Download citation
Download citation
link to html
Hydrogen bonding between urea functionalities is a common structural motif employed in crystal-engineering studies. Crystallization of 1,3-bis(3-fluoro­phenyl)urea, C13H10F2N2O, from many solvents yielded concomitant mixtures of at least two polymorphs. In the monoclinic form, one-dimensional chains of hydrogen-bonded urea molecules align in an antiparallel orientation, as is typical of many di­phenyl­ureas. In the ortho­rhom­bic form, one-dimensional chains of hydrogen-bonded urea molecules have a parallel orientation rarely observed in symmetrically substituted di­phenyl­ureas.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616013565/lg3192sup1.cif
Contains datablocks I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616013565/lg3192Isup2.hkl
Contains datablock I

cdx

Chemdraw file https://doi.org/10.1107/S2053229616013565/lg3192Isup4.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616013565/lg3192IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616013565/lg3192IIsup5.cml
Supplementary material

CCDC references: 1500641; 1500640

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005) for (I); APEX2 (Bruker, 2014) for (II). Cell refinement: CrysAlis RED (Oxford Diffraction, 2005) for (I); APEX2 (Bruker, 2014) for (II). Data reduction: CrysAlis RED (Oxford Diffraction, 2005) for (I); SAINT (Bruker, 2014) for (II). Program(s) used to solve structure: SHELXTL (Sheldrick, 2008) for (I); SHELXT (Sheldrick, 2015a) for (II). For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Bruker, 2014); software used to prepare material for publication: XCIF (Bruker, 2014) and publCIF (Westrip, 2010).

(I) 1,3-Bis(3-fluorophenyl)urea top
Crystal data top
C13H10F2N2OF(000) = 1024
Mr = 248.23Dx = 1.463 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.6614 (19) ÅCell parameters from 2884 reflections
b = 12.6052 (11) Åθ = 1.9–28.6°
c = 9.1691 (9) ŵ = 0.12 mm1
β = 109.284 (9)°T = 110 K
V = 2254.0 (4) Å3Prism, colorless
Z = 80.23 × 0.09 × 0.03 mm
Data collection top
Multiwire proportional
diffractometer
2858 independent reflections
Radiation source: sealed tube2048 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
phi and ω scansθmax = 28.6°, θmin = 3.9°
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2005)
h = 2727
Tmin = 0.957, Tmax = 0.993k = 1616
12889 measured reflectionsl = 1212
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2858 reflectionsΔρmax = 0.28 e Å3
179 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed some dependence on amplitude and little dependence on resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.12765 (6)0.02147 (9)0.59284 (12)0.0251 (3)
N10.10058 (7)0.07341 (11)0.77665 (17)0.0246 (4)
H10.1032 (10)0.0784 (16)0.8748 (18)0.037*
N20.14840 (7)0.09098 (11)0.83494 (16)0.0240 (3)
H20.1430 (10)0.0760 (16)0.9273 (19)0.036*
F10.07380 (7)0.44765 (9)0.73146 (14)0.0499 (4)
F20.24104 (8)0.35311 (11)0.57553 (16)0.0404 (5)0.806 (4)
F2'0.1802 (3)0.4426 (5)0.9954 (7)0.045 (2)0.194 (4)
C10.12571 (8)0.01375 (13)0.72571 (18)0.0206 (4)
C20.07261 (9)0.16392 (13)0.6848 (2)0.0235 (4)
C30.08879 (9)0.26293 (14)0.7515 (2)0.0279 (4)
H30.11960.27060.85400.033*
C40.05883 (10)0.35044 (14)0.6648 (2)0.0317 (4)
C50.01393 (10)0.34403 (15)0.5156 (2)0.0335 (5)
H50.00580.40590.45910.040*
C60.00125 (9)0.24426 (14)0.4516 (2)0.0294 (4)
H60.03180.23720.34880.035*
C70.02722 (9)0.15437 (14)0.5345 (2)0.0264 (4)
H70.01580.08620.48900.032*
C80.17014 (8)0.19427 (13)0.81364 (18)0.0223 (4)
C90.19741 (9)0.22055 (15)0.6986 (2)0.0269 (4)
H90.20270.16860.62830.032*
C100.21657 (9)0.32459 (16)0.6900 (2)0.0308 (4)
H100.23520.34280.61150.037*0.194 (4)
C110.21032 (9)0.40341 (15)0.7879 (2)0.0311 (4)
H110.22350.47440.77730.037*
C120.18407 (9)0.37474 (15)0.9026 (2)0.0289 (4)
H120.17950.42700.97320.035*0.806 (4)
C130.16428 (8)0.27157 (14)0.91671 (19)0.0239 (4)
H13A0.14660.25350.99690.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0324 (7)0.0267 (7)0.0168 (6)0.0021 (5)0.0089 (5)0.0002 (5)
N10.0333 (8)0.0238 (8)0.0177 (7)0.0039 (6)0.0097 (6)0.0033 (6)
N20.0315 (8)0.0248 (8)0.0157 (7)0.0046 (6)0.0077 (6)0.0015 (6)
F10.0621 (9)0.0234 (6)0.0516 (8)0.0004 (6)0.0017 (6)0.0049 (5)
F20.0503 (9)0.0424 (9)0.0381 (9)0.0132 (7)0.0274 (7)0.0032 (6)
F2'0.051 (4)0.037 (4)0.047 (4)0.004 (3)0.015 (3)0.014 (3)
C10.0207 (8)0.0242 (9)0.0160 (8)0.0032 (7)0.0046 (6)0.0000 (6)
C20.0245 (9)0.0243 (9)0.0229 (9)0.0001 (7)0.0096 (7)0.0030 (7)
C30.0284 (9)0.0283 (10)0.0251 (9)0.0017 (8)0.0065 (7)0.0007 (7)
C40.0361 (11)0.0211 (9)0.0364 (11)0.0015 (8)0.0100 (8)0.0022 (8)
C50.0361 (11)0.0259 (10)0.0348 (11)0.0035 (8)0.0067 (9)0.0086 (8)
C60.0269 (9)0.0320 (10)0.0261 (9)0.0012 (8)0.0043 (7)0.0034 (8)
C70.0273 (9)0.0263 (9)0.0245 (9)0.0036 (7)0.0072 (7)0.0014 (7)
C80.0200 (8)0.0230 (9)0.0204 (8)0.0022 (7)0.0020 (7)0.0013 (7)
C90.0267 (9)0.0321 (10)0.0220 (9)0.0023 (8)0.0083 (7)0.0011 (7)
C100.0281 (10)0.0387 (11)0.0263 (9)0.0073 (8)0.0099 (7)0.0056 (8)
C110.0295 (10)0.0269 (10)0.0334 (10)0.0048 (8)0.0054 (8)0.0042 (8)
C120.0284 (10)0.0271 (9)0.0272 (10)0.0009 (8)0.0035 (8)0.0021 (8)
C130.0227 (8)0.0288 (9)0.0191 (8)0.0017 (7)0.0055 (7)0.0004 (7)
Geometric parameters (Å, º) top
O1—C11.2360 (18)C5—H50.9500
N1—C11.362 (2)C6—C71.383 (2)
N1—C21.423 (2)C6—H60.9500
N1—H10.886 (15)C7—H70.9500
N2—C11.364 (2)C8—C91.390 (2)
N2—C81.412 (2)C8—C131.390 (2)
N2—H20.909 (15)C9—C101.380 (3)
F1—C41.359 (2)C9—H90.9500
F2—C101.355 (2)C10—C111.374 (3)
F2'—C121.227 (6)C10—H100.9500
C2—C31.382 (2)C11—C121.381 (3)
C2—C71.392 (2)C11—H110.9500
C3—C41.381 (3)C12—C131.382 (2)
C3—H30.9500C12—H120.9500
C4—C51.379 (3)C13—H13A0.9500
C5—C61.379 (3)
C1—N1—C2124.76 (14)C6—C7—H7120.1
C1—N1—H1120.2 (13)C2—C7—H7120.1
C2—N1—H1114.9 (13)C9—C8—C13119.79 (16)
C1—N2—C8127.19 (14)C9—C8—N2123.51 (16)
C1—N2—H2114.7 (13)C13—C8—N2116.69 (15)
C8—N2—H2117.6 (13)C10—C9—C8117.79 (17)
O1—C1—N1122.80 (15)C10—C9—H9121.1
O1—C1—N2123.54 (15)C8—C9—H9121.1
N1—C1—N2113.66 (14)F2—C10—C11117.00 (17)
C3—C2—C7120.11 (16)F2—C10—C9118.97 (18)
C3—C2—N1118.08 (16)C11—C10—C9123.99 (17)
C7—C2—N1121.72 (16)C11—C10—H10118.0
C4—C3—C2118.01 (17)C9—C10—H10118.0
C4—C3—H3121.0C10—C11—C12117.00 (17)
C2—C3—H3121.0C10—C11—H11121.5
F1—C4—C5118.55 (16)C12—C11—H11121.5
F1—C4—C3117.99 (17)F2'—C12—C11118.5 (3)
C5—C4—C3123.46 (17)F2'—C12—C13120.1 (3)
C4—C5—C6117.35 (17)C11—C12—C13121.35 (17)
C4—C5—H5121.3C11—C12—H12119.3
C6—C5—H5121.3C13—C12—H12119.3
C5—C6—C7121.17 (17)C12—C13—C8120.07 (16)
C5—C6—H6119.4C12—C13—H13A120.0
C7—C6—H6119.4C8—C13—H13A120.0
C6—C7—C2119.89 (17)
C2—N1—C1—O11.3 (3)N1—C2—C7—C6177.02 (16)
C2—N1—C1—N2178.71 (15)C1—N2—C8—C926.6 (3)
C8—N2—C1—O17.5 (3)C1—N2—C8—C13154.41 (16)
C8—N2—C1—N1172.58 (16)C13—C8—C9—C101.2 (2)
C1—N1—C2—C3139.16 (17)N2—C8—C9—C10179.85 (16)
C1—N1—C2—C744.3 (2)C8—C9—C10—F2177.69 (15)
C7—C2—C3—C40.1 (3)C8—C9—C10—C110.0 (3)
N1—C2—C3—C4176.76 (16)F2—C10—C11—C12178.72 (16)
C2—C3—C4—F1178.85 (16)C9—C10—C11—C121.0 (3)
C2—C3—C4—C50.1 (3)C10—C11—C12—F2'177.4 (4)
F1—C4—C5—C6178.96 (17)C10—C11—C12—C130.7 (3)
C3—C4—C5—C60.0 (3)F2'—C12—C13—C8178.5 (4)
C4—C5—C6—C70.4 (3)C11—C12—C13—C80.4 (3)
C5—C6—C7—C20.7 (3)C9—C8—C13—C121.5 (2)
C3—C2—C7—C60.5 (3)N2—C8—C13—C12179.55 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.91 (2)2.06 (2)2.9076 (18)155 (2)
N1—H1···O1i0.89 (2)2.02 (2)2.8417 (18)153 (2)
Symmetry code: (i) x, y, z+1/2.
(II) 1,3-Bis(3-fluorophenyl)urea top
Crystal data top
C13H10F2N2ODx = 1.492 Mg m3
Mr = 248.23Melting point = 143.8–147.6 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
a = 23.5797 (19) ÅCell parameters from 4113 reflections
b = 10.1792 (8) Åθ = 2.6–27.4°
c = 4.6031 (4) ŵ = 0.12 mm1
V = 1104.85 (16) Å3T = 100 K
Z = 4Needle, colorless
F(000) = 5120.60 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII SMART platform CCD
diffractometer
2624 independent reflections
Radiation source: fine-focus sealed tube2443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 28.2°, θmin = 1.7°
Absorption correction: multi-scan
SADABS V2014/4 (Bruker, 2014)
h = 3131
Tmin = 0.932, Tmax = 0.993k = 1213
9603 measured reflectionsl = 66
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.034P)2 + 0.2739P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.22 e Å3
2624 reflectionsΔρmin = 0.17 e Å3
179 parametersAbsolute structure: Flack x determined using 989 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.4 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2015). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.37757 (6)1.07011 (12)0.6264 (3)0.0167 (3)
N10.35674 (7)1.17231 (15)1.0544 (4)0.0155 (3)
H10.3632 (10)1.168 (2)1.239 (5)0.023*
N20.40708 (7)0.98087 (15)1.0560 (4)0.0151 (3)
H20.4080 (10)0.995 (2)1.238 (5)0.023*
F10.22284 (5)1.37274 (13)0.4117 (3)0.0311 (3)
F20.41590 (5)0.60920 (12)0.4201 (3)0.0238 (4)0.932 (4)
F2'0.5579 (8)0.6757 (17)1.074 (5)0.033 (6)0.068 (4)
C10.37987 (7)1.07346 (17)0.8938 (4)0.0133 (3)
C20.33047 (7)1.28461 (17)0.9336 (4)0.0143 (3)
C30.28907 (8)1.27192 (19)0.7186 (4)0.0173 (4)
H30.27901.18830.64300.021*
C40.26326 (8)1.38512 (19)0.6199 (4)0.0200 (4)
C50.27633 (9)1.5085 (2)0.7213 (5)0.0223 (4)
H50.25781.58420.64690.027*
C60.31752 (8)1.51897 (18)0.9358 (5)0.0206 (4)
H60.32711.60291.01130.025*
C70.34474 (8)1.40791 (18)1.0408 (5)0.0175 (4)
H70.37311.41611.18610.021*
C80.43509 (7)0.86969 (17)0.9403 (4)0.0143 (4)
C90.41038 (8)0.79368 (17)0.7222 (4)0.0159 (4)
H90.37480.81660.63990.019*
C100.43970 (8)0.68379 (18)0.6308 (4)0.0182 (4)
H10A0.42330.63160.48170.022*0.068 (4)
C110.49123 (8)0.64515 (18)0.7422 (5)0.0190 (4)
H110.50990.56870.67290.023*
C120.51479 (8)0.72211 (18)0.9597 (4)0.0194 (4)
H120.55010.69761.04260.023*0.932 (4)
C130.48738 (8)0.83459 (18)1.0582 (4)0.0164 (4)
H130.50420.88731.20510.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (7)0.0183 (6)0.0099 (7)0.0035 (5)0.0000 (5)0.0003 (5)
N10.0220 (8)0.0153 (7)0.0091 (7)0.0034 (6)0.0019 (6)0.0004 (6)
N20.0215 (8)0.0149 (7)0.0090 (7)0.0035 (6)0.0011 (6)0.0024 (6)
F10.0274 (6)0.0424 (7)0.0236 (7)0.0102 (5)0.0115 (6)0.0018 (6)
F20.0286 (7)0.0203 (6)0.0225 (7)0.0011 (5)0.0044 (6)0.0096 (6)
F2'0.033 (11)0.024 (10)0.041 (12)0.005 (8)0.001 (10)0.001 (9)
C10.0131 (8)0.0145 (8)0.0125 (9)0.0023 (6)0.0004 (7)0.0000 (7)
C20.0147 (8)0.0167 (8)0.0116 (8)0.0024 (6)0.0026 (7)0.0011 (7)
C30.0179 (9)0.0203 (9)0.0139 (9)0.0005 (7)0.0002 (7)0.0024 (7)
C40.0162 (9)0.0303 (10)0.0135 (9)0.0049 (8)0.0018 (7)0.0005 (8)
C50.0253 (10)0.0225 (10)0.0190 (10)0.0104 (8)0.0030 (8)0.0053 (8)
C60.0245 (9)0.0153 (8)0.0220 (10)0.0012 (7)0.0039 (8)0.0009 (8)
C70.0169 (8)0.0198 (9)0.0158 (9)0.0014 (7)0.0006 (8)0.0014 (7)
C80.0177 (8)0.0133 (8)0.0119 (8)0.0001 (6)0.0032 (7)0.0019 (7)
C90.0174 (8)0.0168 (8)0.0133 (9)0.0007 (7)0.0010 (7)0.0007 (7)
C100.0252 (10)0.0151 (8)0.0143 (9)0.0041 (7)0.0013 (8)0.0025 (7)
C110.0240 (9)0.0145 (8)0.0185 (9)0.0033 (7)0.0045 (8)0.0006 (7)
C120.0186 (9)0.0200 (9)0.0197 (10)0.0032 (7)0.0011 (8)0.0016 (8)
C130.0186 (9)0.0169 (9)0.0136 (9)0.0010 (7)0.0014 (7)0.0006 (7)
Geometric parameters (Å, º) top
O1—C11.232 (2)C5—H50.9500
N1—C11.362 (2)C6—C71.387 (3)
N1—C21.414 (2)C6—H60.9500
N1—H10.86 (2)C7—H70.9500
N2—C11.363 (2)C8—C131.394 (3)
N2—C81.415 (2)C8—C91.395 (3)
N2—H20.85 (2)C9—C101.381 (3)
F1—C41.358 (2)C9—H90.9500
F2—C101.354 (2)C10—C111.376 (3)
F2'—C121.238 (19)C10—H10A0.9500
C2—C71.390 (3)C11—C121.387 (3)
C2—C31.396 (3)C11—H110.9500
C3—C41.380 (3)C12—C131.391 (3)
C3—H30.9500C12—H120.9500
C4—C51.375 (3)C13—H130.9500
C5—C61.389 (3)
C1—N1—C2123.99 (16)C6—C7—H7120.0
C1—N1—H1115.4 (16)C2—C7—H7120.0
C2—N1—H1120.1 (16)C13—C8—C9120.50 (16)
C1—N2—C8124.53 (16)C13—C8—N2118.14 (17)
C1—N2—H2115.5 (16)C9—C8—N2121.31 (16)
C8—N2—H2119.9 (16)C10—C9—C8117.35 (17)
O1—C1—N1122.99 (17)C10—C9—H9121.3
O1—C1—N2123.28 (16)C8—C9—H9121.3
N1—C1—N2113.70 (16)F2—C10—C11118.22 (17)
C7—C2—C3120.31 (18)F2—C10—C9117.73 (17)
C7—C2—N1118.95 (17)C11—C10—C9124.05 (18)
C3—C2—N1120.69 (17)C11—C10—H10A118.0
C4—C3—C2117.68 (18)C9—C10—H10A118.0
C4—C3—H3121.2C10—C11—C12117.47 (17)
C2—C3—H3121.2C10—C11—H11121.3
F1—C4—C5118.79 (17)C12—C11—H11121.3
F1—C4—C3117.68 (17)F2'—C12—C11114.9 (9)
C5—C4—C3123.53 (18)F2'—C12—C13123.8 (10)
C4—C5—C6117.89 (17)C11—C12—C13120.92 (17)
C4—C5—H5121.1C11—C12—H12119.5
C6—C5—H5121.1C13—C12—H12119.5
C7—C6—C5120.59 (18)C12—C13—C8119.70 (18)
C7—C6—H6119.7C12—C13—H13120.2
C5—C6—H6119.7C8—C13—H13120.2
C6—C7—C2120.01 (19)
C2—N1—C1—O13.6 (3)N1—C2—C7—C6176.84 (18)
C2—N1—C1—N2174.72 (16)C1—N2—C8—C13137.98 (19)
C8—N2—C1—O10.9 (3)C1—N2—C8—C944.5 (3)
C8—N2—C1—N1179.16 (17)C13—C8—C9—C100.1 (3)
C1—N1—C2—C7132.70 (19)N2—C8—C9—C10177.35 (17)
C1—N1—C2—C350.0 (3)C8—C9—C10—F2179.73 (17)
C7—C2—C3—C40.2 (3)C8—C9—C10—C110.3 (3)
N1—C2—C3—C4177.02 (17)F2—C10—C11—C12179.47 (17)
C2—C3—C4—F1179.75 (17)C9—C10—C11—C120.0 (3)
C2—C3—C4—C50.2 (3)C10—C11—C12—F2'172.5 (11)
F1—C4—C5—C6179.54 (18)C10—C11—C12—C130.6 (3)
C3—C4—C5—C60.4 (3)F2'—C12—C13—C8171.5 (12)
C4—C5—C6—C70.6 (3)C11—C12—C13—C81.0 (3)
C5—C6—C7—C20.7 (3)C9—C8—C13—C120.7 (3)
C3—C2—C7—C60.5 (3)N2—C8—C13—C12176.81 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)2.07 (2)2.874 (2)154 (2)
N2—H2···O1i0.85 (2)2.07 (2)2.864 (2)155 (2)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds