Download citation
Download citation
link to html
In the title compound, C30H27N3, the non-aromatic carbocyclic ring adopts an almost perfect screw-boat conformation; the mol­ecules are linked into cyclic centrosymmetric dimers by pairs of C—H...π(pyrid­yl) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807017631/lh2364sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807017631/lh2364Isup2.hkl
Contains datablock I

CCDC reference: 647695

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.071
  • wR factor = 0.238
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C81
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazolo[3,4-b]quinolines are of interest as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator, and enzyme-inhibitory activity (Quiroga et al., 2001). Here we report the structure of the title compound (I) (Fig. 2) as a new example of this class of compound.

Within the molecule of (I), the bond distances show strong bond fixation within the pyrazolo ring, and electronic delocalization in the aryl and pyridyl rings (Table 1). For the C4A/C5/C6/C6A/C11A/C11B the ring-puckering parameters (Cremer & Pople, 1975) are θ = 116.6 (5)° and φ = 269.7 (5)°, very close to the ideal values, θ = 112.5° and φ = (60k + 30)° (k = integer) for an idealized screw-boat conformation (Evans & Boeyens, 1989).

In the crystal structure, molecules of (I) are linked by paired C—H..π(pyridyl) hydrogen bonds (Table 2) to form cyclic centrosymmetric dimers, but there are no direction-specific interactions between adjacent dimers.

In the 8-methyl analogue (II) (Portilla et al., 2005) the molecules are linked into sheets by a combination of C—H···π(arene) and C—H···π(pyridyl) hydrogen bonds, while in (III) (Abonia et al., 2005), the molecules are linked into chains of rings by a combination of C—H···O and C—H···π(arene) hydrogen bonds.

Related literature top

In the 8-methyl analogue (II) (Portilla et al., 2005) the molecules are linked into sheets by a combination of C—H···π(arene) and C—H···π(pyridyl) hydrogen bonds, while in (III) (Abonia et al., 2005), the molecules are linked into chains of rings by a combination of C—H···O and C—H···π(arene) hydrogen bonds.

For related literature, see: Cremer & Pople (1975); Evans & Boeyens (1989); Quiroga et al. (2001).

Experimental top

A mixture of 5-amino-3-tert-butyl-1-phenylpyrazole (1 mmol) and 2-benzylidene-1-tetralone (1 mmol) was thoroughly mixed at room temperature. The mixture was heated in an oil-bath at 423 K for 3.5 min. It was then cooled to ambient temperature and permitted to solidify. The resulting solid was extracted with ethanol; the solvent was removed from the extract under reduced pressure and the product was recrystallized from ethanol/dimethylformamide (X:Y, v/v), to afford yellow crystals of the title compound (I) which were suitable for single-crystal X-ray diffraction. Yield 70%, m. p. 499–451 K;. MS (70 eV) m/z (%) 429 (56, M+), 414 (100), 387 (16), 77 (20), 41 (18).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in idealized positions with C—H distances 0.95 Å (aromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms.

Structure description top

Pyrazolo[3,4-b]quinolines are of interest as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator, and enzyme-inhibitory activity (Quiroga et al., 2001). Here we report the structure of the title compound (I) (Fig. 2) as a new example of this class of compound.

Within the molecule of (I), the bond distances show strong bond fixation within the pyrazolo ring, and electronic delocalization in the aryl and pyridyl rings (Table 1). For the C4A/C5/C6/C6A/C11A/C11B the ring-puckering parameters (Cremer & Pople, 1975) are θ = 116.6 (5)° and φ = 269.7 (5)°, very close to the ideal values, θ = 112.5° and φ = (60k + 30)° (k = integer) for an idealized screw-boat conformation (Evans & Boeyens, 1989).

In the crystal structure, molecules of (I) are linked by paired C—H..π(pyridyl) hydrogen bonds (Table 2) to form cyclic centrosymmetric dimers, but there are no direction-specific interactions between adjacent dimers.

In the 8-methyl analogue (II) (Portilla et al., 2005) the molecules are linked into sheets by a combination of C—H···π(arene) and C—H···π(pyridyl) hydrogen bonds, while in (III) (Abonia et al., 2005), the molecules are linked into chains of rings by a combination of C—H···O and C—H···π(arene) hydrogen bonds.

In the 8-methyl analogue (II) (Portilla et al., 2005) the molecules are linked into sheets by a combination of C—H···π(arene) and C—H···π(pyridyl) hydrogen bonds, while in (III) (Abonia et al., 2005), the molecules are linked into chains of rings by a combination of C—H···O and C—H···π(arene) hydrogen bonds.

For related literature, see: Cremer & Pople (1975); Evans & Boeyens (1989); Quiroga et al. (2001).

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005) and WinGX (Farrugia, 1999); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. Compounds (I), (II) and (III).
[Figure 2] Fig. 2. The molecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of compound (I) showing the formation of a centrosymmetric hydrogen-bonded dimer.. For the sake of clarity the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, 1 - z).
8-tert-Butyl-7,10-diphenyl-6,10-dihydro-5H-benzo[h]pyrazolo[3,4-b]quinoline top
Crystal data top
C30H27N3Z = 2
Mr = 429.55F(000) = 456
Triclinic, P1Dx = 1.254 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.516 (2) ÅCell parameters from 5226 reflections
b = 10.406 (3) Åθ = 3.1–27.5°
c = 11.868 (5) ŵ = 0.07 mm1
α = 99.52 (4)°T = 120 K
β = 100.42 (2)°Plate, colourless
γ = 91.55 (4)°0.41 × 0.23 × 0.11 mm
V = 1137.9 (7) Å3
Data collection top
Bruker-Nonius KappaCCD
diffractometer
5226 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode2735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.977, Tmax = 0.992l = 1515
28777 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.238H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1424P)2]
where P = (Fo2 + 2Fc2)/3
5226 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C30H27N3γ = 91.55 (4)°
Mr = 429.55V = 1137.9 (7) Å3
Triclinic, P1Z = 2
a = 9.516 (2) ÅMo Kα radiation
b = 10.406 (3) ŵ = 0.07 mm1
c = 11.868 (5) ÅT = 120 K
α = 99.52 (4)°0.41 × 0.23 × 0.11 mm
β = 100.42 (2)°
Data collection top
Bruker-Nonius KappaCCD
diffractometer
5226 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2735 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.992Rint = 0.061
28777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.238H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
5226 reflectionsΔρmin = 0.31 e Å3
301 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1837 (3)0.3064 (3)0.1069 (2)0.0396 (6)
C20.0673 (3)0.3333 (3)0.0288 (2)0.0444 (7)
C30.0594 (3)0.3643 (3)0.0658 (2)0.0425 (7)
C40.0684 (3)0.3690 (3)0.1804 (2)0.0423 (7)
C4A0.0477 (3)0.3419 (2)0.2610 (2)0.0362 (6)
C50.0376 (3)0.3404 (3)0.3840 (2)0.0501 (7)
C60.1720 (3)0.3745 (3)0.4663 (2)0.0466 (7)
C6A0.2988 (3)0.3109 (2)0.42886 (19)0.0328 (6)
C70.4173 (3)0.2866 (2)0.50956 (19)0.0319 (6)
C710.4101 (3)0.3216 (2)0.6355 (2)0.0336 (6)
C720.4450 (3)0.4504 (2)0.6922 (2)0.0393 (6)
C730.4334 (3)0.4871 (3)0.8068 (2)0.0426 (7)
C740.3865 (3)0.3981 (3)0.8668 (2)0.0433 (7)
C750.3494 (3)0.2704 (3)0.8119 (2)0.0464 (7)
C760.3612 (3)0.2329 (3)0.6964 (2)0.0387 (6)
C7A0.5359 (3)0.2327 (2)0.46623 (19)0.0321 (6)
C80.6766 (3)0.1911 (2)0.5083 (2)0.0336 (6)
C810.7608 (3)0.1828 (3)0.6284 (2)0.0372 (6)
C820.6882 (3)0.0770 (3)0.6768 (2)0.0585 (8)
C830.7713 (4)0.3126 (3)0.7121 (3)0.0682 (10)
C840.9126 (3)0.1438 (4)0.6198 (2)0.0644 (9)
N90.7386 (2)0.1471 (2)0.41949 (16)0.0354 (5)
N100.6469 (2)0.15871 (19)0.31858 (16)0.0326 (5)
C1010.6912 (3)0.1158 (2)0.21105 (19)0.0323 (6)
C1020.6118 (3)0.1379 (2)0.1067 (2)0.0377 (6)
C1030.6587 (3)0.0932 (3)0.0044 (2)0.0416 (7)
C1040.7829 (3)0.0277 (3)0.0042 (2)0.0411 (7)
C1050.8610 (3)0.0077 (3)0.1081 (2)0.0422 (7)
C1060.8164 (3)0.0519 (2)0.2120 (2)0.0379 (6)
C10A0.5221 (3)0.2093 (2)0.34415 (19)0.0307 (6)
N110.4113 (2)0.23114 (18)0.26481 (15)0.0312 (5)
C11A0.2992 (3)0.2826 (2)0.30822 (19)0.0310 (6)
C11B0.1760 (2)0.3099 (2)0.22402 (19)0.0319 (6)
H10.27040.28510.08090.048*
H20.07390.33050.05040.053*
H30.13990.38240.01190.051*
H40.15550.39120.20520.051*
H5A0.03390.40240.40600.060*
H5B0.00200.25220.39050.060*
H6A0.16110.35000.54150.056*
H6B0.19080.47030.47940.056*
H720.47700.51310.65120.047*
H730.45820.57470.84460.051*
H740.37920.42390.94610.052*
H750.31610.20870.85320.056*
H760.33540.14540.65880.046*
H82A0.68530.00680.62430.088*
H82B0.59050.09990.68330.088*
H82C0.74240.06990.75380.088*
H83A0.67520.33660.72300.102*
H83B0.81610.38050.67980.102*
H83C0.82940.30390.78730.102*
H84A0.95980.20810.58510.097*
H84B0.90850.05760.57090.097*
H84C0.96670.14070.69770.097*
H1020.52630.18300.10550.045*
H1030.60440.10800.06730.050*
H1040.81360.00310.06670.049*
H1050.94690.03700.10900.051*
H1060.87190.03810.28360.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (15)0.0450 (16)0.0377 (14)0.0060 (12)0.0073 (12)0.0092 (12)
C20.0479 (17)0.0513 (17)0.0344 (14)0.0098 (13)0.0033 (12)0.0124 (12)
C30.0366 (15)0.0459 (16)0.0439 (16)0.0065 (12)0.0009 (12)0.0108 (13)
C40.0361 (15)0.0430 (16)0.0454 (16)0.0021 (12)0.0047 (12)0.0039 (12)
C4A0.0343 (14)0.0382 (14)0.0368 (14)0.0020 (11)0.0079 (11)0.0068 (11)
C50.0390 (16)0.071 (2)0.0409 (15)0.0066 (14)0.0102 (13)0.0071 (14)
C60.0419 (16)0.0659 (19)0.0328 (14)0.0127 (14)0.0093 (12)0.0067 (13)
C6A0.0341 (14)0.0350 (14)0.0308 (13)0.0050 (11)0.0103 (11)0.0055 (10)
C70.0343 (14)0.0318 (13)0.0306 (13)0.0006 (11)0.0094 (11)0.0047 (10)
C710.0318 (14)0.0402 (15)0.0293 (13)0.0036 (11)0.0056 (10)0.0069 (11)
C720.0428 (16)0.0407 (15)0.0343 (14)0.0009 (12)0.0074 (12)0.0067 (12)
C730.0457 (16)0.0451 (16)0.0334 (14)0.0008 (13)0.0040 (12)0.0005 (12)
C740.0433 (16)0.0543 (18)0.0307 (13)0.0014 (13)0.0064 (12)0.0035 (13)
C750.0506 (17)0.0535 (18)0.0381 (15)0.0047 (14)0.0134 (13)0.0121 (13)
C760.0432 (15)0.0385 (15)0.0352 (14)0.0029 (12)0.0120 (12)0.0044 (11)
C7A0.0356 (14)0.0352 (14)0.0272 (12)0.0023 (11)0.0085 (10)0.0078 (10)
C80.0327 (13)0.0355 (14)0.0336 (13)0.0014 (11)0.0051 (11)0.0106 (11)
C810.0362 (14)0.0455 (15)0.0311 (13)0.0060 (12)0.0044 (11)0.0122 (11)
C820.065 (2)0.072 (2)0.0438 (17)0.0035 (17)0.0081 (15)0.0286 (15)
C830.074 (2)0.0517 (19)0.0589 (19)0.0055 (16)0.0272 (17)0.0052 (15)
C840.0457 (18)0.110 (3)0.0404 (16)0.0251 (18)0.0025 (14)0.0251 (17)
N90.0345 (12)0.0423 (12)0.0298 (11)0.0028 (9)0.0043 (9)0.0091 (9)
N100.0298 (11)0.0410 (12)0.0280 (11)0.0047 (9)0.0062 (9)0.0072 (9)
C1010.0318 (14)0.0367 (14)0.0291 (13)0.0002 (11)0.0089 (10)0.0042 (10)
C1020.0341 (14)0.0458 (15)0.0323 (13)0.0034 (12)0.0057 (11)0.0048 (11)
C1030.0419 (16)0.0562 (17)0.0272 (13)0.0009 (13)0.0071 (11)0.0081 (12)
C1040.0418 (16)0.0478 (16)0.0353 (14)0.0024 (13)0.0137 (12)0.0048 (12)
C1050.0402 (15)0.0475 (16)0.0436 (15)0.0100 (12)0.0178 (13)0.0097 (12)
C1060.0363 (15)0.0447 (16)0.0346 (13)0.0072 (12)0.0069 (11)0.0111 (11)
C10A0.0317 (13)0.0287 (13)0.0315 (13)0.0003 (10)0.0062 (11)0.0051 (10)
N110.0308 (11)0.0341 (11)0.0289 (10)0.0041 (9)0.0052 (9)0.0061 (9)
C11A0.0330 (14)0.0299 (13)0.0312 (13)0.0008 (11)0.0085 (11)0.0058 (10)
C11B0.0313 (14)0.0332 (13)0.0300 (13)0.0003 (11)0.0016 (10)0.0069 (10)
Geometric parameters (Å, º) top
C1—C21.376 (4)C8—C811.521 (3)
C1—C11B1.400 (3)C81—C821.526 (4)
C1—H10.95C81—C841.527 (4)
C2—C31.384 (4)C81—C831.528 (4)
C2—H20.95C82—H82A0.98
C3—C41.370 (4)C82—H82B0.98
C3—H30.95C82—H82C0.98
C4—C4A1.393 (4)C83—H83A0.98
C4—H40.95C83—H83B0.98
C4A—C11B1.401 (3)C83—H83C0.98
C4A—C51.482 (4)C84—H84A0.98
C5—C61.458 (4)C84—H84B0.98
C5—H5A0.99C84—H84C0.98
C5—H5B0.99N9—N101.373 (3)
C6—C6A1.494 (3)N10—C10A1.376 (3)
C6—H6A0.99N10—C1011.422 (3)
C6—H6B0.99C101—C1061.380 (3)
C6A—C71.399 (3)C101—C1021.386 (3)
C7—C7A1.415 (3)C102—C1031.382 (3)
C7—C711.493 (3)C102—H1020.95
C71—C761.382 (3)C103—C1041.381 (4)
C71—C721.399 (3)C103—H1030.95
C72—C731.377 (3)C104—C1051.370 (4)
C72—H720.95C104—H1040.95
C73—C741.369 (4)C105—C1061.388 (3)
C73—H730.95C105—H1050.95
C74—C751.386 (4)C106—H1060.95
C74—H740.95C10A—N111.332 (3)
C75—C761.387 (3)N11—C11A1.352 (3)
C75—H750.95C11A—C6A1.414 (3)
C76—H760.95C7A—C10A1.410 (3)
C7A—C81.446 (3)C11A—C11B1.464 (3)
C8—N91.322 (3)
C2—C1—C11B120.8 (2)C8—C81—C82108.7 (2)
C2—C1—H1119.6C8—C81—C84110.0 (2)
C11B—C1—H1119.6C82—C81—C84107.9 (2)
C1—C2—C3120.0 (2)C8—C81—C83112.2 (2)
C1—C2—H2120.0C82—C81—C83109.8 (2)
C3—C2—H2120.0C84—C81—C83108.1 (2)
C4—C3—C2119.9 (2)C81—C82—H82A109.5
C4—C3—H3120.0C81—C82—H82B109.5
C2—C3—H3120.0H82A—C82—H82B109.5
C3—C4—C4A121.2 (2)C81—C82—H82C109.5
C3—C4—H4119.4H82A—C82—H82C109.5
C4A—C4—H4119.4H82B—C82—H82C109.5
C4—C4A—C11B119.2 (2)C81—C83—H83A109.5
C4—C4A—C5121.8 (2)C81—C83—H83B109.5
C11B—C4A—C5119.0 (2)H83A—C83—H83B109.5
C6—C5—C4A114.5 (2)C81—C83—H83C109.5
C6—C5—H5A108.6H83A—C83—H83C109.5
C4A—C5—H5A108.6H83B—C83—H83C109.5
C6—C5—H5B108.6C81—C84—H84A109.5
C4A—C5—H5B108.6C81—C84—H84B109.5
H5A—C5—H5B107.6H84A—C84—H84B109.5
C5—C6—C6A114.7 (2)C81—C84—H84C109.5
C5—C6—H6A108.6H84A—C84—H84C109.5
C6A—C6—H6A108.6H84B—C84—H84C109.5
C5—C6—H6B108.6C8—N9—N10108.3 (2)
C6A—C6—H6B108.6N9—N10—C10A109.87 (18)
H6A—C6—H6B107.6N9—N10—C101118.18 (19)
C7—C6A—C11A120.5 (2)C10A—N10—C101131.9 (2)
C7—C6A—C6121.7 (2)C106—C101—C102120.0 (2)
C11A—C6A—C6117.7 (2)C106—C101—N10118.6 (2)
C6A—C7—C7A117.8 (2)C102—C101—N10121.3 (2)
C6A—C7—C71117.4 (2)C103—C102—C101119.1 (2)
C7A—C7—C71124.7 (2)C103—C102—H102120.4
C76—C71—C72118.6 (2)C101—C102—H102120.4
C76—C71—C7122.2 (2)C104—C103—C102121.3 (2)
C72—C71—C7119.1 (2)C104—C103—H103119.3
C73—C72—C71120.5 (2)C102—C103—H103119.3
C73—C72—H72119.7C105—C104—C103118.9 (2)
C71—C72—H72119.7C105—C104—H104120.5
C74—C73—C72120.4 (3)C103—C104—H104120.5
C74—C73—H73119.8C104—C105—C106120.8 (2)
C72—C73—H73119.8C104—C105—H105119.6
C73—C74—C75120.0 (2)C106—C105—H105119.6
C73—C74—H74120.0C101—C106—C105119.7 (2)
C75—C74—H74120.0C101—C106—H106120.1
C74—C75—C76119.8 (2)C105—C106—H106120.1
C74—C75—H75120.1N11—C10A—N10124.4 (2)
C76—C75—H75120.1N11—C10A—C7A128.1 (2)
C71—C76—C75120.7 (2)N10—C10A—C7A107.5 (2)
C71—C76—H76119.7C10A—N11—C11A115.07 (19)
C75—C76—H76119.7N11—C11A—C6A122.7 (2)
C10A—C7A—C7115.7 (2)N11—C11A—C11B116.8 (2)
C10A—C7A—C8104.4 (2)C6A—C11A—C11B120.4 (2)
C7—C7A—C8139.8 (2)C1—C11B—C4A118.9 (2)
N9—C8—C7A109.9 (2)C1—C11B—C11A121.4 (2)
N9—C8—C81116.1 (2)C4A—C11B—C11A119.6 (2)
C7A—C8—C81133.9 (2)
C11B—C1—C2—C30.0 (4)C81—C8—N9—N10178.42 (19)
C1—C2—C3—C40.4 (4)C8—N9—N10—C10A1.2 (3)
C2—C3—C4—C4A0.6 (4)C8—N9—N10—C101179.43 (19)
C3—C4—C4A—C11B0.3 (4)N9—N10—C101—C1066.9 (3)
C3—C4—C4A—C5177.1 (2)C10A—N10—C101—C106170.9 (2)
C4—C4A—C5—C6151.3 (3)N9—N10—C101—C102172.6 (2)
C11B—C4A—C5—C631.3 (4)C10A—N10—C101—C1029.5 (4)
C4A—C5—C6—C6A44.5 (4)C106—C101—C102—C1031.0 (4)
C5—C6—C6A—C7152.8 (2)N10—C101—C102—C103179.4 (2)
C5—C6—C6A—C11A30.8 (4)C101—C102—C103—C1040.2 (4)
C11A—C6A—C7—C7A0.3 (3)C102—C103—C104—C1050.4 (4)
C6—C6A—C7—C7A176.6 (2)C103—C104—C105—C1060.3 (4)
C11A—C6A—C7—C71178.8 (2)C102—C101—C106—C1051.2 (4)
C6—C6A—C7—C712.5 (4)N10—C101—C106—C105179.2 (2)
C6A—C7—C71—C7692.4 (3)C104—C105—C106—C1010.5 (4)
C7A—C7—C71—C7688.6 (3)N9—N10—C10A—N11179.3 (2)
C6A—C7—C71—C7283.3 (3)C101—N10—C10A—N111.4 (4)
C7A—C7—C71—C7295.7 (3)N9—N10—C10A—C7A0.9 (3)
C76—C71—C72—C731.3 (4)C101—N10—C10A—C7A178.9 (2)
C7—C71—C72—C73177.1 (2)C7—C7A—C10A—N110.3 (4)
C71—C72—C73—C740.5 (4)C8—C7A—C10A—N11179.9 (2)
C72—C73—C74—C750.4 (4)C7—C7A—C10A—N10179.4 (2)
C73—C74—C75—C760.5 (4)C8—C7A—C10A—N100.4 (2)
C72—C71—C76—C751.1 (4)N10—C10A—N11—C11A179.4 (2)
C7—C71—C76—C75176.9 (2)C7A—C10A—N11—C11A0.3 (3)
C74—C75—C76—C710.3 (4)C10A—N11—C11A—C6A0.3 (3)
C6A—C7—C7A—C10A0.3 (3)C10A—N11—C11A—C11B179.1 (2)
C71—C7—C7A—C10A178.7 (2)C7—C6A—C11A—N110.3 (4)
C6A—C7—C7A—C8179.9 (3)C6—C6A—C11A—N11176.7 (2)
C71—C7—C7A—C80.9 (5)C7—C6A—C11A—C11B179.1 (2)
C10A—C7A—C8—N90.3 (3)C6—C6A—C11A—C11B2.7 (3)
C7—C7A—C8—N9180.0 (3)C2—C1—C11B—C4A0.3 (4)
C10A—C7A—C8—C81177.2 (3)C2—C1—C11B—C11A179.5 (2)
C7—C7A—C8—C813.1 (5)C4—C4A—C11B—C10.1 (4)
N9—C8—C81—C82108.9 (3)C5—C4A—C11B—C1177.6 (2)
C7A—C8—C81—C8267.9 (3)C4—C4A—C11B—C11A179.3 (2)
N9—C8—C81—C849.1 (3)C5—C4A—C11B—C11A3.2 (4)
C7A—C8—C81—C84174.1 (3)N11—C11A—C11B—C111.7 (3)
N9—C8—C81—C83129.5 (3)C6A—C11A—C11B—C1167.7 (2)
C7A—C8—C81—C8353.8 (4)N11—C11A—C11B—C4A169.1 (2)
C7A—C8—N9—N100.9 (3)C6A—C11A—C11B—C4A11.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C72—H72···Cgi0.952.703.607 (3)159
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H27N3
Mr429.55
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)9.516 (2), 10.406 (3), 11.868 (5)
α, β, γ (°)99.52 (4), 100.42 (2), 91.55 (4)
V3)1137.9 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.41 × 0.23 × 0.11
Data collection
DiffractometerBruker-Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
28777, 5226, 2735
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.238, 1.03
No. of reflections5226
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.31

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005) and WinGX (Farrugia, 1999), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected bond lengths (Å) top
C6A—C71.399 (3)N10—C10A1.376 (3)
C7—C7A1.415 (3)C10A—N111.332 (3)
C7A—C81.446 (3)N11—C11A1.352 (3)
C8—N91.322 (3)C11A—C6A1.414 (3)
N9—N101.373 (3)C7A—C10A1.410 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C72—H72···Cgi0.952.703.607 (3)159
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds