C151.22 (19)
N1—C5—N6—C7176.75 (11)N1—C11—C16—C15178.56 (11)
C4—C5—N6—C73.22 (18)C14—C15—C16—C110.8 (2)
C5—N6—C7—N80.80 (18)C7—N8—C21—C22102.44 (13)
N6—C7—N8—C92.53 (19)C9—N8—C21—C2278.11 (13)
N6—C7—N8—C21178.06 (11)N8—C21—C22—O223.42 (19)
C7—N8—C9—O9176.98 (11)N8—C21—C22—O23177.69 (10)
C21—N8—C9—O92.45 (17)O22—C22—O23—C243.73 (19)
C7—N8—C9—C43.23 (16)C21—C22—O23—C24177.36 (10)
C21—N8—C9—C4177.34 (10)C22—O23—C24—C25176.90 (11)
C5—C4—C9—O9179.25 (12)

Experimental details

Crystal data
Chemical formulaC15H14N4O3
Mr298.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)7.5794 (8), 11.1125 (9), 16.9767 (14)
β (°) 99.654 (8)
V3)1409.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.42 × 0.42 × 0.39
Data collection
DiffractometerStoe IPDSII two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13151, 2639, 2246
Rint0.037
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.02
No. of reflections2639
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.18

Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PLATON.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds