organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetone 2-nitro­phenyl­hydrazone

CROSSMARK_Color_square_no_text.svg

aInstituto de Tecnologia em Fármacos, Far-Manguinhos, FIOCRUZ, 21041-250 Rio de Janeiro, RJ, Brazil, bInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 22 January 2007; accepted 22 January 2007; online 26 January 2007)

There are no direction-specific inter­actions between the almost-planar mol­ecules of the title compound, C9H11N3O2.

Comment

We report here the structure of acetone 2-nitro­phenyl­hydrazone, (I)[link] (Fig. 1[link]), whose behaviour differs significantly from that of the isomeric compound acetone 3-nitro­phenyl­hydrazone, (II)[link] (Wardell et al., 2006[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2838-o2840.]).

[Scheme 1]

The non-H atoms in the mol­ecule of (I)[link] are virtually co-planar, as shown by the key torsion angles (Table 1[link]). There is a short inter­molecular N—H⋯O hydrogen bond (Table 2[link]), which may assist in controlling the planar conformation. The bond distances (Table 1[link]) show evidence for a significant contribution from the quinonoid form (Ia)[link]. In particular, the bonds C3—C4 and C5—C6 are shorter than the remaining bonds in the ring, while C2—N21 is very short for its type and the N—O bonds are long (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). In contrast, the bond distances in (II)[link] show no unusual values (Wardell et al., 2006[Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2838-o2840.]).

Whereas the mol­ecules of (II)[link] are linked into complex sheets by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds, there are no direction-specific inter­molecular inter­actions in the structure of (I)[link]. In particular, hydrogen bonds of all types and aromatic ππ stacking inter­actions are absent.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Experimental

2-Nitrophenylhydrazine (3 mmol) was dissolved in acetone (30 ml) and the solution was heated under reflux for 1 h. The solution was then cooled and excess solvent was removed under reduced pressure. The resulting solid product, (I)[link], was crystallized from ethanol (m.p. 339–341 K).

Crystal data
  • C9H11N3O2

  • Mr = 193.21

  • Monoclinic, P 21 /c

  • a = 3.8451 (2) Å

  • b = 11.4926 (8) Å

  • c = 21.3214 (13) Å

  • β = 92.208 (4)°

  • V = 941.50 (10) Å3

  • Z = 4

  • Dx = 1.363 Mg m−3

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Needle, orange

  • 0.40 × 0.04 × 0.04 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.996

  • 10829 measured reflections

  • 2104 independent reflections

  • 1738 reflections with I > 2σ(I)

  • Rint = 0.046

  • θmax = 27.8°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.153

  • S = 1.06

  • 2104 reflections

  • 129 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0854P)2 + 0.2667P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—C2 1.417 (2)
C2—C3 1.4027 (19)
C3—C4 1.370 (2)
C4—C5 1.398 (2)
C5—C6 1.3772 (19)
C6—C1 1.4100 (19)
C1—N1 1.3637 (17)
N1—N2 1.3799 (17)
N2—C7 1.2877 (18)
C2—N21 1.4387 (18)
N21—O21 1.2513 (16)
N21—O22 1.2267 (17)
C1—C2—N21—O21 −0.3 (2)
C1—C2—N21—O22 178.88 (13)
C2—C1—N1—N2 −175.52 (12)
C1—N1—N2—C7 175.80 (12)
N1—N2—C7—C8 179.80 (12)
N1—N2—C7—C9 0.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O21 0.88 1.97 2.6010 (17) 128

All H atoms were located in a difference map and then treated as riding, with C—H distances of 0.95 or 0.98 Å and N—H distances of 0.88 Å, and with Uiso(H) = kUeq(C,N) where k = 1.5 for methyl groups and 1.2 for all other H.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: FLIPPER (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.], 2005[Oszlányi, G. & Sütő, A. (2005). Acta Cryst. A61, 147-152.]; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: FLIPPER (Oszlányi & Sütő, 2004, 2005; Spek, 2003); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Acetone 2-nitrophenylhydrazone top
Crystal data top
C9H11N3O2F(000) = 408
Mr = 193.21Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2040 reflections
a = 3.8451 (2) Åθ = 2.9–27.5°
b = 11.4926 (8) ŵ = 0.10 mm1
c = 21.3214 (13) ÅT = 120 K
β = 92.208 (4)°Plate, orange
V = 941.50 (10) Å30.40 × 0.04 × 0.04 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2104 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 9.091 pixels mm-1θmax = 27.8°, θmin = 3.4°
φ and ω scansh = 34
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.971, Tmax = 0.996l = 2727
10829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0854P)2 + 0.2667P]
where P = (Fo2 + 2Fc2)/3
2104 reflections(Δ/σ)max < 0.001
129 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3793 (4)0.68934 (13)0.08125 (6)0.0202 (3)
N10.5144 (3)0.63071 (11)0.13218 (5)0.0230 (3)
N20.5246 (3)0.51069 (11)0.13215 (6)0.0239 (3)
C70.6772 (4)0.46464 (14)0.18091 (7)0.0250 (4)
C80.6941 (4)0.33459 (14)0.18324 (8)0.0328 (4)
C90.8357 (4)0.53242 (15)0.23532 (7)0.0304 (4)
C20.3832 (4)0.81231 (13)0.07662 (6)0.0211 (3)
N210.5444 (3)0.88451 (12)0.12460 (6)0.0265 (3)
O210.6846 (3)0.83762 (10)0.17212 (5)0.0328 (3)
O220.5455 (3)0.99053 (10)0.11794 (6)0.0402 (4)
C30.2387 (4)0.86983 (13)0.02377 (7)0.0235 (3)
C40.0882 (4)0.80780 (13)0.02496 (7)0.0242 (3)
C50.0830 (4)0.68637 (13)0.02143 (7)0.0236 (3)
C60.2246 (4)0.62841 (13)0.03000 (6)0.0221 (3)
H10.59530.66950.16520.028*
H8A0.57120.30220.14610.049*
H8B0.58430.30680.22120.049*
H8C0.93800.30960.18400.049*
H9A0.99520.59120.21960.046*
H9B0.96430.47930.26370.046*
H9C0.65090.57080.25800.046*
H30.24510.95240.02180.028*
H40.01110.84670.06060.029*
H50.02030.64300.05520.028*
H60.21790.54580.03100.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0194 (8)0.0240 (8)0.0176 (7)0.0006 (5)0.0030 (5)0.0011 (5)
N10.0290 (7)0.0222 (7)0.0175 (6)0.0002 (5)0.0029 (5)0.0002 (5)
N20.0262 (7)0.0227 (7)0.0230 (6)0.0020 (5)0.0031 (5)0.0040 (5)
C70.0206 (8)0.0313 (9)0.0234 (7)0.0036 (6)0.0037 (5)0.0059 (6)
C80.0344 (9)0.0314 (9)0.0329 (9)0.0080 (7)0.0063 (6)0.0104 (7)
C90.0279 (9)0.0398 (10)0.0234 (8)0.0042 (6)0.0026 (6)0.0066 (6)
C20.0210 (8)0.0243 (8)0.0181 (7)0.0019 (5)0.0022 (5)0.0017 (5)
N210.0326 (8)0.0252 (7)0.0220 (6)0.0041 (5)0.0030 (5)0.0017 (5)
O210.0411 (7)0.0343 (7)0.0222 (6)0.0054 (5)0.0076 (5)0.0015 (4)
O220.0629 (9)0.0230 (6)0.0342 (7)0.0086 (5)0.0040 (6)0.0025 (5)
C30.0238 (8)0.0230 (8)0.0240 (7)0.0006 (5)0.0042 (5)0.0027 (5)
C40.0240 (8)0.0278 (8)0.0207 (7)0.0028 (6)0.0007 (5)0.0058 (6)
C50.0234 (8)0.0277 (8)0.0196 (7)0.0020 (6)0.0012 (5)0.0011 (6)
C60.0235 (8)0.0217 (7)0.0213 (7)0.0014 (5)0.0007 (5)0.0004 (5)
Geometric parameters (Å, º) top
C1—C21.417 (2)C7—C91.507 (2)
C2—C31.4027 (19)N1—H10.88
C3—C41.370 (2)C8—H8A0.98
C4—C51.398 (2)C8—H8B0.98
C5—C61.3772 (19)C8—H8C0.98
C6—C11.4100 (19)C9—H9A0.98
C1—N11.3637 (17)C9—H9B0.98
N1—N21.3799 (17)C9—H9C0.98
N2—C71.2877 (18)C3—H30.95
C2—N211.4387 (18)C4—H40.95
N21—O211.2513 (16)C5—H50.95
N21—O221.2267 (17)C6—H60.95
C7—C81.497 (2)
N1—C1—C6120.54 (13)H9A—C9—H9C109.5
N1—C1—C2122.93 (12)H9B—C9—H9C109.5
C6—C1—C2116.53 (12)C3—C2—C1121.41 (13)
C1—N1—N2120.23 (11)C3—C2—N21116.47 (13)
C1—N1—H1119.9C1—C2—N21122.09 (12)
N2—N1—H1119.9O22—N21—O21121.21 (12)
C7—N2—N1114.99 (12)O22—N21—C2119.59 (12)
N2—C7—C8117.07 (14)O21—N21—C2119.19 (13)
N2—C7—C9124.58 (14)C4—C3—C2120.45 (14)
C8—C7—C9118.35 (13)C4—C3—H3119.8
C7—C8—H8A109.5C2—C3—H3119.8
C7—C8—H8B109.5C3—C4—C5119.03 (13)
H8A—C8—H8B109.5C3—C4—H4120.5
C7—C8—H8C109.5C5—C4—H4120.5
H8A—C8—H8C109.5C6—C5—C4121.31 (13)
H8B—C8—H8C109.5C6—C5—H5119.3
C7—C9—H9A109.5C4—C5—H5119.3
C7—C9—H9B109.5C5—C6—C1121.26 (14)
H9A—C9—H9B109.5C5—C6—H6119.4
C7—C9—H9C109.5C1—C6—H6119.4
C1—C2—N21—O210.3 (2)C6—C1—C2—N21177.67 (12)
C1—C2—N21—O22178.88 (13)C3—C2—N21—O220.8 (2)
C6—C1—N1—N24.88 (19)C3—C2—N21—O21178.37 (13)
C2—C1—N1—N2175.52 (12)C1—C2—C3—C40.2 (2)
C1—N1—N2—C7175.80 (12)N21—C2—C3—C4178.23 (12)
N1—N2—C7—C8179.80 (12)C2—C3—C4—C50.4 (2)
N1—N2—C7—C90.2 (2)C3—C4—C5—C60.2 (2)
N1—C1—C2—C3179.34 (13)C4—C5—C6—C10.2 (2)
C6—C1—C2—C30.28 (19)N1—C1—C6—C5179.15 (13)
N1—C1—C2—N212.7 (2)C2—C1—C6—C50.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.881.972.6010 (17)128
 

Acknowledgements

The X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, UK; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOszlányi, G. & Sütő, A. (2005). Acta Cryst. A61, 147–152.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. E62, o2838–o2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds