Download citation
Download citation
link to html
The Sr-Ge-O system has an earth-scientific importance as a potentially good low-pressure analog of the Ca-Si-O system, one of the major components in the constituent minerals of the Earth's crust and mantle. However, it is one of the germanate systems that has not yet been fully examined in the phase relations and structural properties. The recent findings that the SrGeO3 high-pressure perovskite phase is the first Ge-based transparent electronic conductor make the Sr-Ge-O system interesting in the field of materials science. In the present study, we have revealed the existence of a new high-pressure strontium germanate, SrGe2O5. Single crystals of this compound crystallized as a co-existent phase with SrGeO3 perovskite single crystals in the sample recovered in the compression experiment of SrGeO3 pseudowollastonite conducted at 6 GPa and 1223 K. The crystal structure consists of germanium-oxygen framework layers stacked along [001], with Sr atoms located at the 12-coordinated cubocta­hedral site; the layers are formed by the corner linkages between GeO6 octa­hedra and between GeO6 octa­hedra and GeO4 tetra­hedra. The present SrGe2O5 is thus isostructural with the high-pressure phases of SrSi2O5 and BaGe2O5. Comparison of these three compounds leads to the conclusion that the structural responses of the GeO6 and GeO4 polyhedra to cation substitution at the Sr site are much less than that of the SrO12 cubocta­hedron to cation substitution at the Ge sites. Such a difference in the structural response is closely related to the bonding nature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961601353X/lg3193sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961601353X/lg3193Isup4.hkl
Contains datablock I

CCDC reference: 1500633

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

Strontium pentaoxidodigermanate top
Crystal data top
SrGe2O5Dx = 5.670 Mg m3
Mr = 312.80Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, CmcaCell parameters from 2643 reflections
a = 5.4653 (6) Åθ = 4.2–30.4°
b = 9.7379 (9) ŵ = 30.70 mm1
c = 13.7710 (12) ÅT = 296 K
V = 732.90 (13) Å3Fragment, colorless
Z = 80.11 × 0.11 × 0.10 mm
F(000) = 1136
Data collection top
Rigaku R-AXIS RAPID imaging-plate
diffractometer
464 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
ω scansθmax = 30.4°, θmin = 4.2°
Absorption correction: numerical
(NUMABS; Higashi, 1998)
h = 77
Tmin = 0.095, Tmax = 0.156k = 1313
2817 measured reflectionsl = 1819
606 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.89 e Å3
606 reflectionsΔρmin = 0.90 e Å3
46 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00078 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr0.00000.33785 (6)0.41815 (4)0.01001 (14)
Ge10.50000.17311 (6)0.32117 (4)0.00573 (14)
Ge20.50000.50467 (6)0.36359 (3)0.00711 (15)
O10.25000.2491 (4)0.25000.0109 (7)
O20.50000.5042 (4)0.2379 (2)0.0072 (7)
O30.50000.3325 (4)0.4061 (2)0.0082 (7)
O40.7585 (6)0.5929 (3)0.41270 (19)0.0094 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr0.0085 (3)0.0093 (3)0.0122 (2)0.0000.0000.0006 (2)
Ge10.0054 (3)0.0057 (3)0.0060 (2)0.0000.0000.0003 (2)
Ge20.0069 (3)0.0068 (3)0.0077 (2)0.0000.0000.0006 (2)
O10.0090 (19)0.0100 (17)0.0136 (17)0.0000.0052 (16)0.000
O20.0098 (19)0.0064 (16)0.0054 (15)0.0000.0000.0022 (15)
O30.0121 (19)0.0054 (17)0.0072 (15)0.0000.0000.0011 (15)
O40.0080 (12)0.0109 (12)0.0092 (11)0.0034 (12)0.0008 (10)0.0007 (10)
Geometric parameters (Å, º) top
Sr—O2i2.691 (3)Ge1—Srxiii3.5274 (9)
Sr—O32.7381 (4)Ge1—Srviii3.5914 (8)
Sr—O3ii2.7381 (4)Ge1—Srx3.6654 (8)
Sr—O4iii2.761 (3)Ge2—O21.731 (3)
Sr—O4iv2.761 (3)Ge2—O31.776 (4)
Sr—O4v2.773 (3)Ge2—O41.787 (3)
Sr—O4vi2.773 (3)Ge2—O4vii1.787 (3)
Sr—O4vii2.814 (3)Ge2—Srxii3.2667 (6)
Sr—O4ii2.814 (3)Ge2—Srxiv3.3303 (10)
Sr—O12.8241 (12)O1—Ge1i1.8372 (16)
Sr—O1i2.8241 (12)O1—Srx2.8241 (12)
Sr—O3viii2.934 (4)O2—Ge1xv1.835 (4)
Ge1—O2ix1.835 (4)O2—Srx2.691 (3)
Ge1—O1x1.8372 (16)O3—Srxii2.7381 (4)
Ge1—O11.8372 (16)O3—Srviii2.934 (4)
Ge1—O31.944 (4)O4—Ge1xiv1.985 (3)
Ge1—O4xi1.985 (3)O4—Sriii2.761 (3)
Ge1—O4vi1.985 (3)O4—Srxiv2.773 (3)
Ge1—Srxii3.4387 (5)O4—Srxii2.814 (3)
O2i—Sr—O387.89 (8)O4vi—Ge1—Srxii117.72 (8)
O2i—Sr—O3ii87.89 (8)O2ix—Ge1—Sr126.18 (2)
O3—Sr—O3ii172.73 (14)O1x—Ge1—Sr127.61 (11)
O2i—Sr—O4iii121.79 (8)O1—Ge1—Sr55.13 (4)
O3—Sr—O4iii65.08 (9)O3—Ge1—Sr52.676 (12)
O3ii—Sr—O4iii122.19 (9)O4xi—Ge1—Sr117.72 (8)
O2i—Sr—O4iv121.79 (8)O4vi—Ge1—Sr53.74 (8)
O3—Sr—O4iv122.19 (9)Srxii—Ge1—Sr105.25 (2)
O3ii—Sr—O4iv65.08 (9)O2ix—Ge1—Srxiii48.57 (11)
O4iii—Sr—O4iv57.11 (12)O1x—Ge1—Srxiii125.09 (10)
O2i—Sr—O4v119.74 (8)O1—Ge1—Srxiii125.09 (10)
O3—Sr—O4v119.37 (10)O3—Ge1—Srxiii120.74 (11)
O3ii—Sr—O4v58.23 (10)O4xi—Ge1—Srxiii52.81 (8)
O4iii—Sr—O4v118.45 (5)O4vi—Ge1—Srxiii52.81 (8)
O4iv—Sr—O4v89.38 (8)Srxii—Ge1—Srxiii106.543 (15)
O2i—Sr—O4vi119.74 (8)Sr—Ge1—Srxiii106.543 (15)
O3—Sr—O4vi58.23 (10)O2ix—Ge1—Srviii114.62 (11)
O3ii—Sr—O4vi119.37 (10)O1x—Ge1—Srviii123.04 (3)
O4iii—Sr—O4vi89.38 (8)O1—Ge1—Srviii123.04 (3)
O4iv—Sr—O4vi118.45 (5)O3—Ge1—Srviii54.69 (11)
O4v—Sr—O4vi61.27 (12)O4xi—Ge1—Srviii49.73 (8)
O2i—Sr—O4vii56.44 (8)O4vi—Ge1—Srviii49.73 (8)
O3—Sr—O4vii63.08 (10)Srxii—Ge1—Srviii68.015 (12)
O3ii—Sr—O4vii118.90 (10)Sr—Ge1—Srviii68.015 (12)
O4iii—Sr—O4vii65.34 (10)Srxiii—Ge1—Srviii66.050 (17)
O4iv—Sr—O4vii91.79 (9)O2ix—Ge1—Srx89.63 (11)
O4v—Sr—O4vii175.92 (11)O1x—Ge1—Srx49.00 (3)
O4vi—Sr—O4vii121.301 (9)O1—Ge1—Srx49.00 (3)
O2i—Sr—O4ii56.44 (8)O3—Ge1—Srx101.06 (11)
O3—Sr—O4ii118.90 (10)O4xi—Ge1—Srx138.00 (9)
O3ii—Sr—O4ii63.08 (10)O4vi—Ge1—Srx138.00 (9)
O4iii—Sr—O4ii91.79 (9)Srxii—Ge1—Srx98.339 (18)
O4iv—Sr—O4ii65.34 (10)Sr—Ge1—Srx98.340 (18)
O4v—Sr—O4ii121.301 (9)Srxiii—Ge1—Srx138.20 (2)
O4vi—Sr—O4ii175.92 (11)Srviii—Ge1—Srx155.747 (18)
O4vii—Sr—O4ii55.94 (12)O2—Ge2—O3109.12 (16)
O2i—Sr—O161.93 (8)O2—Ge2—O4112.32 (10)
O3—Sr—O157.44 (7)O3—Ge2—O4109.22 (11)
O3ii—Sr—O1115.30 (7)O2—Ge2—O4vii112.31 (10)
O4iii—Sr—O1122.36 (6)O3—Ge2—O4vii109.22 (11)
O4iv—Sr—O1176.19 (10)O4—Ge2—O4vii104.52 (19)
O4v—Sr—O187.78 (9)O2—Ge2—Sr103.23 (6)
O4vi—Sr—O157.87 (8)O3—Ge2—Sr56.951 (16)
O4vii—Sr—O191.22 (9)O4—Ge2—Sr144.46 (9)
O4ii—Sr—O1118.36 (8)O4vii—Ge2—Sr59.38 (9)
O2i—Sr—O1i61.93 (8)O2—Ge2—Srxii103.23 (6)
O3—Sr—O1i115.31 (7)O3—Ge2—Srxii56.951 (16)
O3ii—Sr—O1i57.44 (7)O4—Ge2—Srxii59.38 (9)
O4iii—Sr—O1i176.19 (10)O4vii—Ge2—Srxii144.46 (9)
O4iv—Sr—O1i122.36 (6)Sr—Ge2—Srxii113.55 (3)
O4v—Sr—O1i57.87 (8)O2—Ge2—Srxiv103.18 (12)
O4vi—Sr—O1i87.78 (9)O3—Ge2—Srxiv147.70 (11)
O4vii—Sr—O1i118.36 (8)O4—Ge2—Srxiv56.36 (10)
O4ii—Sr—O1i91.22 (9)O4vii—Ge2—Srxiv56.36 (10)
O1—Sr—O1i57.87 (3)Sr—Ge2—Srxiv115.631 (15)
O2i—Sr—O3viii177.42 (11)Srxii—Ge2—Srxiv115.632 (15)
O3—Sr—O3viii92.24 (8)Ge1i—O1—Ge1132.5 (2)
O3ii—Sr—O3viii92.24 (8)Ge1i—O1—Srx92.618 (18)
O4iii—Sr—O3viii56.09 (8)Ge1—O1—Srx101.588 (16)
O4iv—Sr—O3viii56.09 (8)Ge1i—O1—Sr101.587 (15)
O4v—Sr—O3viii62.36 (8)Ge1—O1—Sr92.616 (18)
O4vi—Sr—O3viii62.36 (8)Srx—O1—Sr144.37 (15)
O4vii—Sr—O3viii121.41 (8)Ge2—O2—Ge1xv116.18 (19)
O4ii—Sr—O3viii121.41 (8)Ge2—O2—Srx143.13 (18)
O1—Sr—O3viii120.22 (8)Ge1xv—O2—Srx100.70 (13)
O1i—Sr—O3viii120.22 (8)Ge2—O3—Ge1123.72 (19)
O2ix—Ge1—O1x97.16 (12)Ge2—O3—Srxii90.11 (8)
O2ix—Ge1—O197.16 (12)Ge1—O3—Srxii92.96 (8)
O1x—Ge1—O196.09 (11)Ge2—O3—Sr90.11 (8)
O2ix—Ge1—O3169.31 (15)Ge1—O3—Sr92.96 (8)
O1x—Ge1—O389.97 (12)Srxii—O3—Sr172.73 (14)
O1—Ge1—O389.97 (12)Ge2—O3—Srviii143.69 (17)
O2ix—Ge1—O4xi85.93 (11)Ge1—O3—Srviii92.58 (14)
O1x—Ge1—O4xi90.16 (10)Srxii—O3—Srviii87.76 (8)
O1—Ge1—O4xi172.61 (9)Sr—O3—Srviii87.76 (8)
O3—Ge1—O4xi86.09 (11)Ge2—O4—Ge1xiv118.33 (14)
O2ix—Ge1—O4vi85.93 (11)Ge2—O4—Sriii144.57 (13)
O1x—Ge1—O4vi172.61 (9)Ge1xiv—O4—Sriii97.01 (11)
O1—Ge1—O4vi90.16 (10)Ge2—O4—Srxiv91.20 (12)
O3—Ge1—O4vi86.09 (11)Ge1xiv—O4—Srxiv91.01 (10)
O4xi—Ge1—O4vi83.35 (17)Sriii—O4—Srxiv90.62 (8)
O2ix—Ge1—Srxii126.18 (2)Ge2—O4—Srxii87.50 (10)
O1x—Ge1—Srxii55.13 (4)Ge1xiv—O4—Srxii93.00 (11)
O1—Ge1—Srxii127.60 (11)Sriii—O4—Srxii88.21 (9)
O3—Ge1—Srxii52.676 (12)Srxiv—O4—Srxii175.93 (11)
O4xi—Ge1—Srxii53.74 (8)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y+1, z+1; (v) x+1/2, y1/2, z; (vi) x1/2, y1/2, z; (vii) x+1, y, z; (viii) x+1/2, y+1/2, z+1; (ix) x, y1/2, z+1/2; (x) x+1/2, y, z+1/2; (xi) x+3/2, y1/2, z; (xii) x+1, y, z; (xiii) x+1/2, y1/2, z; (xiv) x+1/2, y+1/2, z; (xv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds